Skip to main content

Abstract

More than 30 years have passed since the first description of the yeast species Candida (C.) maltosa by Komagata et al. (1964a,b). Since then, C. maltosa has become of considerable academic and commercial interest. Now, together with some related Candida species and Yarrowia (Y.) lipolytica (cf. Barth and Gaillardin, Chap. 10, this Vol.), it is best known for its ability to grow on a wide variety of substrates including n-alkanes, fatty acids, or carbohydrates, and is therefore intensively investigated in its physiology, biochemistry, and molecular genetics. More recent investigations also use these yeast species for the study of fundamental cellular processes such as protein targeting, organelle biosynthesis, and drug resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adesnik M, Darnell JE (1972) Biogenesis and characterization of histone messenger RNA in HeLa cells. J Mol Biol 67: 397–406

    PubMed  CAS  Google Scholar 

  • Ahearn DG, Crow SA, Berner NH, Meyers SP (1976) Microbiological cycling of oil in estuarine marshlands. In: Wiley M (ed) Estuarine processes, vol 1 USES, Stresses and adaptation to the estuary. Academic Press, New York, pp 483–492

    Google Scholar 

  • Ahearn DG, Holzschu D, Crow SA, Ibrahim AN (1979) Comparative studies on the potential pathogenicity of Candida tropicalis and Candida maltosa. In: Garattini S, Paglialunga S, Scrimshaw NS (eds) Single cell protein: safety for animals and human feeding. Pergamon Press, Oxford, pp 44–46

    Google Scholar 

  • Ardies CM, Lasker JM, Bloswick BP, Lieber CS (1987) Purification of NADPH: cytochrome c (cytochrome P-450) reductase from hamster liver microsomes by detergent extraction and affinitiy chromatography. Anal Biochem 162: 39–46

    PubMed  CAS  Google Scholar 

  • Artamonova VG, Svitina NN (1991) On the current issues of bronchopulmonary diseases prevention among the workers engaged in industrial biotechnology (Russ). Gig Tr Prof Zabol 3:31–33

    PubMed  Google Scholar 

  • Artamonova VG, Kuznetsov NF, Shleikin AG (1993) Experimental justification of the approach of medical genetics to individual prophylaxis of occupational diseases of respiratory organs. Cent Eur J Public Health 1: 16–18

    Google Scholar 

  • Atomi H, Yu C, Hara A, Matsui T, Naito N, Kamasawa N, Osumi M, Ueda M, Tanaka A (1994) Characterization of a dicarboxylic acid-producing mutant of the yeast Candida tropicalis. J Ferment Bioeng 77: 205–207

    CAS  Google Scholar 

  • Asubel FM et al. (eds) (1994) Current protocols in molecular biology. Current protocols, Green Publishing, John Wiley, New York, vol 2, chap 13

    Google Scholar 

  • Avetisova SM (1991) Foundation of the purification method and biochemical characterization of cytochrome P450 of alkane-oxidizing yeast Candida maltosa. Dissertation, Moscow

    Google Scholar 

  • Avetisova SM, Davidov ER (1993) Yeast cytochrome P450 substrate specificity and conformation of alkanes with different structure. 2nd Int Symp Cytochrome P450 Microorganisms Plants, Tokyo, June 13–17, 1993, Abstr, p 17

    Google Scholar 

  • Avetisova SM, Sokolov YI, Kozlov VI, Davydov RM, Davidov ER (1985) The induction of cytochrome P-450 two forms in Candida yeast by n-alkanes of different chain length. In: Vereczky L, Magyar K (eds) Cytochrome P-450 — biochemistry, biophysics and induction. Akademiai Kiado, Budapest, pp 455–458

    Google Scholar 

  • Avetisova SM, Popova LA, Davidov ER (1990) Two step induction of cytochrome P-450 in Candida maltosa yeast. Biocatalysis 4: 61

    Google Scholar 

  • Avetisova SM, Popova LA, Davydov RM, Davidov ER (1993) Cytochrome b5 from Candida maltosa: physico-chemical properties. 2nd Int Symp Cytochrome P450 Microorganisms Plants, Tokyo, June 13–17, 1993, Abstr, p 40

    Google Scholar 

  • Babel W (1979) Bewertung von Substraten für das mikrobielle Wachstum auf der Grundlage ihres Kohlenstoff/Energie-Verhältnisses. Z Allg Mikrobiol 19: 671–677

    PubMed  CAS  Google Scholar 

  • Babel W (1980) Mischsubstratfermentationen — ein energetisch begründetes Konzept. Acta Biotechnol 0: 61–64

    Google Scholar 

  • Babel W (1986) Theoretische Grundlagen des Auxiliarsubstratkonzeptes und seine praktischen Konsequenzen in biotechnischen Prozessen. Acta Biotechnol 6: 313–323

    CAS  Google Scholar 

  • Baraji VN, Logatshova IA, Tsvigun IV, Truchatshova TV, Zinchenko AI, Shkumatov VM (1990) Patent Application USSR N1708845

    Google Scholar 

  • Barnett JA, Payne RW, Yarrow D (1979) A guide to identifying and classifying yeasts. Cambridge University Press, Cambridge

    Google Scholar 

  • Barnett JA, Payne RW, Yarrow D (1983) Yeasts: characteristics and identification. Cambridge University Press, Cambridge

    Google Scholar 

  • Barns SM, Lane DJ, Sogin ML, Bibeau C, Weisburg WG (1991) Evolutionary relationships among pathogenic Candida species and relatives. J Bacteriol 173: 2250–2255

    PubMed  CAS  Google Scholar 

  • Bassel J, Phaff HJ, Mortimer RK, Miranda M (1978) Examination of hydrocarbon utilizing mutants of Saccharomyces cerevisiae. Int J Syst Bacteriol 28: 427–432

    Google Scholar 

  • Bassel JB, Mortimer RK (1982) Genetic and biochemical studies on n-alkane non-utilizing mutants of Saccharomycopsis lipolytica. Curr Genet 5: 77–88

    CAS  Google Scholar 

  • Bassel JB, Mortimer RK (1985) Identification of mutations preventing n-hexadecane uptake among 26 n-alkane non-utilizing mutants of Yarrowia (Saccharomycopsis) lipolytica. Curr Genet 9: 579–586

    CAS  Google Scholar 

  • Bauch J, Koslova LI, Sobek K, Triems K, Meschtschankin GI, Roschkova MI (1978) Verfahren zur Gewinnung von “fermosin”-Futterhefe aus Erdöldestillaten. Chem Techn 30: 284–287

    CAS  Google Scholar 

  • Bayer C, Iske U, Glombitza F, Nagel B (1985) Spektralphotometrische in-situ-Messungen der diffusen Reflexion bei der mikrobiellen Kohlenwasserstoffwandlung. Acta Biotechnol 5: 197–202

    CAS  Google Scholar 

  • Becher D, Böttcher F (1983) The cell type of Rhodosporidium toruloides after protoplast fusion between strains of identical and opposite mating type. Curr Microbiol 9: 297–300

    Google Scholar 

  • Becher D, Oliver SG (1995) Transformation of Candida maltosa by electroporation. Methods Mol Biol 47: 291–302

    PubMed  CAS  Google Scholar 

  • Becher D, Wedler H, Schulze H, Bode R, Kasüske A, Samsonova I (1991) Correlation of biochemical blocks and genetic lesions in leucine auxotrophic strains of the imperfect yeast Candida maltosa. Mol Gen Genet 227: 361–368

    PubMed  CAS  Google Scholar 

  • Becher D, Schulze S, Kasüske A, Schulze H, Samsonova IA, Oliver SG (1994) Molecular analysis of a leu2(-) mutant of Candida maltosa demonstrates the presence of multiple alleles. Curr Genet 26: 208–216

    PubMed  CAS  Google Scholar 

  • Becher D, Schulze S, Kasüske A, Stoll R, Wedler H, Oliver SG (1995) Chromosome polymorphism close to the Cm-ADE1 locus of Candida maltosa. Mol Gen Genet 247: 591–602

    PubMed  CAS  Google Scholar 

  • Belov AP, Davidova EG (1982) Lipid granules as a compartment of lipid synthesis in the yeast cell (Russ). Mikrobiologiya 51: 302–307

    CAS  Google Scholar 

  • Belov AP, Guselnikova TV (1988) The effect of peptides on phosphatidylinositol metabolism in Candida (Russ). Mikrobiologiya 57: 1042–1043

    CAS  Google Scholar 

  • Belov AP, Toneva-Davidova EG (1983) Co2+ accumulation and intracellular distribution during yeast growth. In: Environmental regulation of microbial metabolism. FEMS Symposium, Pushchino, USSR, 1983, Abstr, p 202

    Google Scholar 

  • Belov AP, Davidova EG, Rachinskii VV (1976) Isolation of vacuoles from Candida tropicalis. Mikrobiologiya 45: 852–858

    CAS  Google Scholar 

  • Belov AP, Loginova TM, Tyurin VS, Gololobov AD (1983) The composition and localization on the cell wall of substances secreted by the Candida guilliermondii yeast cultivated on a hydrocarbon-containing medium. Prikl Biokhim Mikrobiol 19: 98–103

    CAS  Google Scholar 

  • Belov AP, Davidova EG, Rachinskii VV (1985) Cobalt distribution studied in the cells of Candida maltosa. Mikrobiologiya 54: 970–973

    CAS  Google Scholar 

  • Belov AP, Guselnikova TV, Gradova NB (1991) Adaptive changes in the nitrogen metabolism of yeasts due to consumption of peptides of a yeast autolysate (in Russian with English Translation). Appl Biochem Microbiol (Prikl Biokhim Mikrobiol) 26: 560–565

    Google Scholar 

  • Bennetzen JL, Hall BD (1982) Codon selection in yeast. J Biol Chem 257: 3026–3031

    PubMed  CAS  Google Scholar 

  • Bergmann H, Voigt B, Seidel H, Meisgeier G (1987) Einfluß von Lipidfraktionen mikrobieller Herkunft auf die Wasserausnutzung in der biologischen Stoffproduktion von Kulturpflanzen. Acta Biotechnol 7: 201–206

    CAS  Google Scholar 

  • Berner NH, Ahearn DG, Cook WL (1975) Effects of hydrocarbonoclastic yeasts on pollutant oil and the environment. In: Bourquin AW, Ahearn DG, Meyers SP (eds) Ecol Res Ser EPA-660/3–75001. US Environmental Protection Agency, Corvallis, pp 199–219

    Google Scholar 

  • Bizzi A, Veneroni E, Tacconi MT, Codegoni AM, Pagani R, Cini M, Garattini S (1980) Accumulation and metabolism of uneven fatty acids present in single cell protein. Toxicol Lett 5: 227–240

    PubMed  CAS  Google Scholar 

  • Blasig R, Schunck W-H, Jockisch W, Franke P, Müller H-G (1984) Degradation of long-chain n-alkanes by the yeast Lodderomyces elongisporus I. Products of alkane oxidation in whole cells. Appl Microbiol Biotechnol 19: 241–246

    CAS  Google Scholar 

  • Blasig R, Mauersberger S, Riege P, Schunck W-H, Jockisch W, Franke P, Müller H-G (1988) Degradation of long-chain n-alkanes by the yeast Candida maltosa. II. In vitro oxidation of n-alkanes and intermediates using microsomal membrane fractions. J Appl Microbiol Biotechnol 28: 589–597

    CAS  Google Scholar 

  • Blasig R, Huth J, Franke P, Borneleit P, Schunck W-H, Müller H-G (1989) Degradation of long-chain n-alkanes by the yeast Candida maltosa III. Effect of solid n-alkanes on cellular fatty acid composition. J Appl Microbiol Biotechnol 31: 571–576

    CAS  Google Scholar 

  • Bley T, Heinritz B, Steudel A, Stichel E, Glombitza F, Babel W (1980) Yield coefficients in dependence on milieu conditions and cell states. I. Synchronized batch growth of a yeast. Z Allg Mikrobiol 20: 283–286

    PubMed  CAS  Google Scholar 

  • Bode R (1991) Valine inhibition of beta-isopropylmalate dehydrogenase takes part in the regulation of leucine biosynthesis in Candida maltosa. Antonie Leeuwenhoek J Microbiol 60: 125–130

    CAS  Google Scholar 

  • Bode R, Birnbaum D (1981) Aggregation and separability of the shikimate pathway enzymes in yeasts (Germ). Z Allg Mikrobiol 21: 417–422

    PubMed  CAS  Google Scholar 

  • Bode R, Birnbaum D (1984) Characterization of three aromatic amino transferases from Candida maltosa (Germ). Z Allg Mikrobiol 24: 67–75

    CAS  Google Scholar 

  • Bode R, Birnbaum D (1986) Threonine dehydratase activity from several yeast species is activated and affected by phosphate. FEMS Microbiol Lett 37: 369–377

    Google Scholar 

  • Bode R, Birnbaum D (1987) D-amino acid oxidase, aromatic L-amino aminotransferase, and aromatic lactate dehydrogenase from several yeast species: comparison of enzyme activities and enzyme specificities. Acta Biotechnol 7: 221–225

    CAS  Google Scholar 

  • Bode R, Birnbaum D (1988) Purification and properties of two branched-chain amino acid aminotransferases from the yeast Candida maltosa. Biochem Physiol Pflanz 183: 417–424

    CAS  Google Scholar 

  • Bode R, Birnbaum D (1989) Specificity of glyphosate action in Candida maltosa. Biochem Physiol Pflanz 184: 163–170

    CAS  Google Scholar 

  • Bode R, Birnbaum D (1991a) Enzymatic production of indolepyruvate and some of its methyl and fluoro-derivatives. Acta Biotechnol 11: 387–393

    CAS  Google Scholar 

  • Bode R, Birnbaum D (1991b) Regulation of chorismate mutase activity of various yeast species by aromatic amino acids. Antonie Leeuwenhoek J Microbiol 59: 9–13

    CAS  Google Scholar 

  • Bode R, Birnbaum D (1991c) Some properties of the leucine-biosynthesizing enzymes from Candida maltosa. J Basic Microbiol 31: 21–26

    CAS  Google Scholar 

  • Bode R, Casper P (1983) Allgemeine Kontrolle der Aminosäurebiosynthese in Mutanten von Candida sp. EH15/D. Z Allg Mikrobiol 23: 419–427

    PubMed  CAS  Google Scholar 

  • Bode R, Casper P, Kunze G (1983) Auslösung einer allgemeinen Kontrolle der Aminosäurebiosynthese bei Candida sp. EH15/D durch Amitrol. Biochem Physiol Pflanz 178: 457–468

    CAS  Google Scholar 

  • Bode R, Melo C, Birnbaum D (1984a) Inhibition of tyrosine-sensitive 3-deoxy-D-arabinose-heptulosonate 7-phosphate synthase by glyphosate in Candida maltosa. FEMS Microbiol Lett 23: 7–10

    CAS  Google Scholar 

  • Bode R, Melo C, Birnbaum D (1984b) Enzymological basis for glyphosate action in Candida maltosa. Biochem Physiol Pflanz 179: 775–783

    CAS  Google Scholar 

  • Bode R, Melo C, Birnbaum D (1984c) Absolute dependence of phenylalanine and tyrosine biosynthetic enzyme on tryptophan in Candida maltosa. Hoppe-Seyler’s Z Physiol Chem 365: 799–803

    PubMed  CAS  Google Scholar 

  • Bode R, Melo C, Birnbaum D (1984d) Mode of action of glyphosate in Candida maltosa. Arch Microbiol 140: 83–85

    PubMed  CAS  Google Scholar 

  • Bode R, Melo C, Birnbaum D (1985a) Regulation of tryptophan biosynthesis in the n-alkane-utilizing yeast Candida maltosa. Biochem Physiol Pflanz 180: 301–308

    CAS  Google Scholar 

  • Bode R, Kunze G, Birnbaum D (1985b) Reversal of glyphosate-induced growth inhibition of Candida maltosa by several amino acids and pyruvate. Biochem Physiol Pflanz 180: 613–619

    CAS  Google Scholar 

  • Bode R, Melo C, Birnbaum D 1985 Regulatory properties of 3-deoxy-D-arabinose-heptulosonate-7-phosphate synthase isoenzymes from Candida maltosa. J Basic Microbiol 25: 3–11

    PubMed  CAS  Google Scholar 

  • Bode R, Melo C, Birnbaum D (1985d) Regulation of chorismate mutase, prephenate dehydrogenase and prephenate dehydratase of Candida maltosa. J Basic Microbiol 25: 291–298

    CAS  Google Scholar 

  • Bode R, Lippoldt A, Birnbaum D (1986a) Purification and properties of D-aromatic lactate dehydrogenase, an enzyme involved in the catabolism of aromatic amino acids of Candida maltosa. Biochem Physiol Pflanz 181: 189–198

    CAS  Google Scholar 

  • Bode R, Schult I, Birnbaum D (1986b) Purification and some properties of threonine dehydratase from Candida maltosa. J Basic Microbiol 26: 443–451

    CAS  Google Scholar 

  • Bode R, Schüssler K, Schmidt H, Hammer T, Birnbaum D (1990) Occurrence of the general control of amino acid biosynthesis in yeasts. J Basic Microbiol 30: 31–35

    PubMed  CAS  Google Scholar 

  • Bode R, Samsonova IA, Birnbaum D (1991) Production of α- and β-sopropylmalate by a mutant from Candida maltosa. Zentralbl Mikrobiol 146: 35–39

    CAS  Google Scholar 

  • Bohlmann D, Bauch J, Kozlova LI, Meshankin GI, Roshkova MI, Triens K, Ringpfeil M, Sobek K (1979) Process for the production of “FermosinR” — fodder yeast from petroleum distillates. In: Dechema Monogr, vol 83, Microbiology applied to biotechnology. Verlag Chemie, Weinheim, pp 147–156

    Google Scholar 

  • Bohlmann D, Bauch J, Gentzsch H, Dzingel G, Katrusch R, Kozlowa L, Roshkova M, Meschankin G (1982) Biosynthese von Eiweißstoffen durch mikrobiologische Entparaffinierung und Qualität der erhaltenen Produkte. Abh Akad Wiss DDR Abt Math Naturwiss Tech 2: 323–329

    Google Scholar 

  • Bos P (1975) Some aspects of hydrocarbon assimilation by yeasts. Dissertation, Technical High School, Delft

    Google Scholar 

  • Bos P, de Boer WE (1968) Some aspects of the utilization of hydrocarbons by yeasts. Antonie Leeuwenhoek J Microbiol 34: 241–243

    Google Scholar 

  • Bos P, de Bruyn JC (1973) The significance of hydrocarbon assimilation in yeast identification. Antonie Leeuwenhoek J Microbiol 39: 99–107

    CAS  Google Scholar 

  • Böttcher F (1987) Genetics of imperfect yeasts. 12th Int Spec Symp Yeast, Genet of Non-conventional Yeasts, Weimar, 1987, Abstr, p 3

    Google Scholar 

  • Böttcher F, Samsonova IA (1978) Rhodosporidium BANNO: Dosiseffektbeziehungen, Mutageneffektivität und Mutantenspektrum bei der Induktion Auxotrophie-verursachender Mutationen durch ultraviolettes Licht und N-Methyl-N’-nitro-N-nitrosoguanidin. Z Allg Mikrobiol 18: 637–646

    PubMed  Google Scholar 

  • Boulton CA, Ratledge C (1984) The physiology of hydrocarbon-utilizing microorganisms. In: Wiseman A (ed) Introduction to topics in enzyme and fermentation biotechnology, vol 9, Ellis Horwood, Chichester, pp 11–77

    Google Scholar 

  • Bovina EV, Deriabin W, Lange AV, Yarotsky SV (1986) Structure of mannan from the yeast Candida maltosa (Russ). Prikl Biokhim Mikrobiol 22: 679–683

    CAS  Google Scholar 

  • Bovina EV, Deriabin W, Gagloev VN, Serebriakov NG (1988) Study of the structure of mannans from Candida maltosa and Candida tropicalis using 13C-NMR spectroscopy (Russ). Prikl Biokhim Mikrobiol 24: 218–225

    PubMed  CAS  Google Scholar 

  • Brada D, Schekman R (1988) Coincident localization of secretory and plasma membrane proteins in organelles of the yeast secretory pathway. J Bacteriol 170: 2775–2783

    PubMed  CAS  Google Scholar 

  • Brendler W, Bauch J, Lübbert GA, Wünsche L, Hedlich R, Triems K, Shdannikowa EN (1983) Spezielle Aspekte der nichtsterilen Hefeproduktion auf der Basis von Kohlenwasserstoffen. Acta Biotechnol 3: 351–356

    Google Scholar 

  • Brown AJP, Bertram G, Feldmann PJF, Peggie MW, Swoboda RK (1991) Codon utilization in the pathogenic yeast, Candida albicans. Nucleic Acids Res 19: 4298

    PubMed  CAS  Google Scholar 

  • Brückner B, Tröger R (1981a) Vergleichende physiologische Untersuchungen zwischen Candida sp. H und der Mutante H 13 unter Stickstoffmangelbedingungen. Z Allg Mikrobiol 21: 19–26

    PubMed  Google Scholar 

  • Brückner B, Tröger R (1981b) Einfluß der Kohlenstoffquelle auf die Reservestoffbildung von Candida sp. H. Z Allg Mikrobiol 21: 77–84

    PubMed  Google Scholar 

  • Bruns TD, Vilgalys R, Barns SM, Gonzalez D, Hibbett DS, Lane DJ, Simon L, Stickel S, Szaro TM, Weisburg WG (1992) Evolutionary relationship within the fungi: analyses of nuclear small subunit rRNA sequences. Mol Phylogenet Evol 1: 231–241

    PubMed  CAS  Google Scholar 

  • Bühler M, Schindler J (1984) Aliphatic hydrocarbons. In: Rehm HJ, Reed G (eds) Biotechnology, vol 6a, Biotransformations (Kieslich K, vol ed), Verlag Chemie, Weinheim, pp 329–385

    Google Scholar 

  • Büttner R, Uebel B, Genz I-L, Köhler M (1985) Wachstumsuntersuchungen im substratlimitierten pH-Auxostaten I. Bistabiles Wachstumsverhalten unter kaliumlimitierten Bedingungen. J Basic Microbiol 25: 227–232

    Google Scholar 

  • Campbell I, Duffus JH (eds) (1988) Yeast, a practical approach. IRL Press, Oxford

    Google Scholar 

  • Carle GF, Olson MV (1984) Separation of chromosomal DNA molecules from yeast by orthogonal-field-alternation gel electrophoresis. Nucleic Acid Res 12: 5647–5664

    PubMed  CAS  Google Scholar 

  • Casey J, Dobb R, Mycock G (1990) An effective technique for enrichment and isolation of Candida cloacae mutants defective in alkane catabolism. J Gen Microbiol 136: 1197–1202

    PubMed  CAS  Google Scholar 

  • Casper P, Bode R, Birnbaum D (1985a) Regulation of ammonia assimilation in Candida maltosa (Germ). J Basic Microbiol 25: 95–101

    CAS  Google Scholar 

  • Casper P, Bode R, Samsonova IA, Birnbaum D (1985b) Glutamate/aspartate metabolism of Candida maltosa (Germ). J Basic Microbiol 25: 637–643

    CAS  Google Scholar 

  • Celma Calamita E, Arntz P, Bos P (1971) Obtaining protein concentrates using Candida maltosa cultivated in gaseous n-octane (Ital). An Inst Nac Invest Agrar Ser Gen N1: 165–177

    Google Scholar 

  • Cerniglia CE (1981) Aromatic hydrocarbons: metabolism by bacteria, fungi and algae. Rev Biochem Toxicol 3: 321–360

    CAS  Google Scholar 

  • Cerniglia CE, Crow SA (1981) Metabolism of aromatic hydrocarbons by yeast. Arch Microbiol 129: 9–13

    CAS  Google Scholar 

  • Chang MC, Jung HD, Suzuki T, Takagi M, Yano K (1984) Ploidy in the asporogenous yeast Candida maltosa, isolation of its auxotrophic mutants and their cell fusion. J Gen Appl Microbiol 30: 489–497

    Google Scholar 

  • Chu G, Vollrath D, Davis RW (1986) Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science 234: 1582–1585

    PubMed  CAS  Google Scholar 

  • Claisse ML, Boze H, Dubreucq E, Segueilha L, Moulin G, Galzy P (1991) Characterization of alternative respiratory pathways in the yeast Schwanniomyces castellii by the study of mutants deficient in cytochromes a + a 3 and/or b. Acta Biochim Pol 38: 365–392

    PubMed  CAS  Google Scholar 

  • Cook WL, Massey JK, Ahearn DG (1973) The degradation of crude oil by yeasts and its effect on Lesbistes reticulatus. In: Ahearn DG, Meyer SP (eds) The microbial degradation of oil pollutants. Louisiana State University, Center for Wetland Resources, Baton Rouge, pp 279–283

    Google Scholar 

  • Cooper TG (1982) In: Strathern JN, Jones EW, Broach JB (eds) The molecular biology of the yeast Saccharomyces: metabolism and gene expression, vol 2, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 39–99

    Google Scholar 

  • Crow SA, Bell SL, Ahearn DG (1979) Uptake of aromatic and branched chain hydrocarbons by yeasts. Bot Mar 22: 406

    Google Scholar 

  • Crow SA, Bell SL, Ahearn DG (1980) Uptake of aromatic and branched chain hydrocarbons by yeasts. Bot Mar 23: 117–120

    CAS  Google Scholar 

  • Oyer DR, Eccleshall R, Marmur J (1975) Isolation of yeast DNA. Methods Cell Biol 12: 39–44

    Google Scholar 

  • Dalin MV, Gukasian IA, Spivak SM, Fish NG, Kravtsov EG, Ermolaev AV (1991) Approaches to development of diagnostic allergens for observation of workers engaged in the production of microbial fodder biomass and population of development zones and regions of microbiological plants (Russ). Gig Tr Prof Zabol 5: 31–33

    PubMed  Google Scholar 

  • Davidov ER, Gololobov AD (1980a) Regulation of metabolism in yeast during growth on n-alkanes. Proc jt. US/USSR Conf Mech Kinet Growth on Various Substr, Contr Simul Optim Microbiol Proc, Proj I-II. PB81.219131, pp 46–65. Natl Sci Found Res Appl Natl Needs, [Rep] NSF/RA (US) 1980, NSF/RA-800527

    Google Scholar 

  • Davidov ER, Gololobov AD (1980b) Effect of pO2 on the regulation of metabolism in yeasts during cultivation on n-alkanes. Proc jt. US/USSR Conf Mech Kinet Growth on Various Substr, Contr Simul Optim Microbiol Proc, Proj I-II. PB81.219131, pp 94–103. Natl Sci Found Res Appl Nati Needs, [Rep] NSF/RA (US) 1980, NSF/RA-800527

    Google Scholar 

  • Davidov ER, Demanova NF, Sokolov YI, Gololobov AD (1980) Oxidation of individual isoalkanes and alkylaromatic hydrocarbons by yeasts of the genus Candida (Russ). Prikl Biokhim Mikrobiol 16: 775–781

    CAS  Google Scholar 

  • Davidov ER, Sokolov YI, Demanova NF, Gololobov AD (1981a) Utilization of 2-methyl hexadecane by the yeast Candida guilliermondii (Russ). Prikl Biokhim Mikrobiol 17: 328–341

    CAS  Google Scholar 

  • Davidov ER, Sokolov YI, Demanova NF, Gololobov AD (1981b) Utilization of 3-methyl hexadecane by the yeast Candida guilliermondii (Russ) Prikl Biokhim Mikrobiol 17: 523–532

    CAS  Google Scholar 

  • Davidov ER, Demanova NF, Sokolov YI, Gololobov AD (1982) Kinetics of hydrocarbon assimilation by yeast of the genus Candida (Russ). Acta Biotechnol 2: 213–225

    CAS  Google Scholar 

  • Davidova EG, Rachinskii VV (1979) Uptake of n-alkanes by yeast cells (Review, in Russian). Uspechi Sovremennoi Biologii 88: 198–209

    CAS  Google Scholar 

  • Davidova EG, Rachinskii VV (1981) Transport of liquid n-alkanes into the yeast cell determined by gas-liquid radiogaschromatography (Russ). Mikrobiologiya 50: 349–352

    CAS  Google Scholar 

  • Davidova EG, Demanova NF, Gololobov AD, Rachinskii VV (1975) Isolation and characterization of the cell structures of Candida tropicalis (Russ). Mikrobiologiya 44: 621–624

    CAS  Google Scholar 

  • Davidova EG, Belov AP, Rachinskii W (1977a) Study of the role of lipid granules of a yeast cell in the assimilation of n-alkanes (Russ). Dokl Akad Nauk SSSR 235: 1189–1192

    PubMed  CAS  Google Scholar 

  • Davidova EG, Belov AP, Rachinskii W (1977b) Isolation and characteristics of lipid granules from Candida tropicalis (Russ). Mikrobiologiya 46: 1044–1049

    CAS  Google Scholar 

  • Davidova EG, Belov AP, Rachinskii W (1979) Electrophoretic characteristics of the protein from yeast lipid granules (Russ). Mikrobiologiya 48: 803–808

    CAS  Google Scholar 

  • Davidova EG, Zinchenko GA, Belov AP (1989) Substrate specificity of acyltransferases from lipid granules of mesophilic yeasts (Russ). Biokhimiya 54: 587–592

    CAS  Google Scholar 

  • Davis R, Thomas M, Cameron J, John TS, Scherer. S, Padgeff R (1980) Rapid DNA isolation for enzymatic and hybridization analysis. Methods Enzymol 65: 404–411

    PubMed  CAS  Google Scholar 

  • Delpozo L, Abarca D, Hoenicka J, Jimenez A (1993) Two different genes from Schwanniomyces occidentalis determine ribosomal resistance to cycloheximide. Eur J Biochem 213: 849–857

    CAS  Google Scholar 

  • Demanova NF, Davidov ER, Gololobov AD (1980a) Oxidation of n-alkanes with different carbon chain lengths (in the range of C11-C25) by the Candida yeast (Russ). Prikl Biokhim Mikrobiol 16: 5–12

    CAS  Google Scholar 

  • Demanova NF, Davidov ER, Gololobov AD (1980b) Oxidation of n-alkanes with different carbon chain lengths by Candida yeast (Russ). Prikl Biokhim Mikrobiol 16: 149–155

    PubMed  CAS  Google Scholar 

  • Demanova NF, Davidov ER, Gololobov AD (1980c) Yeast growth on mixture of n-docosane and n-octadecane during continuous cultivation (Russ). Prikl Biokhim Mikrobiol 16: 883–889

    CAS  Google Scholar 

  • Deshler JO, Larson GP, Rossi JJ (1989) Kluyveromyces lactis maintains Saccharomyces cerevisiae intron-encoded splicing signals. Mol Cell Biol 9: 2208–2213

    PubMed  CAS  Google Scholar 

  • Dmitriev VV, Tsiomenko AB, Kulaev IS, Fikhte BA (1980) A cytochemical study of the “canal” formation in the yeast cell wall. Eur J Appl Microbiol Biotechnol 9: 211–216

    CAS  Google Scholar 

  • Dole VP, Meinertz H (1960) Microdetermination of long-chain fatty acids in plasma and tissues. J Biol Chem 235: 2595–2599

    PubMed  CAS  Google Scholar 

  • Dolgikh MS, Kravtsov EG, Ermolaev AV (1990) Proteolytic activity of protein-producing yeast-like Candida fungi. Mikol Fitopatol 24: 229–235

    CAS  Google Scholar 

  • Durasova EN, Mikhailova NP, Vyunov KA, Bakulev VM, Sokolov VN, Makhrosenkova MO, Khromov-Borisov NN (1986) The resistance of Candida guilliermondii to polyene antibiotics (Russ). Mikrobiologiya 55: 607–611

    CAS  Google Scholar 

  • Durasova EN, Mikhailova NP, Sorokoletova EF, Vyunov KA (1989) The use of various mutagens for the induction of nystatin-resistant mutants in Candida maltosa (Russ). Mikrobiologiya 58: 760–763, Microbiology (NY) 58: 610–614 (English Translation)

    Google Scholar 

  • Durasova EN, Mikhailova NP, Zhakovskaya ZA, Vyunov KA (1991) Sterol content of Candida maltosa strains with high resistance to nystatin (Russ). Mikol Fitopatol 25: 487–492

    CAS  Google Scholar 

  • Eckart V, Cech D, Kammel K, Bauch J (1988) Die Gewinnung von Labor-, Fein- und Biochemikalien im VEB Petrolchemisches Kombinat Schwedt. Teil III: Ribonucleinsäure und RNA-Bausteine. Chem Techn 40: 432–434

    Google Scholar 

  • Egorenkova GN, Belov AP (1984) Structural organization of the cell walls in yeasts of the genus Candida (Russ). Mikrobiologiya 53: 300–304, (English Translation)

    CAS  Google Scholar 

  • Egorenkova GN, Belov AP (1984) Structural organization of the cell walls in yeasts of the genus Candida (Russ) Microbiology (NY) 53: 241–245

    PubMed  CAS  Google Scholar 

  • Einsele A (1983) Biomass from higher n-alkanes. In: Rehm H-J, Reed G (eds) Biotechnology, vol 3. Verlag Chemie, Weinheim, pp 43–81

    Google Scholar 

  • Erickson AH, Blobel G (1983) Cell-free translation of messenger RNA in a wheat germ system. Meth Enzymol 96: 38–50

    PubMed  CAS  Google Scholar 

  • Ermolaev AV, Gukasyan IA, Ogarkov VI (1987) Isolation of surface antigens of Candida maltosa responsible for Candida sensitization and their immunochemical characteristics (Russ). Vopr Med Khim 33: 42–46

    PubMed  CAS  Google Scholar 

  • Ermolaev AV, Gukasyan IA, Parfenova EV, Spivak SM, Kravtsov EG (1991) Obtaining the allergens from yeast-like fungi of the genus Candida, producers of fodder protein, for hygienic standardization of the strains. Gig Tr Prof Zabol 8: 19–20

    PubMed  Google Scholar 

  • Faggi E, Mennini S (1985) Comparative studies of the pathogenicity of Candida albicans, Candida utilis and Candida maltosa in laboratory animals. Ann Microbiol Enzimol 35: 111–122

    Google Scholar 

  • Feinberg B, McLaughlin CS (1988) Isolation of yeast mRNA and in vitro translation in a yeast cell-free system. In: Campbell I, Duffus JH (eds) Yeast, a practical approach, IRL Press, Oxford, pp 147–162

    Google Scholar 

  • Fiechter A, Gmünder FK (1989) Metabolic control of glucose degradation in yeast and tumor cells. In: Fiechter A (ed) Advances in biochemical engineering/biotechnology, vol 39, Springer-Verlag Berlin Heidelberg, pp 2–28

    Google Scholar 

  • Fiechter A, Käppeli O, Meussdoerffer F (1987) Batch and continuous culture. In: Rose AH, Harrison JS (eds) The Yeasts, vol 2, 2nd edn, Yeasts and the environment. Academic Press, London, pp 99–129

    Google Scholar 

  • Fischer W, Reuter G (1982) Mannan-Lokalisation durch Concanavalin A im Zusammenhang mit elektronenmikroskopischen und chemisch-analytischen Untersuchungen an unterschiedlich präparierten Zellwänden der Futtereiweißhefe Candida sp. H. Z Allg Mikrobiol 22: 29–40

    PubMed  CAS  Google Scholar 

  • Fischer W, Brückner B, Meyer HW (1982) Ultrastructural alterations at the cell wall and the plasma membrane of Candida sp. H induced by n-alkane. Z Allg Mikrobiol 22: 227–236

    PubMed  CAS  Google Scholar 

  • Fröhlich K-U, Entian K-D, Mecke D (1985) The primary structure of the yeast hexokinase PII (HXK2) which is responsible for glucose repression. Gene 36: 105–111

    PubMed  Google Scholar 

  • Fukazawa Y, Nakase T, Shinoda T, Nishikawa A, Kagaya K, Tsuchiya T (1975) Significance of cell wall structures on yeast classification: proton magnetic resonance and serological and deoxyribonucleic acid characterization of Candida sake and related species. Int J Syst Bacteriol 25: 304–314

    CAS  Google Scholar 

  • Fukui S, Tanaka A (1981a) Metabolism of alkanes by yeasts. Adv Biochem Eng 19: 217–237

    CAS  Google Scholar 

  • Fukui S, Tanaka A (1981b) Production of useful compounds from alkane media in Japan. In: Fiechter A (ed) Products from alkanes, celluloses and other feedstocks. Akademie Verlag, Berlin, pp 1–36 (Fukui S, Tanaka A (1980) Adv Biochem Eng 17: 1–35)

    Google Scholar 

  • Gargani G (1979) Models of pathogenicity for yeasts of the genus Candida. In: Garattini S, Paglialunga S, Scrimshaw NS (eds) Single cell protein: safety for animals and human feeding, Pergamon Press, Oxford, (1980) pp 30–38

    Google Scholar 

  • Gargani G, Campisi E, Faggi E (1978) The problem of Candida virulence (Ital). Riv Ital Ig 38: 266–285

    Google Scholar 

  • Gargani G, Campisi E, Faggi E (1979) Cross reactions between several species of the genus Candida demonstrated by intradermal inoculation of the guinea pig. Bull Soc Fr Mycol Med 8: 17–20

    Google Scholar 

  • Glombitza F (1982) Der Einfluß der Flockenbildung auf die Versorgung der Hefezellen mit Sauerstoff bei der Fermentation flüssiger Kohlenwasserstoffe. Acta Biotechnol 2: 43–50

    Google Scholar 

  • Glombitza F, Heinritz B (1979) Thermodynamik mikrobieller Prozesse. Z Allg Mikrobiol 19: 171–179

    PubMed  CAS  Google Scholar 

  • Goeddel D (ed) (1990) Methods enzymology vol 185, Gene expression technology, Section IV. Expression in yeast, Academic Press, London, pp 230–482

    Google Scholar 

  • Golubev VI, Naumov GI, Bibikova II, Blagodatskaya VM, Voustin MM, Nikitina TN, Buzurg-Zade DL, Gradova NB (1986) A novel species assignment of the hydrocarbon digesting strains of the Candida genus yeast (Russ). Biotekhnologiya 0(5): 17–21

    Google Scholar 

  • Gomi K, Horiguchi S (1988) Purification and characterization of pyrocatechase from the catechol assimilating yeast Candida maltosa. Agric Biol Chem 52: 585–587

    CAS  Google Scholar 

  • Gradova NB, Kovalsky YV (1978) Production of fodder yeast cultures on media containing hydrocarbons (Russ). Mikrobiologiya 47: 259–264

    CAS  Google Scholar 

  • Gradova NB, Osipova VG, Davidova EG, Chunaev AS, Kvitko KV (1976) Populational and phenogenetic analysis of variability of Candida yeast for the character of protein content in biomass (Russ). Genetics (USSR) 12: 80–88

    CAS  Google Scholar 

  • Gradova NB, Dikanskaya EM, Robysheva ZN, Rodionova GS, Butteyeva MB, Zaikina AI (1983) Characterization of hydrocarbon oxidizing yeasts. Peculiarities of their growth and biosynthetical processes (Russ). Acta Biotechnol 3: 241–249

    CAS  Google Scholar 

  • Gradova NB, Belov AP, Guselnikova TV (1990) Some aspects of the regulation of nitrogen metabolism in the yeast genus Candida. Study of the kinetics of ammonium transport to the cells of hydrocarbon-oxidizing yeast of the genus Candida with a change in nitrogen nutrition. Acta Biotechnol 10: 169–177

    CAS  Google Scholar 

  • Gradova NB, Zaitsev SA, Gadzhieva VI (1991) Ecological monitoring of hydrocarbon-oxidizing Candida yeasts as a technogenic factor (Russ). Biotekhnologiya (Moscow) 0(2): 57–60

    Google Scholar 

  • Griffiths G, Hoppeler H (1986) Quantitation in immunocytochemistry: correlation of immunogold labeling to absolute number of membrane antigens. J Histochem Cytochem 34: 1389–1398

    PubMed  CAS  Google Scholar 

  • Griffiths G, Brands R, Burke B, Louvard D, Warren G (1982) Viral membrane proteins acquire galactose in trans Golgi cisternae during intracellular transport. J Cell Biol 95: 781–792

    PubMed  CAS  Google Scholar 

  • Griffiths G, McDowall A, Back R, Dubochet J (1984) On the preparation of cryosections for immunocytochemistry. J Ultrastruct Res 89: 65–78

    PubMed  CAS  Google Scholar 

  • Grimmecke HD, Reuter G (1980) Struktur der Zellwandpolysaccharide in der Futtereiweiß-Hefe Candida sp. H. 5. Die komplexe Struktur des Proteophosphomannans. Biochem Physiol Pflanz 175: 781–788

    CAS  Google Scholar 

  • Grimmecke HD, Reuter G (1981a) Struktur der Zellwandpolysaccharide in der Futtereiweiß-Hefe Candida sp. H. 1. Struktur des alkalistabilen Mannan-Proteins. Z Allg Mikrobiol 21: 95–107

    PubMed  CAS  Google Scholar 

  • Grimmecke HD, Reuter G (1981b) Struktur der Zellwandpolysaccharide in der Futtereiweiß-Hefe Candida sp. H. 2. Charakterisierung der Bindung des Phosphats am Mannan-Protein-Phosphat-Komplex und Identifizierung der als Phosphodiester gebundenen Mono- und Oligosaccharide. Z Allg Mikrobiol 21: 109–116

    PubMed  CAS  Google Scholar 

  • Grimmecke HD, Reuter G (1981c) Struktur der Zellwandpolysaccharide in der Futtereiweiß-Hefe Candida sp. H. 4. Struktur der alkalilabilen Oligosaccharide im Man-nan-Protein-Phosphat-Komplex. Z Allg Mikrobiol 21: 211–218

    PubMed  CAS  Google Scholar 

  • Grimmecke HD, Reuter G (1981d) Struktur der Zellwandpolysaccharide in der Futtereiweiß-Hefe Candida sp. H. 6. Isolierung und Strukturaufklärung der Glucane. Z Allg Mikrobiol 21: 643–650

    PubMed  CAS  Google Scholar 

  • Grimmecke HD, Meyer H, Scheller D, Reuter G (1981) Struktur der Zellwandpolysaccharide in der Futtereiweiß-Hefe Candida sp. H. 3. Charakterisierung unterschiedlicher Phosphatbindungen im Mannan-Protein-Phosphat-Komplex. Z Allg Mikrobiol 21: 201–210

    PubMed  CAS  Google Scholar 

  • Gukasyan IA, Ermolaev AV, Kravtsov EG, Kacharmina VA (1990) The level of antigenic relationship of surface conjugates of the hydrocarbon-assimilating strains of yeast-like Candida fungi used in fodder protein production. Mikol Fitopatol 24: 420–424

    CAS  Google Scholar 

  • Guselnikova TV, Pavlov AA, Bezrukov MG, Gradova NB (1988) Effect of thermal treatment on the fraction composition of yeast proteins (Russ). Biotekhnologiya 4: 509–511

    CAS  Google Scholar 

  • Guselnikova TV, Belov AP, Gradova NB (1989) The effect of yeast autolysates on the level and distribution of free amino acids in yeast cells of the genus Candida (Russ). Mikrobiologiya 58: 202–205

    CAS  Google Scholar 

  • Guselnikova TV, Gromov YA, Belov AP (1991) Influence of trophic cultivation conditions on the kinetics of methylamine transport in the yeast Candida maltosa (Russ). Mikrobiologiya 60: 232–237

    CAS  Google Scholar 

  • Guthrie C, Fink GR (eds) (1991) Methods Enzymology, vol 194, Guide to yeast genetics and molecular biology. Academic Press, New York

    Google Scholar 

  • Hagihara R, Mishina M, Tanaka A, Fukui S (1977) Utilization of pristane by a yeast Candida lipolytica. Fatty acid composition of pristane-grown cells. Agr Biol Chem 41: 1745–1748

    CAS  Google Scholar 

  • Hammer T, Bode R, Schmidt H, Birnbaum D (1991) Distribution of three lysine-cataboliz-ing enzymes in various yeast species. J Basic Microbiol 31: 43–49

    CAS  Google Scholar 

  • Hann BC, Walter P (1991) The signal recognition particle in S. cerevisiae. Cell 67: 131–144

    PubMed  CAS  Google Scholar 

  • Hasegawa Y, Okamoto T, Obata H, Tokuyama T (1990) Utilization of aromatic compounds by Trichosporon cutaneum KUY-6A. J Ferment Bioeng 69: 122–124

    CAS  Google Scholar 

  • Heinritz B, Bley T (1979) Einfluß alternierender Störungen auf die Verbrauchskennziffern beim Wachstum von Mikroorganismen. Z Allg Mikrobiol 19: 247–252

    PubMed  CAS  Google Scholar 

  • Heinritz B, Stichel E, Bley T, Rogge G, Glombitza F (1981) Yield coefficients in dependence on milieu conditions and cell states. II. Influence of perturbations on continuous cultivation of the yeast Lodderomyces elongisporus on hydrocarbons. Z Allg Mikrobiol 21: 581–586

    PubMed  CAS  Google Scholar 

  • Heinritz B, Stichel E, Rogge G, Bley T, Glombitza F (1982) Theoretische Bestimmung energetischer Wirkungsgrade der mikrobiellen Kohlenstoffsubstratwandlung und Vergleich mit experimentellen Werten an Phasenkulturen. Z Allg Mikrobiol 22: 534–544

    Google Scholar 

  • Heinritz B, Stoll P, Glombitza F (1983a) Heat flow measurements in aerobic microbial growth processes with a nonisothermal calorimeter operating directly in the fermenter. Acta Biotechnol 3: 83–87

    CAS  Google Scholar 

  • Heinritz B, Rogge G, Stichel E, Bley T (1983b) Use of biorhythmic processes for increasing the efficiency of carbon-compound conversion by microorganisms. Acta Biotechnol 3: 125–131

    CAS  Google Scholar 

  • Heinritz B, Bley T, Ringpfeil M (1985) Einsatz von Hochleistungsreaktoren zur mikrobiologischen Stoffwandlung. Chem Technol 37: 514–516

    CAS  Google Scholar 

  • Heinz T, Henning U, Wünsche J, Henk G (1989) The prececal and total intestinal nutrient digestibility and amino acid absorption of food yeasts in swine (Germ). Arch Tierernaehr 39: 1007–1019

    CAS  Google Scholar 

  • Hendriks L, Goris A, Van de Peer Y, Neefs JM, Vancanneyt M (1991) Phylogenetic analysis of five medically important Candida species as deduced on the basis of small ribosomal subunit RNA sequences. J Gen Microbiol 137: 1223–1230

    PubMed  CAS  Google Scholar 

  • Hepler PK (1981) The structure of endoplasmic reticulum revealed by osmium tetroxide-potassium ferricyanide staining. Eur J Cell Biol 26: 102–110

    PubMed  CAS  Google Scholar 

  • Hikiji T, Ohkuma M, Takagi M, Yano K (1989) An improved host-vector system for Candida maltosa using a gene isolated from its genome that complements the his5 mutation of Saccharomyces cerevisiae. Curr Genet 16: 261–266

    PubMed  CAS  Google Scholar 

  • Hill DE, Boulay R, Rogers D (1988) Complete nucleotide sequence of the peroxisomal acyl CoA oxidase from the alkane-utilizing yeast Candida maltosa. Nucleic Acids Res 16: 365–366

    PubMed  CAS  Google Scholar 

  • Hino A, Wongkhalaung C, Kawai S, Murao S, Yano K, Takano H, Takagi M (1992) Construction of a transformation system for a freeze-tolerant yeast Kluyveromyces thermotolerans. Agric Biol Chem 56: 228–232

    CAS  Google Scholar 

  • Hirata T, Ishitani T (1978) Studies on the discrimination of SCP-related yeast by proton magnetic resonance spectroscopy: structural changes in cell wall mannan of Candida subtropicalis grown in different media. Agric Biol Chem 42: 775–780

    CAS  Google Scholar 

  • Hofmann KH (1986a) Microbial transformation of polycyclic aromatic hydrocarbons (Germ). Wiss Z EMA Univ Greifswald, Math Nat Reihe 35: 23–26

    CAS  Google Scholar 

  • Hofmann KH (1986b) Oxidation of naphthalene by Saccharomyces cerevisiae and Candida utilis. J Basic Microbiol 26: 109–111

    PubMed  CAS  Google Scholar 

  • Hofmann KH, Krüger AK (1985) Induction and inactivation of phenol hydroxylase and catechol oxygenase in Candida maltosa L4 in dependence on the carbon source. J Basic Microbiol 25: 373–379

    CAS  Google Scholar 

  • Hofmann KH, Polnisch E (1990a) Activities of gluconeogenic enzymes in the yeast Candida maltosa during growth on glucose or ethanol (Germ). J Basic Microbiol 30: 333–336

    PubMed  CAS  Google Scholar 

  • Hofmann KH, Polnisch E (1990b) Cyclic AMP-dependent phosphorylation of fructose-1,6-bisphosphate and other proteins in the yeast Candida maltosa. J Basic Microbiol 30:555–559

    PubMed  CAS  Google Scholar 

  • Hofmann KH, Polnisch E (1990c) Characterization of a mutant of the yeast Candida maltosa defective in catabolite inactivation of gluconeogenic enzymes. Arch Microbiol 154: 514–517

    CAS  Google Scholar 

  • Hofmann KH, Schauer F (1988) Utilization of phenol by hydrocarbon assimilating yeasts. Antonie Leeuwenhoek J Microbiol 54: 179–188

    CAS  Google Scholar 

  • Hofmann KH, Vogt U (1987) Induction of phenol assimilation in chemostat cultures of Candida maltosa L4. J Basic Microbiol 27: 441–447

    CAS  Google Scholar 

  • Hofmann KH, Vogt U (1988) Degradation of phenol by yeasts in the presence of n-hexadecane under growth conditions in a stirred reactor (Germ). Zentralbl Mikrobiol 143: 87–91

    CAS  Google Scholar 

  • Holley RW (1967) Isolation of sRNA from intact yeast cells. Methods Enzymol 12: 596–598

    Google Scholar 

  • Holzschu DL, Chandler FW, Ajello L, Ahearn DG (1979) Evaluation of industrial yeasts for pathogenicity. Sabouraudia 17: 71–78

    PubMed  CAS  Google Scholar 

  • Honeck H, Schunck W-H, Riege P, Müller H-G (1982) The cytochrome P-450 alkane monooxygenase system of the yeast Lodderomyces elongisporus: purification and some properties of the NADPH-cytochrome P-450 reductase. Biochem Biophys Res Commun 106: 1318–1324

    PubMed  CAS  Google Scholar 

  • Honeck H, Schunck W-H, Müller H-G (1985) The function of cytochrome P-450 in fungi and prospects of application. Pharmazie 40: 221–227

    PubMed  CAS  Google Scholar 

  • Huth J (1987) Über die Verwertung von n-Alkanen durch Candida maltosa EH15D unter besonderer Berücksichtigung der festen n-Alkane mit 20 und mehr C-Atomen. Dissertation, Akademie der Wissenschaften der DDR, Berlin

    Google Scholar 

  • Huth J, Blasig R, Werner S, Müller H-G (1990a) The proton extrusion of growing yeast cultures as an on-line parameter in fermentation processes: determination of biomass production and substrate consumption in batch experiments with Candida maltosa EH15 D. J Basic Microbiol 30: 481–488

    CAS  Google Scholar 

  • Huth J, Werner S, Müller H-G (1990b) The proton extrusion of growing yeast cultures as an on-line parameter in fermentation processes: quantitative determination of growth from milligram amounts of substrate in a minimized fed-batch fermentation apparatus. J Basic Microbiol 30: 489–497

    CAS  Google Scholar 

  • Huth J, Werner S, Müller H-G (1990c) The proton extrusion of growing yeast cultures as an on-line parameter in fermentation processes: ammonia assimilation and proton extrusion are correlated by an 1:1 stoichiometry in nitrogen-limited fed-batch fermentations. J Basic Microbiol 30: 561–567

    CAS  Google Scholar 

  • Hwang CW, Yano K, Takagi M (1991) Sequences of two tandem genes regulated by carbon sources, one being essential for n-alkane assimilation in Candida maltosa. Gene 106: 61–69

    PubMed  CAS  Google Scholar 

  • Ilchenko AP, Tsfasman IM (1987) Isolation and characterization of aldehyde dehydrogenase from Torulopsis candida yeast grown on hexadecane (Russ). Biokhimiya 52: 58–65

    CAS  Google Scholar 

  • Ilchenko AP, Tsfasman IM (1988) Isolation and characterization of alcohol oxidase for higher alcohols of the yeast Torulopsis candida grown on hexadecane (Russ). Biokhimiya 53: 263–271

    CAS  Google Scholar 

  • Ilchenko AP, Mauersberger S, Matyashova RN, Losinov AB (1980) Induction of cytochrome P-450 in the course of yeast growth on different substrates (Russ). Mikrobiologiya 49: 452–458

    CAS  Google Scholar 

  • Ilchenko AP, Shilova NK, Matyashova RN, Galynkin VA (1989) Effect exerted by the concentration of oxygen dissolved in the medium on the biosynthesis of cytochromes by Candida maltosa cells in the course of their growth on paraffins (Russ). Mikrobiologiya 58: 716–722

    CAS  Google Scholar 

  • Ilchenko AP, Vasilkova NN, Matyashova RN (1991) Changes in the activity of enzymes utilizing H2O2 under different conditions of yeast cultivation (Russ). Mikrobiologiya 60: 55–64

    CAS  Google Scholar 

  • Ilchenko AP, Morgunov IG, Honeck H, Mauersberger S, Vasilkova NN, Müller H-G (1994) Purification and some properties of alcohol oxidase from the yeast Yarrowia lipolytica H222 (Russ). Biokhimiya (Moscow) 59: 1312–1319

    CAS  Google Scholar 

  • Ilyina VI, Dalin MV, Gukasyan IA, Tikhomirov YG, Mokeeva NV (1988) Testing the usefulness of an erythrocyte immunoglobulin diagnostic agent for assessing the levels of the protein paprin in the air (Russ). Gig Sanit 3: 38–40

    Google Scholar 

  • Ioffe ML, Maksimova GN, Tsygankova NV, Zhutchkov VN (1990) Investigation on biological action of denucleinized product obtained from paprin. Biotekhnologiya (Soviet Biotechnology) 0(6): 70–72

    Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153: 163–168

    PubMed  CAS  Google Scholar 

  • Jomantiene R, Januska A, Sasnauskas K, Janulaitis A (1987) Cloning of ADE1, ADE2, ARG4 genes and ARS sequence of the yeast Candida maltosa. 12th Int Spec Symp Genet of Non-conventional Yeasts, Weimar, GDR, 1987, Abstr, p 41

    Google Scholar 

  • Jomantiene R, Geneviciute E, Januska A, Lebedys J, Sasnauskas K (1991) ADE1 gene of the yeast Candida maltosa. Eksp Biol 0(3): 19–29 (published 1992)

    CAS  Google Scholar 

  • Jomantiene R, Lebediene E, Proscevicius J, Meskauskiene R, Sasnauskas K (1992) Molecular analysis of the Candida maltosa gene, conferring resistance to cycloheximide in Saccha-romyces cerevisiae. Int Spec Symp Genet Mol Biol Non-conventional Yeasts, Leuenberg near Basel, Switzerland 1992, Abstr

    Google Scholar 

  • Jones EW, Pringle JR, Broach JR (eds) The molecular and cellular biology of the yeast Saccharomyces, vol 1 — Genome dynamics, protein synthesis, and energetics (1991), vol 2 — Gene expression (1992), vol 3 — Cell cycle and cell biology (1993), Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Kalin M, Neujahr HY, Weissmahr RN, Sejlitz T, Johl R, Fiechter A, Reiser J (1992) Phenol hydroxylase from Trichosporon cutaneum: gene cloning, sequence analysis, and functional expression in Escherichia coli. J Bacteriol 174: 7112–7120

    PubMed  CAS  Google Scholar 

  • Kamiryo T, Sakasegawa Y, Tan H (1989) Expression and transport of Candida tropicalis peroxisomal acyl-coenzyme A oxidase in the yeast Candida maltosa. Agric Biol Chem 53: 179–186

    CAS  Google Scholar 

  • Kamiryo T, Mito N, Nike T, Suzuki T (1991) Assignment of most genes encoding major peroxisomal polypeptides to chromosomal band V of the asporogenic yeast Candida tropicalis. Yeast 7: 503–511

    PubMed  CAS  Google Scholar 

  • Kaneko T, Ishii K, Kawaharada H, Kagotani K, Shimada Y, Watanabe K (1977) Taxonomic studies on a hydrocarbon-assimilating Candida strain. Agric Biol Chem 41: 2269–2276

    CAS  Google Scholar 

  • Käppeli O, Fiechter A (1976) The mode of interaction between the substrate and cell surface of hydrocarbon-utilizing yeast Candida tropicalis. Biotechnol Bioeng 18: 967–974

    Google Scholar 

  • Käppeli O, Fiechter A (1977) Component from the cell surface of the hydrocarbon-utilizing yeast Candida tropicalis with possible relation to hydrocarbon transport. J Bacteriol 131: 917–921

    PubMed  Google Scholar 

  • Käppeli O, Aeschbach H, Schneider AH, Fiechter A (1975) A comparative study of carbon energy reserve metabolism of Candida tropicalis growing on glucose and on hydrocarbons. Eur J Appl Microbiol 1: 199–211

    Google Scholar 

  • Käppeli O, Müller M, Fiechter A (1978) Chemical and structural alterations at the cell surface of Candida tropicalis, induced by hydrocarbon substrate. J Bacteriol 133: 952–958

    PubMed  Google Scholar 

  • Käppeli O, Walther P, Müller M, Fiechter A (1984) Structure of the cell surface of the yeast Candida tropicalis and its relation to hydrocarbon transport. Arch Microbiol 138: 279–282

    PubMed  Google Scholar 

  • Kärgel E, Schmidt HE, Schunck W-H, Riege P, Mauersberger S, Müller H-G (1984) A solid-phase radioimmunoassay for yeast cytochrome P-450. Anal Lett 17 B18: 2011–2024

    Google Scholar 

  • Kärgel E, Schunck W-H, Riege P, Honeck E, Claus R, Kleber H-P, Müller H-G (1985) A comparative immunological investigation of the alkane-hydroxylating cytochrome P-450 from the yeast Candida maltosa. Biochem Biophys Res Commun 128: 1261–1267

    PubMed  Google Scholar 

  • Kärgel E, Aoyama Y, Schunck W-H, Müller H-G, Yoshida Y (1990) Comparative study on cytochrome P-450 of yeasts using specific antibodies to cytochromes P-450alk and P-45014DM. Yeast 6: 61–67

    Google Scholar 

  • Kärgel E, Menzel R, Honeck H, Vogel F, Böhmer A, Schunck W-H (1996) Candida maltosa NADPH-cytochrome P450 reductase: Cloning of a full-length cDNA, heterologous expression in Saccharomyces cerevisiae and function of the N-terminal region for membrane anchoring and proliferation of the endoplasmic reticulum. Yeast 12 (in press)

    Google Scholar 

  • Karpova TS, Zhuravleva TS, Pashina OB, Nikolaishvili NT, Larionov VL (1987) Chromosome stability in Saccharomyces yeasts (Russ). Genetika 23: 2148–2156

    PubMed  CAS  Google Scholar 

  • Kasanzev EN, Maximova GN, Shekina EV, Vorobyeva GI (1975) Determination of the relative volumes of lipid inclusions of the yeast Candida guilliermondii NP4 grown on hydrocarbons (Russ). Appl Biokhim Mikrobiol 11: 640–648

    Google Scholar 

  • Kasüske A, Wedler H, Schulze S, Becher D (1992) Efficient electropulse transformation of intact Candida maltosa cells by different homologous vector plasmids. Yeast 8: 691–697

    PubMed  Google Scholar 

  • Kawaguchi Y, Honda H, Taniguchi-Morimura H, Iwasaki S (1989) The codon CUG is read as serine in an asporogenic yeast Candida cylindracea. Nature 341: 164–166

    PubMed  CAS  Google Scholar 

  • Kawai S, Hwang CW, Sugimoto M, Takagi M, Yano K (1987) Subcloning and nucleotide sequencing of an ARS site of Candida maltosa which also functions in Saccharomyces cerevisiae. Agric Biol Chem 51: 1587–1591

    CAS  Google Scholar 

  • Kawai S, Hikiji T, Murao S, Takagi M, Yano K (1991) Isolation and sequencing of a gene, C-ADE1, and its use for a host-vector system in Candida maltosa with two genetic markers. Agric Biol Chem 55: 59–66

    PubMed  CAS  Google Scholar 

  • Kawai S, Murao S, Mochizuki M, Shibuya I, Yano K, Takagi M (1992) Drastic alteration of cycloheximide sensitivity by substitution of one amino acid in the L41 ribosomal protein of yeasts. J Bacteriol 174: 254–262

    PubMed  CAS  Google Scholar 

  • Kawamura M, Takagi M, Yano K (1983) Cloning of a LEU gene and an ARS site of Candida maltosa. Gene 24: 157–162

    PubMed  CAS  Google Scholar 

  • Keszenman-Pereyra D, Hieda K (1988) A colony procedure for transformation oí Saccharomyces cerevisiae. Curr Genet 13: 21–23

    PubMed  CAS  Google Scholar 

  • Kirsch DR, Kelly R, Kurtz MB (eds) (1990) The genetics of Candida. CRC Press, Boca Raton

    Google Scholar 

  • Kitamura H, Anri A, Fuse K, Seo M, Itakura C (1990) Chronic mastitis caused by Candida maltosa in a cow. Vet Pathol 27: 465–466

    PubMed  CAS  Google Scholar 

  • Klinner U, Böttcher F (1985) Chromosomal rearrangements after protoplast fusion in the yeast Candida maltosa. Curr Genet 9: 619–621

    Google Scholar 

  • Klinner U, Böttcher F (1987) Protoplast fusion as tool for genetic analysis and manipulation. 12th Int Spec Symp Genet of Non-conventional Yeasts, Weimar, 1987, Abstr, p 4

    Google Scholar 

  • Klinner U, Samsonova IA, Böttcher F (1984) Genetic analysis of the yeast Candida maltosa by means of induced parasexual processes. Curr Microbiol 11: 241–246

    Google Scholar 

  • Kölblin R, Birkenbeil S (1981) Zusammenhang zwischen Koloniemorphologie und Polysaccharidgehalt in zellwandmodifizierten Mutanten von Candida sp. “H”. Z Allg Mikrobiol 21: 519–530

    PubMed  Google Scholar 

  • Kölblin R, Tröger R (1982) Zusammenhang zwischen Protein- und Polysaccharidgehalt in zellwandmodifizierten Mutanten von Candida sp. H. Z Allg Mikrobiol 22: 63–68

    PubMed  Google Scholar 

  • Komagata K (1979) Characteristics of Candida maltosa. In: Garattini S, Paglialunga S, Scrimshaw NS (eds) Single-cell protein: safely for animal and human feeding. Proc protein-calorie advisory group of the United Nations System Symp, Milan, Italy, March 31-April 1, 1977. Pergamon Press, Oxford, pp 39–43

    Google Scholar 

  • Komagata K, Nakase T, Katsuya N (1964a) Assimilation of hydrocarbons by yeast. I. Pre-liminary screening. J Gen Appl Microbiol 10: 313–321

    Google Scholar 

  • Komagata K, Nakase T, Katsuya N (1964b) Assimilation of hydrocarbons by yeast. II. Determination of hydrocarbon-assimilating yeast. J Gen Appl Microbiol 10: 323–333

    Google Scholar 

  • König WA (1987) The practice of enantiomer separation by capillary gas chromatography. Hüthig-Verlag, Heidelberg, p 42

    Google Scholar 

  • Rostov V, Ratchev R, Lazarova G, Russeva L, Krasteva J, Ivanova V, Vassileva M, Sokolov T, Jelev S (1991) Yeast assimilation of sugars from hemicellulose beech wood hydrolysates. Acta Microbiol Bulg 28: 51–61

    Google Scholar 

  • Kovalenko OG, Korobko OP, Korbelainen ES, Barkalova AO, Telegeeva TA, Papp VT (1992) Effect of mannan from Candida maltosa and its sulphated derivatives on plant susceptibility to viral and bacterial infections (Russ). Mikrobiol Zh (Kiev) 54: 63–69

    CAS  Google Scholar 

  • Kozlova LI, Meshchankin GI (1991) Production technology of fodder yeasts on oil distillates. Biotekhnologiya 0(6): 60–63

    Google Scholar 

  • Krauzova VI, Sharyshev AA (1987) Study on subcellular distribution of the enzymes of n-alkane oxidation primary steps in the yeast Candida maltosa (Russ). Biokhimiya 52: 599–606

    CAS  Google Scholar 

  • Krauzova VI, Kuvichkina TN, Sharyshev AA, Romanova IB, Lozinov AB (1986) Lauric acid and NADH synthesis during dodecanol and dodecanal oxidation by membrane fractions of the yeast Candida maltosa grown on hexadecane (Russ). Biokhimiya 51:23–27

    CAS  Google Scholar 

  • Kravtsov EG, Gukasyan IA, Dolgikh MS, Ermolaev AV, Spivak SM (1991) Isolation of antigen-active biopolymers from Candida maltosa culture fluid for obtaining allergens of diagnostic value for examination of industrial microbiology workers (Russ). Gig Tr ProfZabol 3:33–34.

    Google Scholar 

  • Kreger-van Rij NJW (1984) The yeasts, a taxonomic study. Elsevier, Amsterdam

    Google Scholar 

  • Krug M, Straube G (1986) Degradation of phenolic compounds by the yeast Candida tropicalis HP 15 II. Some properties of the first two enzymes of the degradation pathway. J Basic Microbiol 26: 271–281

    PubMed  CAS  Google Scholar 

  • Krug M, Ziegler H, Straube G (1985) Degradation of phenolic compounds by the yeast Candida tropicalis HP15 I. Physiology of growth and substrate utilization. J Basic Microbiol 25: 103–110

    PubMed  CAS  Google Scholar 

  • Kunau W-H, Hartig A (1992) Peroxisome biogenesis in Saccharomyces cerevisiae. Antonie Leeuwenhoek J Microbiol 62: 63–78

    CAS  Google Scholar 

  • Kunau W-H, Bühne S, Moreno de la Garza M, Kionka C, Mateblowski M, Schultz-Borchard U, Thieringer R (1988) Comparative enzymology of β-oxidation. Biochem Soc Trans 16: 418–420

    PubMed  CAS  Google Scholar 

  • Kunze G (1982) Molekularbiologisch/biochemische Charakterisierung der Genome von Candida sp. EH15, Lodderomyces elongisporus CBS 2605, Saccharomyces cerevisiae D10, Pichia guilliermondii S0809, Pichia guilliermondii S0799 und Pichia guilliermondii fp 1–61. Universität Greifswald, Math Nat Dissertation A, Greifswald

    Google Scholar 

  • Kunze G, Hecker M, Birnbaum D (1984a) Molecularbiological characterization of genomes from Candida sp. EH 15, Lodderomyces elongisporus CBS 2605, Pichia guilliermondii SO809 and Pichia guilliermondii fp1–61 (Germ). Z Allg Mikrobiol 24: 33–40

    CAS  Google Scholar 

  • Kunze G, Schauer F, Samsonova I, Klinner U, Bode R, Hecker M, Birnbaum D (1984b) Identifizierung zweier Candida maltosa-Stämme mittels DNA-Reassoziation. Z Allg Mikrobiol 24: 607–613

    CAS  Google Scholar 

  • Kunze G, Petzoldt C, Bode R, Samsonova I, Hecker M, Birnbaum D (1985a) Transformation of Candida maltosa and Pichia guilliermondii by a plasmid containing Saccharomyces cerevisiae ARG4 DNA. Curr Genet 9: 205–209

    PubMed  CAS  Google Scholar 

  • Kunze G, Petzoldt C, Bode R, Samsonova IA, Böttcher F, Birnbaum D (1985b) Transforma-tion of the industrially important yeasts Candida maltosa and Pichia guilliermondii. J Basic Microbiol 25: 141–144

    CAS  Google Scholar 

  • Kunze G, Petzoldt G, Bode R, Samsonova JA, Hecker M, Birnbaum D (1986a) Transformations of the industrially important yeasts Candida maltosa and Pichia guilliermondii. Acta Biotechnol 6: 28

    Google Scholar 

  • Kunze G, Bode R, Birnbaum D (1986b) Physical mapping and genome organization of mitochondrial DNA from Candida maltosa. Curr Genet 10: 527–530

    PubMed  CAS  Google Scholar 

  • Kunze G, Bode R, Schmidt H, Samsonova IA, Birnbaum D (1987a) Identification of a lys2 mutant of Candida maltosa by means of transformation. Curr Genet 11: 385–391

    PubMed  CAS  Google Scholar 

  • Kunze G, Bode R, Schmidt H, Samsonova IA, Birnbaum D (1987b) Identification of a lys2 mutant of Candida maltosa by means of tranformation. 12th Int Spec Symp Yeast Genet of Non-conventional Yeasts, Weimar, 1987, Abstr p 81

    Google Scholar 

  • Kurtz MB, Kelly R, Kirsch DR (1990) The molecular genetics of Candida albicans. In: Kirsch DR, Kelly R, Kurtz MB (eds) The genetics of Candida. CRC Press, Boca Raton, pp 21–73

    Google Scholar 

  • Kurtzman CP (1992) rRNA sequence comparison for assessing phylogenetic relationship among yeasts (Minireview). Int J Syst Bacteriol 42: 1–6

    PubMed  CAS  Google Scholar 

  • Kurtzman CP (1994) Molecular taxonomy of the yeasts. Yeast 10: 1727–1740

    PubMed  CAS  Google Scholar 

  • Larriba G (1993) Translocation of proteins across the membrane of the endoplasmic reticulum: a place for Saccharomyces cerevisiae. Yeast 9: 441–463

    PubMed  CAS  Google Scholar 

  • Lebediene E, Jomantiene R, Sasnauskas K (1992) Cloning and sequence analysis of a Candida maltosa gene conferring resistance to formaldehyde. Int Spec Symp Genet Mol Biol Non-conventional Yeasts, Leuenberg near Basel, 1992, Abstr

    Google Scholar 

  • Lerche K-H, Kretzschmar G (1980) Zellelektrophoretische Charakterisierung der Oberfläche von Candida guilliermondii. Z Allg Mikrobiol 20: 641–652

    PubMed  CAS  Google Scholar 

  • Lerche K-H, Kretzschmar G (1986) Partikelelektrophoretische Charakterisierung der Oberflächeneigenschaften von alkanutilisierenden Hefezellen: chemische Zusammensetzung und Tensidadsorption. Acta Biotechnol 6: 221–231

    CAS  Google Scholar 

  • Leuker CE, Hahn H-M, Ernst JF (1992) β-Galactosidase of Kluyveromyces lactis (Lac4p) as a reporter of the gene expression in Candida albicans and Candida tropicalis. Mol Gen Genet 235: 235–241

    PubMed  CAS  Google Scholar 

  • Levi JD, Shennan L, Ebbon GP (1979) Biomass from liquid n-alkanes. In: Rose AH (ed) Microbial biomass. Academic Press, London, pp 361–419

    Google Scholar 

  • Lippoldt A, Bode R, Birnbaum D (1986) Degradation of aromatic amino acids in Candida maltosa. J Basic Microbiol 26: 145–154

    CAS  Google Scholar 

  • Litovskaya AV (1988) Immune response of persons exposed to protein-synthesizing fungi (Russ). Z Mikrobiol Epidemiol Immunobiol 2: 71–75

    Google Scholar 

  • Litovskaya AV, Mokeeva NV (1990) Comparative evaluation of efficiency of various immunologic reactions with Candida antigens in detecting immediate hypersensitivity (Russ). Z Mikrobiol Epidemiol Immunobiol 9: 89–93

    Google Scholar 

  • Lloyd AT, Sharp PM (1992) Evolution of codon usage patterns: the extent and nature of divergence between Candida albicans and Saccharomyces cerevisiae. Nucleic Acids Res 20: 5289–5291

    PubMed  CAS  Google Scholar 

  • Loper JC, Chen C, Dey CR (1985) Gene engineering of yeast for biodegradation: immunological cross-reactivity among cytochrome P450 systems proteins of Saccharomyces cerevisiae and Candida tropicalis. Hazardous Waste Hazardous Mat 2: 131–141

    CAS  Google Scholar 

  • Lopez MC, Nicaud JM, Skinner H, Vergnolles C, Kader JC, Bankaitis V, Gaillardin C (1994) A phosphatidylinositol/phosphatidylcholine transfer protein is required for differentiation of the dimorphic yeast Yarrowia lipolytica from the yeast to the mycelial form. J Cell Biol 124: 113–127

    Google Scholar 

  • Lottermoser K, Asperger O, Schunck W-H (1994) Polymerase chain reaction mediated detection of cytochrome P450 gene in the yeast Candida apicola. In: Lechner MC (ed) Cytochrome P450. Biochemistry, biophysics and molecular biology. John Libbey Eurotext, Paris, pp 643–646

    Google Scholar 

  • Ludvik J, Munk V, Dostalek M (1968) Ultrastructural changes in the yeast Candida lipolytica caused by penetration of hydrocarbons into the cell. Experentia 24: 1066–1068

    CAS  Google Scholar 

  • Lusky K, Stoyke M, Gobel R, Busch A, Ackermann H (1988) The effect of microbial protein, obtained on a hydrocarbon base (fermosin), with a defined fatty acid composition on fat metabolism and fat composition in slaughter animals. 1. The effect of fermosin on the composition of broiler depot fat (Germ). Nahrung 32: 627–633

    PubMed  CAS  Google Scholar 

  • Lusky K, Stoyke M, Gobel R, Doberschütz KD, Macholz R (1989) The effect of microbial protein from a hydrocarbon base (fermosin) with a defined fatty acid composition on fat metabolism and fat composition in slaughter animals. 2. The effect of “fermosin” on the composition of back fat m hogs (Germ). Nahrung 33: 203–212

    PubMed  CAS  Google Scholar 

  • Magasanik B (1992) Regulation of nitrogen utilization. In: Jones EW, Pringle JR, Broach JB (eds) The molecular and cellular biology of the yeast Saccharomyces: gene expression, vol II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 283–317

    Google Scholar 

  • Magee BB, Magee PT (1987) Electrophoretic karyotypes and chromosome numbers in Candida species. J Gen Microbiol 133: 425–430

    PubMed  CAS  Google Scholar 

  • Magee PT, Rikkerink EH, Magee BB (1988) Methods for the genetics and molecular biology of Candida albicans. Anal Biochem 175: 361–372

    PubMed  CAS  Google Scholar 

  • Maksimova GN, Berestennikova ND, Antokhina VI, Levandovskaya YB, Pozmogova IN (1988) Content of lipid inclusions, free and bound lipids in the Candida maltosa cells at different paraffin concentrations in the culture medium. Appl Biochem Microbiol (Moscow) 24: 549–553

    CAS  Google Scholar 

  • Manakov MN, Prishepov FA (1986) The kinetics of monosaccharide digestion by the yeast of the genus Candida (Russ). Biotekhnologiya 0(2): 13–18

    Google Scholar 

  • Marahrens Y, Stillman B (1992) A yeast chromosomal origin of DNA replication defined by multiple functional elements. Science 255: 817–823

    PubMed  CAS  Google Scholar 

  • Maraz A, Kiss M, Ferency L (1978) Protoplast fusion in Saccharomyces cerevisiae strains of identical and opposite mating type. FEMS Microbiol Lett 3: 319–322

    Google Scholar 

  • Masuda Y, Park SM, Ohkuma M, Ohta A, Takagi M (1994) Expression of an endogenous and a heterologous gene in Candida maltosa by using a promoter of a newly isolated phos-phoglycerate kinase (PGK) gene. Curr Genet 25: 412–417

    PubMed  CAS  Google Scholar 

  • Mauersberger S (1985) Regulation und subzelluläre Verteilung des Cytochrom P-450 Monooxygenasesystems und anderer am Alkanmetabolismus beteiligter Enzyme in Candida Hefen. Dissertation, Akademie der Wissenschaften der DDR, Berlin

    Google Scholar 

  • Mauersberger S (1991) Mutants of alkane oxidation in the yeasts Yarrowia lipolytica and Candida maltosa. In: Finogenova TV, Sharyshev AA (eds) Alkane metabolism and oversynthesis of metabolites by microorganisms. Center for Biological Research USSR Academy of Sciences, Pushchino, pp 59–78

    Google Scholar 

  • Mauersberger S, Matyashova RN (1980) The content of cytochrome P-450 in yeast cells growing on hexadecane (Russ). Mikrobiologiya 49: 571–577

    CAS  Google Scholar 

  • Mauersberger S, Matyashova RN, Müller H-G, Losinov AB (1980) Influence of the growth substrate and the oxygen concentration in the medium on the cytochrome P-450 content in Candida guilliermondii. Eur J Appl Microbiol Biotechnol 9: 285–294

    CAS  Google Scholar 

  • Mauersberger S, Schunck W-H, Müller H-G (1981) The induction of cytochrome P-450 in Lodderomyces elongisporus. Z Allg Mikrobiol 21: 313–321

    PubMed  CAS  Google Scholar 

  • Mauersberger S, Schunck W-H, Müller H-G (1984) The induction of cytochrome P-450 in the alkane-utilizing yeast Lodderomyces elongisporus: alterations in the microsomal membrane fraction. Appl Microbiol Biotechnol 19: 29–35

    CAS  Google Scholar 

  • Mauersberger S, Kärgel E, Matyashova RN, Müller H-G (1987) Subcellular organization of alkane oxidation in the yeast Candida maltosa. J Basic Microbiol 27: 565–582

    CAS  Google Scholar 

  • Mauersberger S, Böhmer A, Schunck W-H, Müller H-G (1991) Cytochrome P-450 of the yeast Yarrowia lipolytica. Int Conf Biochemistry, Biophysics of Cytochrome P-450: Structure, Function, Biotechnological and Ecological Aspects, Moscow 1991, Abstr

    Google Scholar 

  • Mauersberger S, Persiyanova TB, Avetisova SM, Sokolov YI, Kärgel E, Kraft R, Schunck W-H, Davidov ER, Müller H-G (1992a) Characterization of two cytochrome P-450 forms purified from the yeast Candida maltosa. In: Archakov AI, Bachmanova GI (eds) Cytochrome P-450: biochemistry and biophsics. INCO — TNC, Joint Stock Company Moscow, pp 651–653

    Google Scholar 

  • Mauersberger S, Drechsler H, Oehme G, Müller H-G (1992b) Substrate specificity and stereoselectivity of the fatty alcohol oxidase from the yeast Candida maltosa. Appl Microbiol Biotechnol 37: 66–73

    CAS  Google Scholar 

  • Maximova GN, Vorobyova GI, Grigoryeva SP (1972) The question of hydrocarbon localization in the yeast cells of Candida guilliermondii NP-4 grown in media with paraffins (Russ). Prikl Biokhim Mikrobiol 8: 197–206

    Google Scholar 

  • Meissel MN, Medvedeva GA, Kozlova TM (1976) Cytological mechanisms of alkane assimilation by yeast (Russ). Mikrobiologiya 45: 844–851

    Google Scholar 

  • Menzel R, Scheller U, Schunck W-H, Müller H-G (1992) Inducible high-level expression of cytochromes P-450 CYP52A3 and CYP52A4 from Candida maltosa in Saccharomyces cerevisiae. In: Archakov AI, Bachmanova GI (eds) Cytochrome P-450: biochemistry and biophysics, INCO — TNC, Joint Stock Company, Moscow, pp 654–656

    Google Scholar 

  • Menzel R, Kärgel E, Wolff C, Vogel F, Schunck W-H (1994) High level expression of integral membrane proteins induces proliferation of the endoplasmic reticulum. In: Lechner MC (ed) Cytochrome P450. Biochemistry, biophysics and molecular biology, John Libbey Eurotext, Paris, pp 307–310

    Google Scholar 

  • Menzel R, Kärgel E, Vogel F, Böttcher C, Schunck W-H (1996) Membrane integration of cytochrome P450 and ER-proliferarion are related processes. (submitted)

    Google Scholar 

  • Metz W, Reuter G (1977) Anabole und katabole Enzyme des Harnstoffmetabolismus in einem kohlenwasserstoffverwertenden Stamm von Candida guilliermondii. Z Allg Mikrobiol 17: 599–610

    PubMed  CAS  Google Scholar 

  • Meyer SA, Anderson K, Brown RE, Smith MT, Yarrow D, Mitchell G, Ahearn DG (1975) Physiological and DNA characterization of Candida maltosa, a hydrocarbon-utilizing yeast. Arch Microbiol 104: 225–231

    PubMed  CAS  Google Scholar 

  • Michaleva W, Garbalinsky VA, Botnikova TA, Karnoz GV, Melnik RA (1973a) Utilization of n-paraffins of different molecular weight by Candida guilliermondii (Russ). Prikl Biokhim Mikrobiol 10: 35–41

    Google Scholar 

  • Michaleva W, Gradova NB, Koslova LJ, Roschkova MI, Shdanniková JN, Welikoslavinskaja OI, Triems K, Pohland D, Glombitza F, Wünsche L, Kersten D-C, Schneider J (1973b) Verfahren zur Gewinnung von Futterhefe. GDR patent, DD WP 105.825

    Google Scholar 

  • Mikhailova NP, Durasova EN, Vyunov KA (1987) Analysis of sterol mutants of Candida maltosa: genetic and biochemical aspects. 12th Int Spec Symp on Yeast, Weimar, Abstr, p 79

    Google Scholar 

  • Mikhailova NP, Sorokoletova EF, Durasova EN, Vyunov KA, Shapovalov OI (1991) Sterol composition of nystatin-resistant Candida maltosa mutants. Folia Microbiol 36: 148–152

    CAS  Google Scholar 

  • Minkevich IG, Baumann F, Rogge G, Heinritz B (1988) Ratio of heat production to oxygen consumption during the cell cycle of Candida maltosa EH 15 grown on ethanol. Acta Biotechnol 8: 435–444

    CAS  Google Scholar 

  • Mishina M, Kamiryo T, Tashiro S, Hagihara T, Tanaka A, Fukui S, Osumi M, Numa S (1978) Subcellular localization of two long-chain acyl-coenzyme-A-synthetases in Candida lipolytica. Eur J Biochem 89: 321–328

    PubMed  CAS  Google Scholar 

  • Montrocher R (1980) Significance of immunoprecipitation in yeast taxonomy: Antigenic analyses of some species within the genus Candida. Cell Mol Biol 26: 293–302

    CAS  Google Scholar 

  • Müller H, Voigt B (1981) Untersuchungen zur chemischen Zusammensetzung der Lipidfraktion von Lodderomyces elongisporus EH 15. Acta Biotechnol 1: 279–284

    Google Scholar 

  • Müller H, Voigt B (1984) Bestimmung von freiem und gebundenem Ergosterol in Mikroorganismen. Z Allg Mikrobiol 24: 61–64

    PubMed  Google Scholar 

  • Müller H-G, Schunck W-H, Riege P, Honeck H (1979) The alkane-hydroxylating enzyme system of the yeast Candida guilliermondii. Acta Biol Med Ger 38: 345–349

    PubMed  Google Scholar 

  • Müller H-G, Mauersberger S, Schunck W-H, Riege P, Honeck H, Huth J (1980) The alkane-hydroxylating cytochrome P-450 system of yeast: regulation in vivo and progress in isolation. In: Gustafsson J-A et al. (eds) Biochemistry, biophysics and regulation of cytochrome P-450. Elsevier, Amsterdam, pp 251–254

    Google Scholar 

  • Müller H-G, Schunck W-H, Riege P, Honeck H (1982) The alkane monooxygenase system of the yeast Lodderomyces elongisporus: Purification of the cytochrome P-450 and the NADPH-cytochrome P-450 reductase and reconstitution experiments. In: Hietanen E et al. (eds) Cytochrome P-450 — biochemistry, biophysics and environmental implications. Elsevier, Amsterdam, pp 445–448

    Google Scholar 

  • Müller H-G, Mauersberger S, Schunck W-H, Wiedmann B (1983a) Enzyminduktion in der Hefe Lodderomyces elongisporus in Gegenwart von n-Alkanen. Z Allg Mikrobiol 23:589–593

    Google Scholar 

  • Müller H-G, Schunck W-H, Kärgel E (1991a) Cytochromes P-450 of alkane-utilizing yeasts (Review). In: Ruckpaul K, Rein H (eds) Frontiers in biotransformation vol 4. Akademie Verlag, Berlin, pp 87–126

    Google Scholar 

  • Müller H-G, Kärgel E, Mauersberger S, Schunck W-H, Wiedmann B (1991b) Alkane catabo-lism in yeast — new results of the 1980s. In: Finogenova TV, Sharyshev AA (eds) Alkane metabolism and oversynthesis of metabolites by microorganisms. Center for Biological Research USSR Academy of Sciences, Pushchino, pp 3–16

    Google Scholar 

  • Müller R, Markuske KD, Babel W (1983b) Verbesserung der Y-Werte bei Wachstum von Hansenula polymorpha auf Methanol durch simultane Verwertung von Glucose. Z Allg Mikrobiol 23: 375–384

    PubMed  Google Scholar 

  • Müller RH, Babel W (1988) Energy and reducing equivalent potential of C2-compounds for microbial growth. Acta Biotechnol 8: 249–258

    Google Scholar 

  • Müller RH, Babel W (1989) Kontinuierliche nicht-fermentative Synthese von Aceton. Wiss Z Karl Marx Univ Leipz Math-Naturwiss Reihe 38: 269–302

    Google Scholar 

  • Muramatsu S, Hanada H, Nirasawa K, Yoshida M (1982) Mutagenicity tests for mice bred under the condition of long-continued feeding of single-cell protein diets. Bull Natl Inst Anim Ind 38: 23–32

    Google Scholar 

  • Muraoka S, Ohkuma M, Ohta A, Takagi M (1993) Regulation of gene expression on n-alkane-inducible cytochrome P450s in Candida maltosa. 2nd Int Symp Cytochrome P450 Microorganisms Plants, Tokyo, June 13–17, 1993, Abstr, p 2

    Google Scholar 

  • Muraoka S, Ohkuma M, Takagi M (1994) Recent advances on regulation of gene expression by hydrophobic compounds using yeast systems (Japanese). Tanpakushitsu-Kakusan-Koso 39: 521–529

    PubMed  CAS  Google Scholar 

  • Müsch A (1993) Die molekulare Umgebung einer naszierenden Polypeptid-Kette während ihrer Translokation in Hefe-Mikrosomen. Dissertation, Humboldt Universität, Berlin

    Google Scholar 

  • Mutoh H, Mochizuki M, Ohta A, Takagi M (1995) Inducible expression of a gene encoding a L41 ribosomal protein responsible for the cycloheximide-resistant phenotype in the yeast Candida maltosa. J Bacteriol 177: 5383–5386

    PubMed  CAS  Google Scholar 

  • Nabeshima S, Tanaka S, Fukui S (1970) Studies on the hydrocarbon utilization by microorganisms XII. Comparison of the polysaccharide contents of yeast cells grown on hydrocarbons and glucose. J Ferment Technol 4: 556–562

    Google Scholar 

  • Nakase T, Komagata K (1971) Significance of DNA base composition in the classification of the genus Candida. J Gen Appl Microbiol 17: 259–279

    Google Scholar 

  • Nakase T, Fukazawa Y, Tsuchiya T (1972) A comparative study on two forms of Candida tropicalis (Cast.) Berkhout. J Gen Appl Microbiol 18: 349–363

    Google Scholar 

  • Nelson DR, Kamataki T, Waxman DJ, Guengerich FP, Estabrook RW, Feyereisen R, Gonzalez FJ, Coon MJ, Gunsalus IC, Gotoh O, Okuda K, Nebert D (1993) The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol 12: 1–51

    PubMed  CAS  Google Scholar 

  • Neujahr HY (1990) Yeast in biodegradation and biodeterioration processes. In: Verachtert H, De Mot R (eds) Yeast biotechnology and biocatalysis. Marcel Dekker, New York, pp 321–348

    Google Scholar 

  • Nunziata A, Argentino-Storino A, Mercatelli P, Salerno RO (1982) Two year toxicity in beagle dogs fed a new protein source. Arch Toxicol Suppl 5: 378–381

    CAS  Google Scholar 

  • Nüske J, Grimmecke HD, Reuter G (1982) Polysaccharid-Strukturen von Zellwand-Präparaten aus der Futtereiweiß-Hefe Candida sp. H. Z Allg Mikrobiol 22: 477–486

    Google Scholar 

  • Odds FC (1987) Candida infections: an overview. CRC Crit Rev Microbiol 15: 1–5

    CAS  Google Scholar 

  • Ogorodnikova TE, Durasova EN, Sinitskaya NA, Orlov AI, Mikhailova NP, Vyunov KA (1991) Biochemical basis of different nystatin resistance of Saccharomyces cerevisiae and Candida maltosa yeast mutants (Russ). Mikrobiologiya 60: 26–33 (Microbiology, New York 60: 680–686, English Translation 1992)

    CAS  Google Scholar 

  • Ogrydziak DM (1988) Development of genetic maps of nonconventional yeasts. J Basic Microbiol 28: 185–196

    PubMed  CAS  Google Scholar 

  • Ohama T, Suzuki T, Mori M, Osawa S, Ueda T, Watanabe K, Nakase T (1993) Non-universal decoding of the leucine codon CUG in several Candida species. Nucleic Acids Res 21: 4039–4045

    PubMed  CAS  Google Scholar 

  • Ohkuma M (1993) Study on n-alkane-inducible cytochrome P-450 gene family in Candida maltosa (Japanese). PhD Thesis, Tokyo University

    Google Scholar 

  • Ohkuma M, Hikiji T, Tanimoto T, Schunck W-H, Müller H-G, Yano K, Takagi M (1991a) Evidence that more than one gene encodes n-alkane-inducible cytochrome P-450s in Candida maltosa, found by two-step gene disruption. Agric Biol Chem 55: 1757–1764

    PubMed  CAS  Google Scholar 

  • Ohkuma M, Tanimoto T, Yano K, Takagi M (1991b) CYP52 (cytochrome P450alk) multigene family in Candida maltosa: molecular cloning and nucleotide sequence of the two tandemly arranged genes. DNA Cell Biol 10: 271–82

    PubMed  CAS  Google Scholar 

  • Ohkuma M, Muraoka S, Hwang CW, Ohta A, Takagi M (1993a) Cloning of the C-URA3 gene and construction of a triple auxotroph (his5, ade1, ura3) as a useful host for the genetic engineering of Candida maltosa. Curr Genet 23: 205–210

    PubMed  CAS  Google Scholar 

  • Ohkuma M, Hwang CW, Masuda Y, Nishida H, Sugiyama J, Ohta A, Takagi M (1993b) Evolutionary position of n-alkane-assimilating yeast Candida maltosa shown by nucleotide sequence of small-subunit ribosomal-RNA gene. Biosci Biotech Biochem 57:1793–1794

    CAS  Google Scholar 

  • Ohkuma M, Muraoka S, Ohta A, Takagi M (1993c) A cytochrome P450alk gene family in Candida maltosa: chromosomal mapping and gene disruption. 2nd Int Symp Cytochrome P450 Microorganisms Plants, Tokyo, June 13–17, 1993, Abstr, p 3

    Google Scholar 

  • Ohkuma M, Kawai S, Takagi M (1994a) Subject 1. Isolation and characterization of an ARS for Candida maltosa. In: Maresca B, Kobayashi GS (eds) Molecular biology of pathogenic fungi, a laboratory manual. Telos Press, New York, pp 213–220

    Google Scholar 

  • Ohkuma M, Muraoka S, Takagi M (1994b) Subject 2. Construction of host-vector systems in Candida maltosa. In: Maresca B, Kobayashi GS (eds) Molecular biology of pathogenic fungi, a laboratory manual. Telos Press, New York, pp 221–226

    Google Scholar 

  • Ohkuma M, Muraoka S, Tanimoto T, Fujii M, Ohta A, Takagi M (1995a) CYP52 (cytochrome P450alk) multigene family in Candida maltosa: identification and characterization of eight members. DNA Cell Biol 14: 163–173

    PubMed  CAS  Google Scholar 

  • Ohkuma M, Park S-M, Zimmer T, Menzel R, Vogel F, Schunck W-H, Ohta A, Takagi M (1995b) Proliferation of intracellular membrane structures upon homologous overproduction of cytochrome P-450 in Candida maltosa. Biochim Biophys Acta (Biomembranes) 1236: 163–169

    Google Scholar 

  • Ohkuma M, Masuda Y, Park S-M, Ohtomo R, Ohta A, Takagi M (1995c) Evidence that the expression of the gene for NADPH-cytochrome P-450 reductase is n-alkane-inducible in Candida maltosa. Biosci Biotech Biochem 59: 1328–1330

    CAS  Google Scholar 

  • Ohkuma M, Zimmer T, Iida T, Schunck W-H, Ohta A, Takagi M (1995d) Isozyme function of n-alkane-inducible cytochrome P450 in Candida maltosa by sequential gene disruption (in preparation)

    Google Scholar 

  • Ohkuma M, Kobayashi K, Kawai S, Hwang CW, Ohta A, Takagi M (1995e) Identification of a centromeric activity in the autonomously replicating TRA region allows improvement of the host-vector system of Candida maltosa. Mol Gen Genet 249: 447–455

    PubMed  CAS  Google Scholar 

  • Okino H, Taoka A, Uemura N (1986) Production of macrocyclic musk compounds, via alkanedioic acids produced from n-alkanes. In: Lawrence BM, Mookherjee BD, Willis BJ (eds) Flavors and fragrances: a world perspective. Elsevier, Amsterdam, pp 753–760

    Google Scholar 

  • Oliver SG (1988) Replication and recombination in gene establishment in non-Saccharomy-ces yeasts. J Basic Microbiol 28: 197–208

    PubMed  CAS  Google Scholar 

  • Oliver SG et al. (1992) The complete DNA sequence of yeast chromosome III. Nature 357: 38–46

    PubMed  CAS  Google Scholar 

  • Osumi M, Miwa N, Teranishi Y, Tanaka A, Fukui S (1974) Ultrastructure of Candida yeasts grown on n-alkanes. Appearance of microbodies and its relationship to high catalase activity. Arch Microbiol 99: 181–201

    PubMed  CAS  Google Scholar 

  • Osumi M, Fukuzumi F, Teranishi Y, Tanaka A, Fukui S (1975a) Development of microbodies in Candida tropicalis during incubation in a n-alkane medium. Arch Microbiol 103: 1–11

    CAS  Google Scholar 

  • Osumi M, Fukuzumi F, Yamada N, Nagatani T, Teranishi Y, Tanaka A, Fukui S (1975b) Surface structure of some Candida yeast cells grown on n-alkanes. J Ferment Technol 53: 244–248

    Google Scholar 

  • Palmiter RD (1974) Magnesium precipitation of ribonucleoprotein complexes. Expedient techniques for the isolation of undegraded polysomes and messenger ribonucleic acid. Biochem 13: 3606–3614

    CAS  Google Scholar 

  • Park SM, Ohkuma M, Masuda Y, Ohta A, Takagi M (1996) Galactose-inducible expression systems in Candida maltosa using promoters of newly-isolated GAL1 and GAL10 genes. (submitted)

    Google Scholar 

  • Pekelis MV, Ermolaev AV, Ushomirskaya MS, Orlova LM, Gukasyan IA (1989) Immunochemical study of surface glycoconjugates of yeast-like fungi of the Candida genus (Russ). Prikl Biokhim Mikrobiol 25: 390–396

    PubMed  CAS  Google Scholar 

  • Perri GC, Nunziata A, Argentino-Storino A, Salerno RO, Mercatelli P (1981) Long-term toxicity and carcinogenicity of a new protein source in rats. Toxicol Eur Res 3: 305–310

    PubMed  CAS  Google Scholar 

  • Picataggio S, Deanda K, Mielenz J (1991) Determination of Candida tropicalis acyl coenzyme A oxidase isozyme function by sequential gene disruption. Mol Cell Biol 11: 4333–4339

    PubMed  CAS  Google Scholar 

  • Picataggio S, Rohrer T, Deanda K, Lanning D, Reynolds R, Mielenz J, Eirich LD (1992) Metabolic engineering of Candida tropicalis for the production of long-chain dicarboxy-lic acids. Bio/Technology 10: 849–898

    Google Scholar 

  • Pogorelskaia SA, Mokeeva NV, Makarova IB (1991) The rate of isolation of fungi in the genus Candida from the nasopharyngal mucosa of those in contact with the products from microbial protein manufacture (Russ). Zh Mikrobiol Epidemiol Immunobiol 3: 24–26

    Google Scholar 

  • Polnisch E, Hofmann KH (1989) Cyclic AMP, fructose-2,6-bisphosphate and catabolite inactivation of enzymes in the hydrocarbon-assimilating yeast Candida maltosa. Arch Microbiol 152: 269–272

    PubMed  CAS  Google Scholar 

  • Polnisch E, Kneifel H, Franzke H, Hofmann KH (1992) Degradation and dehalogenation of monochlorophenols by the phenol-assimilating yeast Candida maltosa. Biodegradation 2: 193–199

    CAS  Google Scholar 

  • Polumienko AL, Grigorieva SP (1985) New yeast vectors containing autonomously replicating sequences from Candida maltosa genome (Russ). Molek Genet Mikrobiol Vir 7: 26–31

    Google Scholar 

  • Popov B, Reuter G, Meyer HW (1980) Cell wall regeneration of Candida spec. protoplasts. Z Allg Mikrobiol 20: 47–62

    PubMed  CAS  Google Scholar 

  • Poulter R (1990) Classical methods for the genetic analysis of Candida albicans. In: Kirsch DR, Kelly R, Kurtz MB (eds) The genetics of Candida. CRC Press, Boca Raton, pp 75–123

    Google Scholar 

  • Präve P, Faust U, Sittig W, Sukatsch DA (1982) Handbuch der Biotechnologie. Akademische Verlagsgesellschaft Wiesbaden

    Google Scholar 

  • Pringle JR, Adams AEM, Drubin DG, Haarer BK (1991) Immunofluorescence methods for yeast. Methods Enzymol 194: 565–602

    PubMed  CAS  Google Scholar 

  • Rabinovich EG, Yegorova VN, Smirnova OY, Inge-Vechtomov SG (1974) Hydrocarbon-utilizing mutants of Saccharomyces cerevisiae. Part II to VI. Suppression of sporulation, copulation, and mitotic recombination in Hyc° and Hyc+ mutants (Russ). Genetika 10: 93–99 and related papers of the series in this issue. Rachubinski RA (1990) Genetic methods for and gene structure in other Candida species. In: Kirsch DR, Kelly R, Kurtz MB (eds) The genetics of Candida. CRC Press, Boca Raton, pp 177–186

    Google Scholar 

  • Rademacher K-H, Reuter G (1978) Zur Struktur des Mannans von Candida guilliermondii H. Z Allg Mikrobiol 18: 63–66

    PubMed  CAS  Google Scholar 

  • Rehm HJ (1986) Single cell protein production from petroleum derivatives and its utilization as food and feed. In: Alani DI, Moo-Young M (eds) Perspectives in biotechnology and applied microbiology. Elsevier, New York, pp 1–16

    Google Scholar 

  • Rehm HJ, Reiff I (1981) Mechanisms and occurrence of microbial oxidation of long-chain alkanes. Adv Biochem Eng 19: 175–215

    CAS  Google Scholar 

  • Rehm HJ, Reiff I (1982) Regulation der mikrobiellen Alkanoxidation mit Hinblick auf die Produktsynthese. Acta Biotechnol 2: 127–138

    CAS  Google Scholar 

  • Reiser J, Glumoff V, Kälin M, Ochsner U (1990) Transfer and expression of heterologous genes in yeast other than Saccharomyces cerevisiae. In: Fiechter A (ed) Advances in biochemistry engineering/biotechnol vol 43. Springer, Berlin Heidelberg New York, pp 76–102

    Google Scholar 

  • Riege P, Schunck W-H, Honeck H, Müller H-G (1980) Eigenschaften des Cytochrom P-450-abhängigen alkanhydroxylierenden Enzymsystems aus Candida guilliermondii. Wiss Z Ernst Moritz Arndt Univ Greifswald 29: 125–126

    CAS  Google Scholar 

  • Riege P, Schunck W-H, Honeck H, Müller, H-G (1981) Cytochrome P-450 from Lodderomyces elongisporus: its purification and some properties of the highly purified protein. Biochem Biophys Res Commun 98: 527–534

    PubMed  CAS  Google Scholar 

  • Riege P, Blasig R, Müller H-G, Heidenreich G, Bauch J (1989) Influence of oxygen and substrate supply on the metabolism of Candida maltosa during cultivation on n-alkanes. Appl Microbiol Biotechnol 32: 101–107

    CAS  Google Scholar 

  • Riggsby WS (1990) Physical characterization of the Candida albicans genome. In: Kirsch DR, Kelly R, Kurtz MB (eds) The genetics of Candida. CRC Press, Boca Raton, pp 125–145

    Google Scholar 

  • Ringpfeil M (1983) SCP-Produktion auf der Basis von Kohlenwasserstoffen. Acta Biotechnol 3: 227–240

    CAS  Google Scholar 

  • Röber B (1985) Katabole Repression bei aeroben und O2-limitiertem Wachstum -energetische und stoffliche Bilanz des Kohlenhydratmetabolismus bei Hefen. J Basic Microbiol 25: 581–590

    Google Scholar 

  • Röber B, Reuter G (1979) Biosynthese der Zellwand-Polysaccharide Mannan und Glucan als Spiegelbild unterschiedlicher Abbauwege der Glucose durch Candida sp. H. Z Allg Mikrobiol 19: 187–194

    PubMed  Google Scholar 

  • Röber B, Reuter G (1982) In vitro-Einbau von 14C-Hexose-6-Phosphat in Mannan, β-Glucan und Glycogen bei Candida sp. H und ihren Mutanten. Z Allg Mikrobiol 22: 671–673

    PubMed  Google Scholar 

  • Röber B, Reuter G (1984a) Control of catabolic and anabolic sequences of carbohydrate utilization in the scp yeast Candida maltosa H and its mutants H3 and H5 (Germ). Z Allg Mikrobiol 24: 41–55

    Google Scholar 

  • Röber B, Reuter G (1984b) Regulation of the glucopolysaccharide biosynthesis in the scp yeast Candida sp. H by precursor preparation (Germ). Z Allg Mikrobiol 24: 167–177

    Google Scholar 

  • Röber B, Reuter G (1984c) Mannan-biosynthesis in microsome fractions from protoplast-lysates of Candida maltosa H (Germ). Z Allg Mikrobiol 24: 179–188

    Google Scholar 

  • Röber B, Reuter G (1984d) Regulation of proteophosphomannan biosynthesis in the scp yeast Candida maltosa H by precursor preparation (Germ). Z Allg Mikrobiol 24: 317–328

    Google Scholar 

  • Röber B, Reuter G (1985) Effector- and precursor-function of mannose-6-phosphate, mannose-1-phosphate, UDP-n-acetylglucosamine and dolichylphosphate in the proteophosphomannan biosynthesis of the scp yeast Candida maltosa H (Germ). J Basic Microbiol 25: 243–264

    Google Scholar 

  • Röber B, Stolle J, Reuter G (1984a) Properties of hexokinase from Candida maltosa H, a SCP yeast (Germ). Z Allg Mikrobiol 24: 619–627

    Google Scholar 

  • Röber B, Stolle J, Reuter G (1984b) Properties of the glucose-6-phosphate dehydrogenase from Candida maltosa H, a SCP yeast (Germ). Z Allg Mikrobiol 24: 629–636

    Google Scholar 

  • Romanos MA, Scorer CA, Clare JJ (1992) Foreign gene expression in yeast: a review. Yeast 8: 423–488

    PubMed  CAS  Google Scholar 

  • Rose MD, Winston F, Hieter P (eds) (1990) Methods in yeast genetics. A laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Rylkin SS, Berezov TB, Gurina LV, Belova LA, Shulga AV, Orlova VS, Saubenova MG (1974) Composition of cell wall of Candida tropicalis during growth on glucose and n-alkanes (Russ). Mikrobiologiya 43: 551–552

    CAS  Google Scholar 

  • Rymond BC, Rosbach M (1992) Yeast pre-mRNA splicing. In: Jones EW, Pringle JR, Broach JR (eds) The molecular and cellular biology of the yeast Saccharomyces, vol 2, Gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 143–192

    Google Scholar 

  • Sakajo S, Minagawa N, Yoshimoto A (1993) Characterization of the alternative oxidase protein in the yeast Hansenula anomala. FEBS Lett 8: 310–312

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Samsonova I, Klinner U, Böttcher F (1987) Genetic studies on Candida maltosa. 12th Int Spec Symp Genet Non-conventional Yeasts, Weimar, 1987, Abstr, p21

    Google Scholar 

  • Sanglard D, Fiechter A (1989) Heterogeneity within the alkane-inducible cytochrome P450 gene family of the yeast Candida tropicalis. FEBS Lett 256: 128–133

    PubMed  CAS  Google Scholar 

  • Sanglard D, Loper JC (1989) Characterization of the alkane-inducile cytochrome P450 (P450alk) gene from the yeast Candida tropicalis: identification of a new P450 gene family. Gene 76: 121–136

    PubMed  CAS  Google Scholar 

  • Sasnauskas K, Jomantiene R, Geneviciute E, Januska A, Lebedys J (1991) Molecular cloning of the Candida maltosa ADE1 gene. Gene 107: 161–164

    PubMed  CAS  Google Scholar 

  • Sasnauskas K, Jomantiene R, Januska A, Lebediene E, Lebedys J, Janulaitis A (1992a) Cloning and analysis of a Candida maltosa gene which confers resistance to formaldehyde in Saccharomyces cerevisiae. Gene 122: 207–211

    PubMed  CAS  Google Scholar 

  • Sasnauskas K, Jomantiene R, Lebediene E, Lebedys J, Januska A, Janulaitis A (1992b) Molecular cloning and analysis of autonomous replicating sequence of Candida maltosa. Yeast 8: 253–259

    PubMed  CAS  Google Scholar 

  • Sasnauskas K, Jomantiene R, Lebediene E, Lebedys J, Januska A, Janulaitis A (1992c) Cloning and sequence analysis of a Candida maltosa gene which confers resistance to cyclo-heximide. Gene 116: 105–108

    PubMed  CAS  Google Scholar 

  • Sattler K, Wünsche L (1981) Aufnahme von Kohlenwasserstoffen durch Hefen (Teil I). Acta Biotechnol 0: 15–20

    Google Scholar 

  • Sattler K, Wünsche L (1983) Möglichkeiten der Gewinnung von Koppelprodukten der mikrobiellen Eiweißsynthese auf der Basis von Kohlenwasserstoffen. Acta Biotechnol 3: 345–350

    CAS  Google Scholar 

  • Schauer F (1988) Zur Physiologie des Kohlenwasserstoffabbaus in Candida maltosa. Universität Greifswald, Math-Nat, Dissertation B

    Google Scholar 

  • Schauer F, Schauer M (1986) Alkanassimilierende Hefen. Systematische Stellung und Erfassung einiger Leistungsgrenzen. Wiss Z EMA Univ Greifswald Math Naturwiss Reihe 35: 14–23

    CAS  Google Scholar 

  • Schauer F, Hofmann KH, Köhler M (1986) The subterminal oxidation of aliphatic hydrocarbons in Candida maltosa. In: Microbe 86, 14th Int Congr Microbiol, Manchester, Abstr, p 255

    Google Scholar 

  • Schauer F, Lindow S, Schauer M, Samsonova I, Böttcher F (1987) Oxidation of n-alkanes by Pichia guilliermondii and induction of mutants. 12th Int Spec Symp Genet of Non-conventional Yeasts, Weimar, 1987, Abstr, p 57

    Google Scholar 

  • Scheda R (1966) Kohlenwasserstoffe zehrende Hefen. Die Branntweinwirtschaft 106: 373–376

    Google Scholar 

  • Scheller U, Schunck W-H, Müller H-G (1992) Characterization of two different alkane-inducible P-450 forms from Candida maltosa by means of heterologous expression in Saccharomyces cerevisiae. In: Archakov AI, Bachmanova GI (eds) Cytochrome P-450: biochemistry and biophysics. INCO — TNC, Joint Stock Company, Moscow, pp 662–664

    Google Scholar 

  • Scheller U, Kraft R, Schröder K-L, Schunck W-H (1994) Generation of the soluble and functional cytosolic domain of microsomal cytochrome P450 52A3. J Biol Chem 269: 12779–12783

    PubMed  CAS  Google Scholar 

  • Scheller U, Zimmer T, Kärgel E, Schunck W-H (1996) Characterization of the n-alkane and fatty acid hydroxylating cytochrome P450 forms 52A3 and 52A4. Arch Biochem (in press)

    Google Scholar 

  • Schindler J, Meusdoerffer F, Giesel-Bühler H (1990) Microbial production in industrial chemicals: Basic features of dicarboxylic acid production by yeasts (Germ). Forum Mikrobiol 5: 274–281

    Google Scholar 

  • Schmidt H (1988) Lysinmetabolismus der Hefen Candida maltosa und Pichia guilliermondii. Univ Greifswald, Math-Nat Dissertation A

    Google Scholar 

  • Schmidt H, Bode R (1992) Characterization of a novel enzyme, N6-acetyl-L-lysine: 2-oxoglutarate aminotransferase, which catalyzes the second step of lysine catabolism in Candida maltosa. Antonie Leeuwenhoek J Microbiol 62: 285–290

    CAS  Google Scholar 

  • Schmidt H, Bode R, Lindner M, Birnbaum D (1985) Lysine biosynthesis in the yeast Candida maltosa: properties of some enzymes and regulation of the biosynthetic pathway. J Basic Microbiol 25: 675–681

    CAS  Google Scholar 

  • Schmidt H, Bode R, Birnbaum D (1988) Lysine degradation in Candida maltosa: occurrence of a novel enzyme, acetyl-CoA:L-lysine N-acetyltransferase. Arch Microbiol 150: 215–218

    CAS  Google Scholar 

  • Schmidt H, Bode R, Samsonova IA, Birnbaum D (1989a) Isolation and characterization of alpha-aminoadipate-delta-semialdehyde overproducing mutants from yeasts. FEMS Microbiol Lett 60: 201–204

    CAS  Google Scholar 

  • Schmidt H, Bode R, Samsonova IA, Birnbaum D (1989b) Production of alpha-aminoadipate-delta-semialdehyde by a mutant from Candida maltosa. Appl Microbiol Biotechnol 31: 463–466

    CAS  Google Scholar 

  • Schneider JD, Triems K (1981) Einfluß extracellulärer Kaliumionenkonzentrationen auf die celluläre Natriumkonzentration von Lodderomyces elongisporus D. Acta Biotechnol 1: 197–199

    Google Scholar 

  • Schneider JD, Hansel R, Hedlich R, Jechorek M (1983) Growth characteristics of a thermotolerant strain of Lodderomyces elongisporus grown on sucrose. Acta Biotechnol 3: 13–19

    CAS  Google Scholar 

  • Schult I (1987) Enzymologische Studien über mutabile Gene bei Candida maltosa. Ernst-Moritz-Arndt-Universität Greifswald, DDR, Sektion Biologie, Dissertation A

    Google Scholar 

  • Schult I, Samsonova I, Böttcher F (1987) Induction of unstable genes in Candida maltosa. 12th Int Spec Symp Non-conventional Yeast, Weimar, 1987, Abstr, p 22

    Google Scholar 

  • Schunck W-H, Riege P, Blasig R, Honeck H, Müller H-G (1978a) Cytochrome P-450 and alkane hydroxylase in Candida guilliermondii. Acta Biol Med Ger 37: K3–K7

    PubMed  CAS  Google Scholar 

  • Schunck W-H, Riege P, Kuhl R (1978b) Cytochrome P-450 of eukaryotic microorganisms. Pharmazie 33: 410–415

    Google Scholar 

  • Schunck W-H, Riege P, Müller H-G, Scheler W (1983a) Isolation and some molecular properties of cytochrome P-450 from the alkane assimilating yeast Lodderomyces elongisporus (Russ.) Biokhimiya (Moscow) 48: 518–526

    CAS  Google Scholar 

  • Schunck W-H, Riege P, Honeck H, Müller H-G (1983b) Isolierung und Rekonstitution des Alkan-Monooxygenase-Systems der Hefe Lodderomyces elongisporus. Z Allg Mikrobiol 23: 653–660

    CAS  Google Scholar 

  • Schunck W-H, Mauersberger S, Huth J, Riege P, Müller H-G (1987a) Function and regulation of cytochrome P-450 in alkane-assimilating yeast I. Selective inhibition with carbon monoxide in growing cells. Arch Micriol 147: 240–244

    CAS  Google Scholar 

  • Schunck W-H, Mauersberger S, Kärgel E, Huth J, Müller H-G (1987b) Function and regulation of cytochrome P-450 in alkane-assimilating yeast II. Effect of oxygen-limitation. Arch Microbiol 147: 245–248

    CAS  Google Scholar 

  • Schunck W-H, Kießling U, Strauss M, Kärgel E, Wiedmann B, Mauersberger S, Gaestel M, Gross B, Müller H-G (1989a) Cloning of a cDNA for the alkane hydroxylating P-450 from Candida maltosa. In: Schuster I (ed) Biochemistry and biophysics of cytochrome P-450. Taylor & Francis, London, pp 656–659

    Google Scholar 

  • Schunck W-H, Kärgel E, Gross B, Wiedmann B, Mauersberger S, Köpke K, Kießling U, Strauss M, Gaestel M, Müller H-G (1989b) Molecular cloning and characterization of the primary structure of the alkane hydroxylating cytochrome P-450 from the yeast Candida maltosa. Biochem Biophys Res Commun 181: 843–850

    Google Scholar 

  • Schunck WH, Vogel F, Gross B, Kärgel E, Mauersberger S, Köpke K, Gengnagel C, Müller HG (1991) Comparison of two cytochromes P-450 from Candida maltosa: primary structures, substrate specificities and effects of their expression in Saccharomyces cerevisiae on the proliferation of the endoplasmic reticulum. Eur J Cell Biol 55: 336–345

    PubMed  CAS  Google Scholar 

  • Schunck W-H, Scheller U, Juretzek T (1996) Generation of the cytosolic domain of microsomal P450 52A3 after high-level expression in Saccharomyces cerevisiae. Methods Enzym (in press)

    Google Scholar 

  • Schuster G, Voigt B, Müller H (1990) The influence of combined treatments with 2,4-dioxohexahydro-1,3,5-triazine (DHT) and lipophilic fractions from the yeast Candida maltosa IMET H128 on virus symptoms and tuber mass of identical potato eye cutting plants. Z Pflanzenkr Pflanzenschutz 97: 84–86

    CAS  Google Scholar 

  • Schwarz E, Mülling K, Samsonova I, Schauer F, Böttcher F (1987) Genetic studies of n-alkane uitilization of Candida maltosa. 12th Int Spec Symp Genet of Non-conventional Yeasts, Weimar, 1987, Abstr, p 75

    Google Scholar 

  • Seghezzi W, Sanglard D, Fiechter A (1991) Characterization of a second alkane-inducible cytochrome P450-encoding gene, CYP52A2, from Candida tropicalis. Gene 106: 51–60

    PubMed  CAS  Google Scholar 

  • Seghezzi W, Meili C, Ruffiner R, Kuenzi R, Sanglard D, Fiechter A (1992) Identification and characterization of additional members of the cytochrome P450 multigene family CYP52 of Candida tropicalis. DNA Cell Biol 11: 767–780

    PubMed  CAS  Google Scholar 

  • Senez JC (1986) The economical aspects of single cell protein production from petroleum derivatives. In: Alani DI, Moo-Young M (eds) Perspectives in biotechnology and applied microbiology. Elsevier, New York, pp 33–48

    Google Scholar 

  • Sharp PM, Touhy TM, Mosurski KR (1986) Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acid Res 14: 5125–5143

    PubMed  CAS  Google Scholar 

  • Sharyshev AA, Krauzova VI (1988) Fractionation of subcellular membrane organelles of the yeast Candida maltosa in Percoll gradients (Russ). Biologicheskie Membrany (Biological Membranes) 5: 187–197

    CAS  Google Scholar 

  • Sharyshev AA, Matyashova RN, Komarova GN (1983) Cytochrome P-450 assay in Candida and Saccharomyces cells under various growth conditions. Int Symp Environ Regulation Microbial Metabolism, Pushchino 1983, Abstr, pp 33–34

    Google Scholar 

  • Shennan JL (1984) Hydrocarbons as substrates in industrial fermentations. In: Atlas PR (ed) Petroleum microbiology. Macmillan, New York, pp 643–683

    Google Scholar 

  • Shennan JL, Levi JD (1974) The growth of yeasts on hydrocarbons. In: Hockenhull DJD (ed) Progress in industrial microbiology, vol 13. Churchill Livingstone Edinburgh, pp 1–57

    Google Scholar 

  • Shiio I, Uchio R (1971) Microbial production of long-chain dicarboxylic acids from n-alkanes. Part I. Screening and properties of microorganisms producing dicarboxylic acids. Agric Biol Chem 35: 2033–2042

    CAS  Google Scholar 

  • Shilova NK, Matyashova RN, Ilchenko AP (1989) The effect of aeration on the activity of alcohol oxidase and enzymes utilizing hydrogen peroxide in the course Candida maltosa growth on paraffin (Russ). Mikrobiologiya 58: 430–435

    CAS  Google Scholar 

  • Shkumatov VM (1993) Heterologous reconstitution of monooxygenases. 2nd Int Symp Cytochrome P450 Microorganisms Plants, Tokyo, June 13–17, 1993, Abstr, p 28

    Google Scholar 

  • Silva J, Laborda RR, Almendro G, Salim R (1990) Detection of opportunistic yeast pathogens in hospitalized immunocompromised patients. Rev Latinoam Microbiol 32: 261–264

    Google Scholar 

  • Sinanyan ES, Davidova EG, Davtyan MA, Davidov ER (1989) Synthesis of thermal shock proteins in the mesophilic strain of the yeast Candida maltosa and in its thermotolerant mutant (Russ). Izv Timiryazev Skh Akad 0(2): 195–199

    CAS  Google Scholar 

  • Sinanyan ES, Davtyan MA, Davidov ER (1990) Proteolytic activity of mesophilic and thermophilic yeast Candida maltosa in thermal and ethanol shock (Russ). Biol Zh Arm 43: 96–100

    CAS  Google Scholar 

  • Slavikova E, Grabinska-Loniewska A (1990) Taxonomical study of yeasts and yeast-like microorganisms isolated from the denitrification unit Biocenosis. Acta Mycol (Warsaw) 23: 81–88 (1987, published 1990)

    Google Scholar 

  • Smith NG, Bourquin AW, Crow SA, Ahearn DG (1976) Effect of heptachlor on hexadecane utilization by selected fungi. Dev Ind Microbiol 17: 331–336

    CAS  Google Scholar 

  • Smith RH, Palmer R (1976). A chemical and nutritional evaluation of yeast and bacteria as dietary protein sources for rats and pigs. J Sci Food Agric 27: 763–770

    PubMed  CAS  Google Scholar 

  • Snow R (1966) An enrichment method for auxotrophic yeast mutants using the antibiotic nystatin. Nature 211: 206–207

    PubMed  CAS  Google Scholar 

  • Sokolov YI, Davidov ER, Demano va NF, Gololobov AD (1981) Utilization of alkyl aromatic hydrocarbons by the yeast Candida guilliermondii (Russ). Prikl Biokhim Mikrobiol 17: 660–668

    CAS  Google Scholar 

  • Sokolov YI, Avetisova SM, Davidov ER (1986a) Isolation, purification, and porperties of cytochrome P-450 from yeast of the genus Candida grown on n-alkanes (Russ). Biokhimiya 51: 1649–1654

    CAS  Google Scholar 

  • Sokolov YI, Avetisova SM, Davydov RM, Davidov ER (1986b) Detection of two cytochrome P450 forms participating in the alkane oxidation of Candida yeast (Russ). Dokl Akad Nauk SSSR 286: 1506–1511

    Google Scholar 

  • Soll DR (1990) Dimorphism and high-frequency switching in Candida albicans. In: Kirsch DR, Kelly R, Kurtz MB (eds) The genetics of Candida. CRC Press, Boca Raton, pp 148–176

    Google Scholar 

  • Soom YO (1973) Mutants of Saccharomyces cerevisiae utilizing n-alkanes. I. Isolation and characterization of mutants (Russ). Genetika 9: 95–101

    PubMed  CAS  Google Scholar 

  • Souza AE, Myler PJ, Stuart KD (1993) The alkane-inducible Candida maltosa ALI1 gene product is an NADH: ubiquinone oxidoreductase subunit homologue. Gene 137: 349–350

    PubMed  CAS  Google Scholar 

  • Spivak SM, Gukasyan IA, Ogarkov VI (1988) Effect of non-pathogenic yeast-like fungi of the genus Candida on the process of forming immediate hypersensitivity to heterologous protein in guinea pigs (Russ). Gig Sanit 9: 75–76

    PubMed  Google Scholar 

  • Spivak SM, Gukasyan IA, Ermolaev AV, Ustinenko AN, Antonovicha LA (1989) Study of sensitizing properties of yeast-like fungi of the genus Candida in the production of dietary proteins (Russ). Gig Sanit 6: 77–79

    PubMed  Google Scholar 

  • Stepanjuk W (1981) On the nuclear origin of peroxisomes as possible precursors of mitochondria in hydrocarbon-oxidizing yeasts of the genus Candida (Russ). Zitologiya 23: 369–377

    Google Scholar 

  • Stichel E, Glombitza F, Iske U (1981) Parafinübergang aus der Kohlenwasserstoffphase zur Hefezelle. Acta Biotechnol 1: 9–15

    Google Scholar 

  • Stichel E, Rogge G, Bley T, Heinritz B (1982) Yield coefficients in dependence on milieu conditions and cell states. III. Induction of synchrony in continuous yeast cell cultivation by milieu changes (Lodderomyces elongisporus). Z Allg Mikrobiol 22: 717–722

    PubMed  CAS  Google Scholar 

  • Strick CA, James LC, O’Donnell MM, Gollaher MG, Franke AE (1992) The isolation and characterization of the pyruvate kinase encoding gene from the yeast Yarrowia lipolytica. Gene 118: 65–72 (and correction in Gene 140: 141–143)

    Google Scholar 

  • Su CS, Meyer SA (1991) Characterization of mitochondrial DNA in various Candida species: isolation, restriction endonuclease analysis, size, and base composition. Int J Syst Bacteriol 41:6–14

    PubMed  CAS  Google Scholar 

  • Sudbery PE (1994) The non-Saccharomyces yeasts. Yeast 10: 1707–1726

    PubMed  CAS  Google Scholar 

  • Sudoh M, Nagahashi S, Doi M, Ohta A, Takagi M, Arisawa M (1993) Cloning of the chitin synthase 3 gene from Candida albicans and its expression during yeast-hyphal transition. Mol Gen Genet 241: 351–358

    PubMed  CAS  Google Scholar 

  • Sugiyama H, Ohkuma M, Masuda Y, Park S-M, Ohta A, Takagi M (1995) In vivo evidence for non-universal usage of the codon CUG in Candida maltosa. Yeast 11: 43–52

    PubMed  CAS  Google Scholar 

  • Sunairi M, Watabe K, Takagi M, Yano K (1984) Increase of translatable mRNA for major microsomal proteins in n-alkane-grown Candida maltosa. J Bacteriol 160: 1037–1040

    PubMed  CAS  Google Scholar 

  • Sunairi M, Suzuki R, Takagi M, Yano K (1988) Self-cloning of genes for n-alkane assimilation from Candida maltosa. Agric Biol Chem 52: 577–579

    CAS  Google Scholar 

  • Suzuki T, Ueda T, Ohama T, Osawa S. Watanabe K (1993) The gene for serine tRNA having anticodon sequence CAG in a pathogenic yeast, Candida albicans. Nucleic Acid Res 21: 356

    PubMed  CAS  Google Scholar 

  • Takagi M (1992) Host-vector system and reverse genetics in a non-conventional yeast, Candida maltosa. In: Mongkolsuk SP, Lovett PS, Trempy JE (eds) Biotechnology and environmental science: molecular approaches. Plenum Press, New York, pp 13–22

    Google Scholar 

  • Takagi M (1993) Reverse genetics in a non-conventional yeast, Candida maltosa. In: Maresca E, Kobayashi GS, Yamaguchi H (eds), Molecular biology and its application ot medical mycology. NATO ASI Series, vol H 69. Springer, Berlin Heidelberg New York, pp 13–22

    Google Scholar 

  • Takagi M, Moriya K, Yano K (1980a) Induction of cytochrome P450 in petroleum-assimilating yeast. I. Selection of a strain and basic characterization of cytochrome P450 induction in the strain. Cell Mol Biol 25: 363–369

    Google Scholar 

  • Takagi M, Moriya K, Yano K (1980b) Induction of cytochrome P450 in petroleum-assimilating yeast. II. Comparison of protein synthesizing activity in cells grown on glucose and n-tetradecane. Cell Mol Biol 25: 371–375

    Google Scholar 

  • Takagi M, Kawai S, Takata Y, Tanaka N, Sunairi M, Miyazaki M, Yano K (1985) Induction of cycloheximide resistance in Candida maltosa by modifying the ribosomes. J Gen Appl Microbiol 31: 267–275

    CAS  Google Scholar 

  • Takagi M, Kawai S, Chang MC, Shibuya I, Yano K (1986a) Construction of a host-vector system in Candida maltosa by using an ARS site isolated from its genome. J Bacteriol 167: 551–555

    PubMed  CAS  Google Scholar 

  • Takagi M, Kawai S, Shibuya I, Miyazaki M, Yano K (1986b) Cloning in Saccharomyces cerevisiae of a cycloheximide resistance gene from the Candida maltosa genome which modifies ribosomes. J Bacteriol 168: 417–419

    PubMed  CAS  Google Scholar 

  • Takagi M, Kobayashi N, Sugimoto M, Fujii T, Watari J, Yano K (1987) Nucleotide sequencing analysis of a LEU gene of Candida maltosa which complements leuB mutation of Escherichia coli and leu2 mutation of Saccharomyces cerevisiae. Curr Genet 11:451–457

    PubMed  CAS  Google Scholar 

  • Takagi M, Uchino S, Sugimoto M, Kawai S, Hikiji T, Yano K (1988) Construction of promoter-probe vectors for Candida maltosa, a n-alkane-assimilating yeast, using the LEU2 gene of Saccharomyces cerevisiae. J Basic Microbiol 28: 335–342

    PubMed  CAS  Google Scholar 

  • Takagi M, Ohkuma M, Kobayashi N, Watanabe M, Yano K (1989) Purification of cytochrome P-450alk from n-alkane-grown cells of Candida maltosa, and cloning and nucleotide sequencing of the encoding gene. Agric Biol Chem 53: 2217–2226

    CAS  Google Scholar 

  • Tan H, Okazaki K, Kubota I, Kamiryo T, Utiyama H (1990) A novel peroxisomal nonspecific lipid-transfer protein from Candida tropicalis. Gene structure, purification and possible role in β-oxidation. Eur J Biochem 190: 107–112

    PubMed  CAS  Google Scholar 

  • Tanaka A, Fukui S (1989) Metabolism of n-alkanes In: Rose AH, Harrison JS (eds) The yeasts, vol 3, 2nd edn, Metabolism and physiology of yeasts. Academic Press, London, pp 261–287

    Google Scholar 

  • Tanaka A, Ohishi N, Fukui S (1967) Studies on the formation of vitamins and their function in hydrocarbon fermentation. Production of vitamin B6 by Candida albicans in hydrocarbon medium. J Ferment Technol 45: 617–623

    CAS  Google Scholar 

  • Tanaka A, Osumi M, Fukui S (1982) Peroxisomes of alkane-grown yeast: fundamental and practical aspects. Ann NY Acad Sci 386: 183–199

    PubMed  CAS  Google Scholar 

  • Tanaka H, Takagi M, Yano K (1987) Separation of chromosomal DNA molecules of Candida maltosa on agarose gels using the OF AGE technique. Agric Biol Chem 51: 3161–3163

    CAS  Google Scholar 

  • Tannenbaum SR, Wang DIC (1975) Single cell protein II. MIT Press, Cambridge

    Google Scholar 

  • Tokuyasu KT (1986) Application of cryoultramicrotomy to immunocytochemistry. J Microsc 143: 139–149

    PubMed  CAS  Google Scholar 

  • Tokuyasu KT (1989) Use of poly(vinylpyrrolidone) and poly(vinyl alcohol) for cryoultramicrotomy. Histochem J 21: 163–171

    PubMed  CAS  Google Scholar 

  • Taoka A (1986) Production of brassylic acid by fermentation. Biolndustry 3: 867–874

    CAS  Google Scholar 

  • Triebel H, Grimmecke HD, Kretzschmer K, Bär H (1980) Molecular weight determination on a mannan-protein-phosphate complex from the cell wall of the yeast Candida sp. H. Stud Biophys 82: 47–54

    Google Scholar 

  • Truchatshova TV, Ermolenko TM, Gubina LP, Radyuk VG, Shkumatov VM (1991) Analysis, fractionation and industrial technology of hydrocarbon-assimilating Candida maltosa. 15th Int Spec Symp on Yeast, Riga, Latvia 1991, pp 180–181

    Google Scholar 

  • Tschumper G, Carbon J (1982) Delta sequences and double symmetry in a yeast chromosomal replicator region. J Mol Biol 156: 239–307

    Google Scholar 

  • Uchio R (1978) Microbial production of long-chain dicarboxylic acids from n-alkanes. Petrol Microorg 20: 13–16

    CAS  Google Scholar 

  • Uchio R, Shiio I (1972a) Microbial production of long-chain dicarboxylic acids from n-alkanes Part II. Production by Candida cloacae mutant unable to assimilate dicarboxylic acid. Agric Biol Chem 36: 426–433

    CAS  Google Scholar 

  • Uchio R, Shiio I (1972b) Production of dicarboxylic acids by Candida cloacae mutants unable to assimilate n-alkane. Agric Biol Chem 36: 1169–1175

    CAS  Google Scholar 

  • Uchio R, Shiio I (1972c) Tetradecane-l,14-dicarboxylic acid production from n-hexadecane by Candida cloacae. Agric Biol Chem 36: 1389–1397

    CAS  Google Scholar 

  • Uchio R, Shiio I (1974) Microbial production of long-chain dicarboxylic acids from n-alkanes. Petrol Microorg 11: 14–23

    Google Scholar 

  • Uemura N (1985) Industrialization of the production of dibasic acids from paraffins using microoganisms (Japanese). Hakko to Kogyo 43: 436–441

    CAS  Google Scholar 

  • Uemura N, Taoka A, Takagi M (1988) Production of dicarboxylic acids by fermentation. In: Applewhite TH (ed) World conference on biotechnology of fats and oil industry. American Oil Chemist’s Society, pp 148–152

    Google Scholar 

  • Umemura I, Yanagiya K, Komatsubara S, Sato T, Tosa T (1990) D-alanine production by using asymmetric degrading activity of Candida maltosa. Ann NY Acad Sci 613: 659–662

    CAS  Google Scholar 

  • Umemura I, Yanagiya K, Komatsubara S, Sato T, Tosa T (1991) Characteristics of alanine aminotransferase from Candida maltosa. In: Fukui T, Kagamiyama K, Soda K, Wada H (eds) Enzymes dependent on pyridoxal phosphate and other carbonyl compounds as cofactors. Pergamon Press, Oxford, pp 229–231

    Google Scholar 

  • Umemura I, Yanagiya K, Komatsubara S, Sato T, Tosa T (1992) D-alanine production from D,L-alanine by Candida maltosa with asymmetric degrading activity. Appl Microbiol Biotechnol 36: 722–726

    CAS  Google Scholar 

  • Umemura I, Yanagiya K, Komatsubara S, Sato T, Tosa T (1994) Purification and some properties of alanine aminotransferase from Candida maltosa. Biosci Biotech Biochem 58: 283–287

    CAS  Google Scholar 

  • Van Tuinen E, Riezman H (1987) Immunolocalization of glyceraldehyde-3-phosphate dehydrogenase, hexokinase, and carboxypeptidase Y in yeast cells at the ultrastructural level. J Histochem Cytochem 35: 327–333

    PubMed  Google Scholar 

  • Van Uden N, Buckley H (1970) Genus Candida Berkhout. In: Lodder J (ed) The yeasts, a taxonomic study. North-Holland Publ, Amsterdam, pp 893–1087

    Google Scholar 

  • Veenhuis M, Kram AM, Kunau WH, Harder W (1990) Excessive membrane development following exposure of the methylothrophic yeast Hansenula polymorpha to oleic acid-containing media. Yeast 6: 511–519

    CAS  Google Scholar 

  • Vergeres G, Yen TSB, Aggeler J, Lausier J, Waskell L (1993) A model system for studying membrane biogenesis. Overexpression of cytochrome b5 in yeast results in marked proliferation of the intracellular membrane. J Cell Sci 106: 249–259

    PubMed  CAS  Google Scholar 

  • Vier B, Voigt B (1984) Untersuchungen zur Anreicherung von Ergosterol und Ubichinon aus Lipid-Kohlenwasserstoff-Fraktionen. Acta Biotechnol 4: 377–379

    CAS  Google Scholar 

  • Viljoen BC, Kock JLF, Britz TJ (1988) The significance of long-chain fatty acid composition and other phenotypic characteristics in determining relationships among some Pichia and Candida species. Gen Microbiol 134: 1893–1900

    CAS  Google Scholar 

  • Villalba JM, Palmgren MG, Berberian GE, Ferguson C, Serrano R (1992) Functional expression of plant plasma membrane H+-ATPase in yeast endoplasmic reticulum. J Biol Chem 267: 12341–12349

    PubMed  CAS  Google Scholar 

  • Vogel F, Kärgel E, Schunck W-H (1991) In situ localization of cytochrome P-450, the first enzyme involved in aliphatic hydrocarbon degradation in the yeast Candida maltosa. Progr Histochem Cytochem 23: 383–389

    CAS  Google Scholar 

  • Vogel F, Gengnagel C, Kärgel E, Müller H-G, Schunck W-H (1992) Immunocytochemical localization of alkane-inducible cytochrome P450 and its NADPH-dependent reductase in the yeast Candida maltosa. Eur J Cell Biol 57: 285–291

    PubMed  CAS  Google Scholar 

  • Voigt B, Seidel H, Müller H, Beck D, Ringpfeil M, Riedel M, Bauch J, Gentzsch H, Bohlmann D (1979) Biolipidextrakt — ein neuer Rohstoff aus der Produktion von “Fermosin”- Futterhefe auf Basis Erdöldestillat. Chem Techn 31: 409–411

    CAS  Google Scholar 

  • Voigt B, Reutgen H, Worbs M, Sesser I (1984a) Untersuchungen zur Anreicherung von Ubichinon-9 aus Lipid-Kohlenwasserstoff-Fraktionen mittels Sephadex LH-20. Acta Biotechnol 4: 137–141

    CAS  Google Scholar 

  • Voigt B, Müller H, Worbs M, Winkler F, Köhler U (1984b) Untersuchungen zur Anreicherung von Ubichinon-9 aus Lipid-Kohlenwasserstoff-Fraktionen mittels Kurzwegdestillation. Acta Biotechnol 4: 293–296

    CAS  Google Scholar 

  • Voigt B, Müller H, Schuster G (1985) Antiphytovirale Aktivität von lipophilen Fraktionen aus der Hefe Lodderomyces elongisporus IMET H 128. Acta Biotechnol 5: 313–317

    Google Scholar 

  • Volchek EA, Durasova EN, Mukhlenov AG, Mikhailova NP, Vyunov KA (1988) Sterol composition of nystatin-resistant Candida maltosa strains (Russ). Izv AN SSSR Ser Biol 0(6): 915–921

    CAS  Google Scholar 

  • Watanabe K (1974) Production of SCP with hydrocarbon-assimilating yeasts (Japanese). J Ferm Assoc Japan (Hakko-Kyokai-Shi) 32: 239–248

    CAS  Google Scholar 

  • Watanabe K, Shimada Y, Kawaharada K, Suzuki K, Tanaka F (1973a) Kanegafuchi Chemical Industry Co, Ltd, Japan, Japan Patent 48–43877

    Google Scholar 

  • Watanabe K, Shimada Y, Kawaharada K, Suzuki K, Tanaka F (1973b) Kanegafuchi Chemical Industry Co, Ltd, Japan, US Patent 3725 200

    Google Scholar 

  • Watanabe K, Shimada Y, Kawaharada K, Suzuki K, Tanaka F (1973c) Kanegafuchi Chemical Industry Co, Ltd, Japan, British Patent 1307 434

    Google Scholar 

  • Watanabe K, Shimada Y, Kawaharada K, Suzuki K, Tanaka F (1975) Kanegafuchi Chemical Industry Co, Ltd, Japan, German Patent 2454 048

    Google Scholar 

  • Waters MG, Blobel G (1986) Secretory protein translocation in a yeast cell-free system can occur posttranslationally and requires ATP hydrolysis. J Cell Biol 102: 1543

    PubMed  CAS  Google Scholar 

  • Weber H, Barth G (1988) Nonconventional yeasts: their genetics and biotechnological applications. CRC Crit Rev Biotechnol 7: 281–337

    CAS  Google Scholar 

  • Wedler H, Schulze S, Budahn H, Januschka A, Sasnauskas K, Böttcher F, Becher D (1990) Gentechnische Bearbeitung von Hefearten mit biotechnologischer Bedeutung. Wiss Z Ernst Moritz Arndt Univ Greifswald, Math Naturwiss Reihe 39: 27–30

    CAS  Google Scholar 

  • White MJ, Hodgson LF, Rose AH, Hammond RC (1989) Long-chain alcohol production by yeasts. Yeast Apr 5 Spec Issue S456–470

    Google Scholar 

  • Wiame J-M, Grenson M, Arst HN (1985) Nitrogen catabolite repression in yeasts and filamentous fungi. Adv Microb Physiol 26: 1–88

    PubMed  CAS  Google Scholar 

  • Wiedmann B (1987) Untersuchungen zur Biosynthese des Cytochrom P450 aus Candida maltosa. Akademie der Wissenschaften der DDR, Dissertation, Berlin

    Google Scholar 

  • Wiedmann B, Wiedmann M, Kärgel E, Schunck W-H, Müller H-G (1986) n-Alkanes induce the synthesis of cytochrome P-450 mRNA in Candida maltosa. Biochem Biophys Res Commun 36: 1148–1154

    Google Scholar 

  • Wiedmann B, Wiedmann M, Schunck W-H, Mauersberger S, Kärgel E, Müller H-G (1987) Regulation of cytochrome P-450 biosynthesis in alkane assimilating yeasts. In: Zelinka J, Balan J (eds) Proc 6th Int Symp Metabol Enzymol Nucleic Acids Includ Gene Manipul, Bratislava 1987, pp 383–393

    Google Scholar 

  • Wiedman B, Wiedmann M, Mauersberger S, Schunck W-H, Müller H-G (1988a) Oxygen limitation induced indirectly the synthesis of cytochrome P-450 mRNA in alkane-grow-ing Candida maltosa. Biochem Biophys Res Commun 150: 859 – 865

    Google Scholar 

  • Wiedmann M, Wiedmann B, Voigt S, Wachter E, Müller HG, Rapoport TA (1988b) Post-translational transport of proteins into microsomal membranes of Candida maltosa. EMBO J 7: 1763–1768

    PubMed  CAS  Google Scholar 

  • Wiedmann B, Silver P, Schunck W-H, Wiedmann M (1993) Overexpression of the ER-membrane protein P-450 CYP52A3 mimics sec mutant characteristics in Saccharomyces cerevisiae. Biochim Biophys Acta 1153: 267–276

    PubMed  CAS  Google Scholar 

  • Wright R (1993) Insights from inducible membranes. Curr Biol 3: 870–873

    PubMed  CAS  Google Scholar 

  • Wright R, Basson M, D’Ari L, Rine J (1988) Increased amounts of HMG-CoA reductase induce “Karmellae”: A proliferation of stacked membrane pairs surrounding the nucleus. J Cell Biol 107: 101–114

    PubMed  CAS  Google Scholar 

  • Wright R, Keller G, Gould SJ, Subramani S, Rine J (1990) Cell-type control of membrane biogenesis induced by HMG-CoA reductase. New Biol 2: 915–921

    PubMed  CAS  Google Scholar 

  • Wünsche L, Sattler K, Gradova NB, Meinhold I, Hedlich R, Brendler W, Uhlig H, Rodionova GS, Saikina AI (1981) Composition of the microorganism population in an unprotected fermentation process (Germ). Z Allg Mikrobiol 21: 469–474

    PubMed  Google Scholar 

  • Yano K, Kanamuri M, Takagi M (1981) Enrichment of n-alkane assimilation-deficient mutants of Candida yeasts by synergistic effect of nystatin and pyrrolnitrin. Agric Biol Chem 45: 1017–1018

    CAS  Google Scholar 

  • Yekhvalova TV, Sharyshev AA, Mikhailova NP, Vyunov KA (1989) Cytochrome P450 content in yeast Saccharomyces cerevisiae with alterations of different stages of sterol synthesis (Russ). Biokhimiya 54: 1344–1347

    Google Scholar 

  • Yokogawa T, Suzuki T, Ueda T, Mori M, Ohama T, Kuchino Y, Yoshinari S, Motoki I, Nishikawa K, Osawa S, Watanabe K (1992) Serine tRNA complementary to the nonuniversal serine codon CUG in Candida cylindracea: evolutionary implications. Proc Natl Acad Sci USA 89: 7408–7411

    PubMed  CAS  Google Scholar 

  • Yoshida M, Hashimoto K (1986a) Assessment of the pathogenicity of yeast used in the production of single cell protein. Agric Biol Chem 50: 2117–2118

    Google Scholar 

  • Yoshida M, Hashimoto K (1986b) Potential pathogenicity of Candida maltosa IAM 12248. Agrie Biol Chem 50: 2119–2120

    CAS  Google Scholar 

  • Yoshioka K, Fujita A, Kondo S, Miyake T, Sakaki Y, Shiba T (1992) Production of a unique multi-lamella structure in the nuclei of yeast expressing Drosophila copia gag precursor. FEBS Lett 302: 5–7

    PubMed  CAS  Google Scholar 

  • Zentgraf B (1991a) Microcalorimetric studies of aerobic growth of Candida maltosa I. Chemostat cultures. Thermochim Acta 187: 1–8

    CAS  Google Scholar 

  • Zentgraf B (1991b) Microcalorimetric studies of aerobic growth of Candida maltosa II. Batch cultures. Thermochim Acta 187: 9–14

    CAS  Google Scholar 

  • Zentgraf B (1991c) Bench-scale calorimetry in biotechnology. Thermochim Acta 193: 243–252

    CAS  Google Scholar 

  • Zentgraf B (1993) Calorimetric studies for optimization of high-performance reactors. Pure Appl Chem 65: 1915–1920

    CAS  Google Scholar 

  • Zimmer T, Schunck W-H (1995) A deviation from the universal genetic code in Candida maltosa and consequenses for heterologous expression of cytochromes P450 52A4 and 52A5 in Saccharomyces cerevisiae. Yeast 11: 33–41

    PubMed  CAS  Google Scholar 

  • Zimmer T, Kaminski K, Serieller U, Vogel F, Schunck W-H (1995) In vivo reconstitution of highly active Candida maltosa cytochrome P450 monooxygenase systems in inducible membranes of Saccharomyces cerevisiae. DNA Cell Biol 14: 619–628

    PubMed  CAS  Google Scholar 

  • Zinchenko GA, Belov AP (1990) Topography of enzymes of acylglycerol biosynthesis in yeast membranes (Russ). Izv Timiryazev Skh Akad 0(1) 1990: 123–129

    CAS  Google Scholar 

  • Zinchenko GA, Belov AP, Balashova LD, Davidova EG (1990) Specific features of the lipid metabolism in Candida yeasts during assimilation of n-alkenes (Russ). Appl Biochem Microbiol (Moscow) 26: 237–241 (English Translation)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mauersberger, S., Ohkuma, M., Schunck, WH., Takagi, M. (1996). Candida maltosa. In: Nonconventional Yeasts in Biotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79856-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79856-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79858-0

  • Online ISBN: 978-3-642-79856-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics