Skip to main content

Electrophoretic Karyotyping of Yeasts

  • Chapter
Nonconventional Yeasts in Biotechnology

Abstract

Electrophoretic karyotyping means the separation of intact chromosomal DNA according to its size on an agarose gel. Depending on the number and size of the chromosomes present in a strain, a specific banding pattern will be obtained. In order to reach this goal, two demands must be met. First, it is important to prepare the DNA without degradation by mechanical stress or by DNAses. Second, a method for the electrophoretic separation of the extremely large molecules must be developed. Conventional DNA electrophoresis is able to separate molecules of up to 50 kilobases. Yeast chromosomes range from several hundred to several thousand kilobases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrio J, Lopez M, Casqueiro J, Fernandez C, Veiga M (1995) Electrophoretic karyotype of the astaxanthin-producing yeast Phaffia rhodozyma. Curr Genet 27: 447–450

    Article  PubMed  CAS  Google Scholar 

  • Asakura K, Iwaguchi SI, Homma M, Sukai T, Higashide K, Tanaka K (1991) Electrophoretic karyotypes of clinically isolated yeasts of Candida albicans and Candida glabrata. J Gen Microbiol 137: 2531–2538

    PubMed  CAS  Google Scholar 

  • Bakalinsky AT, Snow R (1990) The chromosomal constitution of wine strains of Saccharo-myces cerevisiae. Yeast 6: 367–382

    Article  PubMed  CAS  Google Scholar 

  • Bidenne C, Blondin B, Dequin S, Vezinhet F (1992) Analysis of the chromosomal DNA polymorphism of wine strains of Saccharomyces cerevisiae. Curr Genet 22: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Birren B, Lai E (1993) Pulsed field gel electrophoresis: a practical guide. Academic Press, London

    Google Scholar 

  • Boekhout T, Renting M, Scheffers WA, Bosboom R (1993) The use of karyotyping in the systematics of yeasts. Antonie Leeuwenhoek J Microbiol 63: 157–163

    Article  CAS  Google Scholar 

  • Brody H, Carbon J (1989) Electrophoretic karyotype of Aspergillus nidlans. Proc Natl Acad Sci USA 86: 6260–6263

    Article  PubMed  CAS  Google Scholar 

  • Cantor CR, Gaal A, Smith CL (1988) High-resolution separation and accurate size determination in pulsed-field gel electrophoresis of DNA. 3. Effect of electrical field shape. Biochemistry 27: 9216–9221

    Article  PubMed  CAS  Google Scholar 

  • Carle GF, Olson MV (1984) Separation of chromosomal DNA molecules from yeast by orthogonal field alternation gel electrophoresis. Nucleic Acids Res 12: 5647–5664

    Article  PubMed  CAS  Google Scholar 

  • Carle GF, Olson MV (1985) An electrophoretic karyotype for yeast. Proc Natl Acad Sci USA 82: 3756–3760

    Article  PubMed  CAS  Google Scholar 

  • Carle GF, Frank M, Olson MV (1986) Electrophoretic separation of large DNA molecules by periodic inversion of the electric field. Science 232: 65–68

    Article  PubMed  CAS  Google Scholar 

  • Carruba G, Pontieri E, De Bernardis F, Martino P, Cassone A (1991) DNA fingerprinting and electrophoretic karyotype of environmental and clinical isolates of Candida parapsilosis. J Clin Microbiol 29: 916–922

    PubMed  CAS  Google Scholar 

  • Chibana H, Iwaguchi SI, Homma M, Chindamporn A, Nakagawa Y, Tanaka K (1994) Diversity of tandemly repetitive sequences due to short periodic repetitions in the chromosomes of Candida albicans. J Bacteriol 176: 3851–3858

    PubMed  CAS  Google Scholar 

  • Chu G (1991) Bag model for DNA migration during pulsed field electrophoresis. Proc Natl Acad Sci USA 88: 11071–11075

    Article  PubMed  CAS  Google Scholar 

  • Chu G, Gunderson K (1991) Separation of large DNA by a variable angle CHEF apparatus. Anal Biochem 194: 439–446

    Article  PubMed  CAS  Google Scholar 

  • Chu G, Vollrath D, Davies RW (1986) Separation of large DNA molecules by contour-clamped homogeneous electric field. Science 234: 1582–1585

    Article  PubMed  CAS  Google Scholar 

  • Contopoulou CR, Cook VE, Mortimer RK (1987) Analysis of DNA double strand breakage and repair using orthogonal field alternation gel electrophoresis. Yeast 3: 71–76

    Article  PubMed  CAS  Google Scholar 

  • Dardalhon M, Averbeck D (1995) Pulsed-field gel electrophoresis analysis of the rapair of psoralen plus UVA induced DNA photoadducts in Saccharomyces cerevisiae. Mutat Res 336: 49–60

    PubMed  CAS  Google Scholar 

  • De Jonge P, De Jonge FCM, Meijers R, Steensma HY, Scheffers WA (1986) Orthogonal field alternation gel electrophoresis banding patterns of DNA from yeasts. Yeast 2: 193–204

    Article  PubMed  Google Scholar 

  • Dogget NA, Smith CL, Cantor CR (1992) The effect of DNA concentration on mobility in pulsed field gel electrophoresis. Nucleic Acids Res 20: 859–864

    Article  Google Scholar 

  • Eby MJ (1990) Pulsed field separations: continued evolution. Biotechnology 8: 243–245

    Article  PubMed  CAS  Google Scholar 

  • Fan JB, Grothues D, Smith C (1991) Alignement of Sfi I Sites with Not I restriction map of Schizosaccharomyces pombe genome. Nucleic Acids Res 19: 6289–6294

    Article  PubMed  CAS  Google Scholar 

  • Founder P, Abbas A, Chasles M, Kudla B, Ogrydziak DM, Yaver D, Xuan JW, Peito A, Ribet A-M, Feynerol C He F, Gaillardin C (1993) Colocalization of centromeric and replicative functions on autonomously replicating sequences isolated from the yeast Yarrowia lipolytica. Proc Natl Acad Sci USA 90: 4912–4916

    Article  Google Scholar 

  • Gardiner K, Patterson D (1988) Transverse alternating electrophoresis. Nature 331: 371–372

    Article  Google Scholar 

  • Gardner DCJ, Heale SM, Stateva LI, Oliver SG (1993) Treatment of yeast cells with wall lytic enzymes is not required to prepare chromosomes for pulsed-field gel analysis. Yeast 9: 1053–1055

    Google Scholar 

  • Gemmill RM (1991) Pulsed field gel electrophoresis. In: Chrambach A, Dunn MJ, Radola BJ (eds) Advances in electrophoresis 4. Verlag Chemie, Weinheim

    Google Scholar 

  • Goto K, Motoyoshi T, Tamura G, Obata T, Hara S (1990) Chromosomal transformation in Saccharomyces cerevisiae with DNA isolated by pulsed field gel electrophoresis. Agric Biol Chem 5: 1499–1504

    Article  Google Scholar 

  • Gunderson K, Chu G (1991) Pulsed field electrophoresis of megabase-sized DNA Mol Cell Biol 11: 3348–3354

    CAS  Google Scholar 

  • Heus JJ, Zonneveld BJM, Steensma HY, van den Berg JA (1990) Centromeric DNA of Kluyveromyces lactis. Curr Genet 18: 517–522

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann M, Zimmermann M, Emeis C-C (1987) Orthogonal field alternation gel electrophoresis (OFAGE) as a means for the analysis of somatic hybrids obtained by protoplast fusion of different Saccharomyces strains. Curr Genet 11: 599–603

    Article  CAS  Google Scholar 

  • Ibeas JI, Jimenez J (1993) Electrophoretic karyotype of budding yeasts with intact cell wall Nucleic Acids Res 21: 3902

    Article  PubMed  CAS  Google Scholar 

  • Johnston JR, Mortimer RK (1986) Electrophoretic karyotyping of laboratory and commercial strains of Saccharomyces and other yeasts. Int J Syst Bacteriol 36: 569–572

    Article  CAS  Google Scholar 

  • Johnston JR, Contopoulou CR, Mortimer RK (1988) Karyotyping of yeast strains of several genera by field inversion gel electrophoresis. Yeast 4: 191–198

    Article  PubMed  CAS  Google Scholar 

  • Kobori H, Takata Y, Osumi M (1991) Interspecific protoplast fusion between Candida tropicalis and Candida boidinii: characterization of the fusants. J Ferment Bioeng 72: 439–444

    Article  CAS  Google Scholar 

  • Kwan HS, Li CC, Chiu SW, Cheng SC (1991) A simple method to prepare intact yeast chromosomal DNA for pulsed field gel electrophoresis. Nucleic Acids Res 19: 1347

    Article  PubMed  CAS  Google Scholar 

  • Lehmann PF, Khazan H, Wu LC, Wickes RI, Kwon-Chung KJ (1992) Karyotype and isozyme profiles do not correlate in Kluyveromyces marxianus var. marxianus. Mycol Res 96: 637–642

    Article  CAS  Google Scholar 

  • Link AJ, Olson MV (1991) Physical map of the Saccharomyces cerevisiae genome at 110-kilobase resolution. Genetics 127: 681–698

    PubMed  CAS  Google Scholar 

  • Lott TJ, Kuykendall RJ, Welbel SF, Pramanik A, Lasker BA (1993) Genomic heterogeneity in the yeast Candida parapsilosis. Curr Genet 23: 463–467

    Article  PubMed  CAS  Google Scholar 

  • Magee BB, Magee PT (1987) Electrophoretic karyotypes and chromosome numbers in Candida species. J Gen Microbiol 133: 425–430

    PubMed  CAS  Google Scholar 

  • Magee BB, Koltin Y, Gorman JA, Magee PT (1988) Assignement of cloned genes to the seven electrophoretically separated Candida albicans chromosomes. Mol Cell Biol 8: 4721–4726

    PubMed  CAS  Google Scholar 

  • Magee PT, Bowdin L, Staudinger J (1992) Comparison of molecular typing methods for Candida albicans. J Clin Microbiol 30: 2674–2679

    PubMed  CAS  Google Scholar 

  • Marri L, Rossolini GM, Satta G (1993) Chromosome polymorphisms among strains of Hansenula polymorpha (syn. Pichia angusta). Appl Environ Microbiol 59: 939–941

    PubMed  CAS  Google Scholar 

  • Mathew KM, Smith CL, Cantor CR (1988a) High-resolution separation and accurate size determination in pulsed-field gel electrophoresis of DNA. 1. DNA size standards and the effect of agarose and temperature. Biochemistry 27: 9204–9210

    Article  PubMed  CAS  Google Scholar 

  • Mathew KM, Smith CL, Cantor CR (1988b) High-resolution separation and accurate size determination in pulsed-field gel electrophoresis of DNA. 2. Effect of pulse time and electric field strength and implications for models of the separation process. Biochemistry 27: 9210–9216

    Article  PubMed  CAS  Google Scholar 

  • Mathew KM, Hui CF, Smith CL, Cantor CR (1988c) High-resolution separation and accurate size determination in pulsed-field gel electrophoresis of DNA. 4. Influence of DNA Topology. Biochemistry 27: 9222–9226

    Article  PubMed  CAS  Google Scholar 

  • McClusky K, Russel BW, Mills D (1990) Electrophoretic karyotyping without the need for generating protoplasts. Curr Genet 18: 385–386

    Article  Google Scholar 

  • Merz WG, Connelly C, Hieter P (1988) Variation of electrophoretic karyotypes among clinical isolates of Candida albicans. J Clin Microbiol 26: 842–845

    PubMed  CAS  Google Scholar 

  • Nagy A, Garamszegi N, Vagvölgyi C, Ferenczy L (1994) Electrophoretic karyotypes of Phaffia rhodozyma strains. FEMS Microbiol Lett 123: 315–318

    Article  CAS  Google Scholar 

  • Naumova E, Naumov G, Fournier P, Nguyen HV, Gaillardin C (1993) Chromosomal polymorphism of the yeast Yarrowia lipoly tica and related species: electrophoretic karyotyping and hybridization with cloned genes. Curr Genet 23: 450–454

    Article  PubMed  CAS  Google Scholar 

  • Nga BH, Abu Baker FD, Loh GH, Chiu LL, Harashima S, Oshima Y, Heslot H (1992) Intergeneric hybrids between Saccharomycopsis fibuligera and Yarrowia lipolytica. J Gen Microbiol 138: 223–227

    Google Scholar 

  • Nguyen C, Roux D, Mattei MG, Delapeyriere O, Goldfarb M, Birnbaum D, Jordan BR (1988) The FGF-related oncogenes hst and int.2, and the bcl.1 locus are contained within one megabase in band ql3 of chromosome 11, while the fgf.5 oncogene maps to 4q21. Oncogene 3: 703–708

    PubMed  CAS  Google Scholar 

  • Noolandi J, Tunnel C (1992) Preparation, manipulation and pulse strategy for one-dimensional pulsed-field gel electrophoresis (ODPFGE) Chap. 7. In: Burmeiter M, Ulanovsky L (eds) Methods in molecular biology 12. Humana Press, Totowa

    Google Scholar 

  • Oda Y, Tonomura K (1995) Molecular genetic properties of the yeast Torulaspora pretoriensis: characterization of chromosomal DNA and genetic transformation by Saccharomyces cerevisiae — based plasmids. Curr Genet 27: 131–134

    Article  PubMed  CAS  Google Scholar 

  • Pasero P, Marilley M (1993) Size variation of rDNA clusters in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Mol Gen Genet 236: 448–452

    Article  PubMed  CAS  Google Scholar 

  • Passoth V, Hansen M, Klinner U, Emeis CC (1992) The electrophoretic banding patterns of the chromosomes of Pichia stipitis and Candida shehatae. Curr Genet 22: 429–431

    Article  PubMed  CAS  Google Scholar 

  • Querol A, Barrio E, Ramon D (1992) A comparative study of yeast strain characterization. Syst Appl Microbiol 15: 439–446

    Google Scholar 

  • Rustchenko-Bulgac EP (1991) Variation of Candida albicans electrophoretic karyotypes. J Bacteriol 173: 6586–6596

    PubMed  CAS  Google Scholar 

  • Rustchenko-Bulgac EP, Sherman F, Hicks JB (1990) Chromosomal rearrangements associated with morphological mutants provide a means for genetic variation of Candida albicans. J Bacteriol 172: 1276–1283

    PubMed  CAS  Google Scholar 

  • Rustchenko EP, Howard DH, Sherman F (1994) Chromosomal alternations of Candida albicans are associated with the gain and loss of assimilating functions. J Bacteriol 176: 3231–3241

    PubMed  CAS  Google Scholar 

  • Schillberg S, Zimmermann M, Emeis CC (1991) Analysis of hybrids obtained by rare-mating of Saccharomyces strains. Appl Microbiol Biotechnol 35: 242–246

    Article  Google Scholar 

  • Schwartz DC, Cantor CR (1984) Separation of yeast chromosome-sized DNA by pulsed field gradient gel electrophoresis. Cell 37: 67–75

    Article  PubMed  CAS  Google Scholar 

  • Schwartz DC, Koval M (1989) Conformational dynamics of individual DNA molecules during gel electrophoresis. Nature 338: 520–522

    Article  PubMed  CAS  Google Scholar 

  • Schwartz DC, Smith CL, Baker M, Hsu M (1989) Pulsed electrophoresis instrument. Nature 342: 575–576

    Article  Google Scholar 

  • Selebano ET, Govinden R, Pillay D, Pillay B, Gupthar AS (1993) Genomic comparisons among parental and fusant strains of Candida shehatae and Pichia stipitis. Curr Genet 23: 468–471

    Article  PubMed  CAS  Google Scholar 

  • Smith CL, Matsumoto T, Niwa O, Klco S, Fan J, Yanagida M, Cantor CR (1987) An electrophoretic karyotype for Schizosaccharomyces pombe by pulsed field gel electrophoresis. Nucleic Acids Res 15: 4481–4489

    Article  PubMed  CAS  Google Scholar 

  • Sor F (1988) A computer program allows the separation of a wide range of chromosome sizes by pulsed field gel electrophoresis. Nucleic Acids Res 16: 4853–4863

    Article  PubMed  CAS  Google Scholar 

  • Sor F, Fukuhara H (1989) Analysis of chromosomal DNA patterns of the genus Kluyveromyces. Yeast 5: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Steensma HY, De Jongh FCM, Linnekamp M (1988) The use of electrophoretic karyotypes in the classification of yeasts: Kluyveromyces marxianus and K. lactis. Curr Genet 14: 311–317

    Article  CAS  Google Scholar 

  • Stoltenburg R, Klinner U, Ritzerfeld P, Zimmermann M, Emeis CC (1992) Genetic diversity of the yeast Candida utilis. Curr Genet 22: 441–446

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Kobayashi I, Mizuguchi I, Banno T, Tanaka K (1988) Electrophoretic karyotypes in medically important Candida species. J Gen Appl Microbiol 34: 409–416

    Article  CAS  Google Scholar 

  • Suzuki T, Hitomi A, Magee PT, Sakaguchi S (1994) Correlation between polyploidy and auxotrophic segregation in the imperfect yeast Candida albicans. J Bacteriol 176: 3345–3353

    PubMed  CAS  Google Scholar 

  • Svilha G, Schlenk F, Dainko JL (1961) Spheroplasts of Candida utilis. J Bacteriol 82: 808–814

    Google Scholar 

  • Tanaka H, Takagi M, Yano K (1987) Separation of chromosomal DNA of Candida maltosa on agarose gels using the OFAGE Technique. Agric Biol Chern 51: 3161–3163

    Article  CAS  Google Scholar 

  • Thierry A, Dujon B (1992) Nested chromosomal fragmentation in yeast using the meganuclease I-Sce I: a new method for physical mapping of eukaryotic genomes. Nucleic Acids Res 20: 5625–5631

    Article  PubMed  CAS  Google Scholar 

  • Thrash-Bingham C, Gorman JA (1992) DNA translocations contribute to chromosome length polymorphisms in Candida albicans. Curr Genet 22: 93–100

    Article  PubMed  CAS  Google Scholar 

  • Török T, Royer C, Rockhold D, King D (1992) Electrophoretic karyotyping of yeasts and Southern blotting using whole chromosomes as templates for the probe preparation. J Gen Appl Microbiol 38: 313–325

    Article  Google Scholar 

  • Tunnel C, Lalande M (1988) Resolution of Schizosaccharomyces pombe chromosomes by field inversion gel electrophoresis. Nucleic Acids Res 16: 4727

    Article  Google Scholar 

  • Vaughan-Martini A, Martini A, Cardinali G (1993) Electrophoretic karyotyping as a taxo-nomic tool in the genus Saccharomyces. Antonie Leeuwenhoek J Microbiol 63: 157–163

    Article  Google Scholar 

  • Vazquez JA, Beckley A, Sobel JD, Zervos MJ (1991) Comparison of restriction enzyme analysis and pulsed-field gradient gel electrophoresis as typing systems for Candida albicans. J Clin Microbiol 29: 962–996

    PubMed  CAS  Google Scholar 

  • Vazquez JA, Beckley A, Donabedian S, Sobel J, Zervos MJ (1993) Comparison of restriction enzyme analysis versus pulsed-field gradient gel electrophoresis as a typing system for Torulopsis glabrata and Candida species other than C. albicans. J Clin Microbiol 31: 2021–2030

    PubMed  CAS  Google Scholar 

  • Vezinhet F, Blondin B, Hallet JN (1990) Chromosomal DNA patterns and mitochondrial DNA polymorphisms as tools for identification of oenological strains of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 32: 568–571

    Article  CAS  Google Scholar 

  • Vollrath D, Davies RW (1987) Resolution of greater than 5 mega-basepair DNA by contour-clamped homogenous electric fields. Nucleic Acids Res 15: 7865–7876

    Article  PubMed  CAS  Google Scholar 

  • Vollrath D, Davies RW, Connelly C, Hieter P (1988) Physical mapping of large DNA by chromosome fragmentation. Proc Natl Acad Sci USA 85: 6027–6032

    Article  PubMed  CAS  Google Scholar 

  • Zhang TY, Smith CL, Cantor CR (1991) Secondary pulsed field gel electrophoresis: a new method for faster separation of larger DNA molecules. Nucleic Acids Res 19: 1291–1295

    Article  PubMed  CAS  Google Scholar 

  • Zhang TY, Fan JB, Ringquist S, Smith CL, Cantor CR (1993) The 0.7 to 3.5 megabase chromosomes from Candida, Kluyveromyces and Pichia provide accurate size standards for pulsed field gel electrophoresis. Electrophoresis 14: 290–295

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann M, Hoffmann-Hintz M, Kolvenbach M, Emeis C-C (1988) Ofage banding patterns of different yeast genera and of intergeneric hybrids. J Basic Microbiol 28: 241–249

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zimmermann, M., Fournier, P. (1996). Electrophoretic Karyotyping of Yeasts. In: Nonconventional Yeasts in Biotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79856-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79856-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79858-0

  • Online ISBN: 978-3-642-79856-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics