Skip to main content

Homoclinic Bifurcations with Weakly Expanding Center Manifolds

  • Chapter
Dynamics Reported

Part of the book series: Dynamics Reported. New Series ((DYNAMICS,volume 5))

Abstract

Interaction of homoclinic bifurcation and bifurcation on the center manifold is studied. We show that the occurrence of different types of solutions near the homoclinic orbit is determined asymptotically by a reduced system on the center manifold. The method is applied to cases where the center manifold is one- or two-dimensional. When the center manifold is one-dimensional, we can obtain all the solutions near the homoclinic orbit. When a Hopf bifurcation occurs on a two-dimensional center manifold, the system can have infinitely many periodic and aperiodic solutions. These solutions disappear in a manner predicted by the reduced system when the perturbation term is increased. We prove that certain periodic and aperiodic solutions disappear through inverse period doubling or saddle-node bifurcation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carr, J. [1981], “Applications of Center Manifold Theory”, Applied Mathematical Sciences, 35, Springer-Verlag, New York.

    Book  Google Scholar 

  2. Chow, S. -N., Deng, B. and Fiedler, B. [ 1990 ], “Homoclinic bifurcation at resonant eigenvalues”, J. Dynamics and Diff. Eqns, 2, 177–244.

    Article  MathSciNet  Google Scholar 

  3. Chow, S. -N. and Hale, J. K. [ 1982 ], “Methods of bifurcation theory”, Grund. der Math. Wissen, 251, Springer-Verlag, New York.

    Book  Google Scholar 

  4. Chow, S. -N. and Lin, X. B. [ 1990 ], “Bifurcation of a homoclinic orbit with a saddle-node equilibrium”, Differential and Integral Equations, 3, 435–466.

    Article  MathSciNet  Google Scholar 

  5. Chow, S. -N. and Lu, K. [ 1988 ], “Ck center-unstable manifolds”, Royal Soc. Edinburgh, 108A, 303–320.

    Article  Google Scholar 

  6. Chow, S.-N. and Mallet-Paret, J., [ 1977 ], “Integral averaging and bifurcation,” J. Diff Eqns, 26, 112–159.

    Article  MathSciNet  Google Scholar 

  7. Crandall, M. G. and Rabinowitz, P. H. [ 1971 ], “Bifurcation from simple eigenvalue”, J. Funct. Anal, 8, 321–340.

    Article  MathSciNet  Google Scholar 

  8. Deng, B. [ 1989 ], ‘The Silnikov problem, exponential expansion, strong A-lemma, cl-linearization and homoclinic bifurcation”, J. Differential Equations, 79, 189–231.

    Article  MathSciNet  Google Scholar 

  9. Deng, B. [ 1990 ], “Homoclinic bifurcation with nonhyperbolic equilibria”, SIAM J. Math. Anal, 21, 693–720.

    Article  MathSciNet  Google Scholar 

  10. Deng, B. and Sakamoto, K. [ 1995 ], “Silnikov-Hopf bifurcations”, J. Differential Equations, 119, 1–23.

    Article  MathSciNet  Google Scholar 

  11. Fenichel, N. [ 1974 ], “Asymptotic stability with rate conditions”, Indiana Univ. Math. J, 23, 1109–1137.

    Article  MathSciNet  Google Scholar 

  12. Glendinning, P. and Sparrow, C. [ 1984 ], “Local and global behavior near homoclinic orbits”, J. Stat. Phys, 35, 645–696.

    Article  MathSciNet  Google Scholar 

  13. Guckenheimer, J. and Holmes, P. [ 1983 ], “Nonlinear oscillations, dynamical systems, and bifurcations of vector fields”, Springer-Verlag, New York.

    Google Scholar 

  14. Guckenheimer, J., Moser, J. and Newhouse, S.E. [ 1980 ], “Dynamical systems”, Birkäuser, Boston.

    Google Scholar 

  15. Hale, J.K. [ 1980 ], “Ordinary differential equations”, 2nd Edition, Krieger Malabar, Florida

    Google Scholar 

  16. Hale, J. and Lin, X. -B., [ 1986 ], “Heteroclinic Orbits for Retarded Functional Differential Equations”, J. Differential Equations, 65, 175–202.

    Article  MathSciNet  Google Scholar 

  17. Hirsch, M. W., Pugh, C. C. and Shub, M. [ 1977 ], “Invariant manifolds”, Lecture Notes in Math, 583, Springer-Verlag, New York.

    Book  Google Scholar 

  18. Hirschberg, P. and Knobloch, E. [ 1992 ], “Silnikov-Hopf Bifurcation”, Preprint.

    Google Scholar 

  19. Lin, X. B. [ 1990 ], “Using Melnikov’s method to solve Silnikov’s problems”, Proc. Roy. Soc. Edinburgh, 166A, 295–325.

    Article  Google Scholar 

  20. Lukyanov, V. I. [ 1982 ], “Bifurcation of dynamical systems with a saddle point separatrix loop”, Differential Equations, 18, 1049–1059.

    Google Scholar 

  21. Moser, J. [ 1973 ], “Stable and Random Motions in Dynamical Systems”, Annals of Mathematics Studies, Princeton Univ. Press.

    Google Scholar 

  22. Newhouse, S. E. [ 1974 ], “Diffeomorphisms with infinitely many sinks”, Topology, 13, 9–18.

    Article  MathSciNet  Google Scholar 

  23. Robinson, C. [ 1983 ], “Bifurcation to infinitely many sinks”, Commun. Math. Phys, 90, 433–459.

    Article  MathSciNet  Google Scholar 

  24. Schecter, S. [ 1987a ], “The saddle-node separatrix-loop bifurcation”, SIAM J. Math. Anal, 18, 1142–1156.

    Article  MathSciNet  Google Scholar 

  25. Schecter, S. [ 1987b ], “Melnikov’s method at a saddle-node and the dynamics of the forced Josephson junction”, SIAM J. Math. Anal, 18, 1699–1715.

    Article  MathSciNet  Google Scholar 

  26. Schwartz, J. T. [ 1971 ], “Nonlinear functional analysis”, Academic Press, New York and London.

    Google Scholar 

  27. Silnikov, L. P. [ 1968 ], “On the generation of a periodic motion from trajectories double asymptotic to an equilibrium state of saddle type”, Math. USSR Sbornik, 6, 427–437.

    Article  Google Scholar 

  28. Silnikov, L. P. [ 1970 ], “A contribution to the problem of the structure of an extended neighborhood of a rough equilibrium state of saddle-focus type”, Math. USSR Sbornik, 10, 92–102.

    Google Scholar 

  29. Vanderbauwhede, A. and Van Gils, S.A. [ 1987 ], “Center manifolds and contraction on a scale of Banach spaces”, J. Func. Anal, 72, 209–224.

    Article  MathSciNet  Google Scholar 

  30. Wiggins, S. [ 1988 ], “Global bifurcations and chaos”, Appl. Math. Science, 73, Springer-Verlag, New York.

    Book  Google Scholar 

  31. Yorke, J. A. and Alhgood, Kathleen T. [ 1985 ], “Periodic Doubling Cascades of Attractors: A Prerequisite for Horseshoes”, Commun. Math. Phys, 101, 305–321.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lin, XB. (1996). Homoclinic Bifurcations with Weakly Expanding Center Manifolds. In: Jones, C.K.R.T., Kirchgraber, U., Walther, HO. (eds) Dynamics Reported. Dynamics Reported. New Series, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79931-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79931-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79933-4

  • Online ISBN: 978-3-642-79931-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics