Skip to main content

Principles and Methods Used in Yeast Classification, and an Overview of Currently Accepted Yeast Genera

  • Chapter
Nonconventional Yeasts in Biotechnology

Abstract

Yeasts are of benefit to mankind because they are widely used for production of foods, wine, beer, and a variety of biochemicals. Yeasts also cause spoilage of foods and beverages, and are of medical importance. At present, approximately 700 yeast species are recognized, but only a few are commonly known. Relatively few natural habitats have been thoroughly investigated for yeast species; consequently, we can assume that many more species await discovery. Because yeasts are widely used in traditional and modern biotechnology, the exploration for new species should lead to additional novel technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • An G-H, Schuman DB, Johnson EA (1989) Isolation of Phaffia rhodozyma mutants with increased astaxanthin content. Appl Environ Microbiol 55: 116–124

    PubMed  CAS  Google Scholar 

  • Anand R, Southern EM (1988) Pulsed field electrophoresis. In: Rickwood D, Harnes BD (eds) Gel electrophoresis of nucleic acids. A practical approach. IRL Press, Oxford, pp 101–123

    Google Scholar 

  • Aulakh HS, Straus SE, Kwon-Chung KJ (1981) Genetic relatedness of Filobasidiella neoformans (Cryptococcus neoformans) and Filobasidiella bacillispora (Cryptococcus bacillisporus) as determined by deoxyribonucleic acid composition and sequence homology studies. Int J Syst Bacteriol 31: 97–103

    CAS  Google Scholar 

  • Bakalinsky AT, Snow R (1990) The chromosome constitution of wine strains of Saccharomyces cerevisiae. Yeast 6: 367–382

    PubMed  CAS  Google Scholar 

  • Bandoni RJ (1963) Conjugation in Tremella mesenterica. Can J Bot 41: 467–474

    Google Scholar 

  • Bandoni RJ (1984) Tremellales with a yeast phase (Sirobasidiaceae and Tremellaceae) In: Kreger-van Rij NJW (ed) The yeasts, a taxonomic study, 3rd edn. Elsevier, Amsterdam, pp 541–544

    Google Scholar 

  • Bandoni RJ, Johri BN (1972) Tilletiaria: a new genus in the Ustilaginales. Can J Bot 50: 39–43

    Google Scholar 

  • Bandoni RJ, Lobo KJ, Brezdan SA (1971) Conjugation and chlamydospores in Sporobolomyces odorus. Can J Bot 49: 683–686

    Google Scholar 

  • Banno I (1967) Studies on the sexuality of Rhodotorula. J Gen Appl Microbiol 13: 167–196

    Google Scholar 

  • Barlogie B, Spitzer G, Hart JS, Johnston DA, Buchner T, Schumann J, Drewinko B (1976) DNA histogram analysis of human hemopoietic cells. Blood 48: 245–258

    PubMed  CAS  Google Scholar 

  • Barnett JA (1968) Biochemical differentiation of taxa with special reference to the yeasts. In: Ainsworth GC, Sussman AS (eds) The fungi, vol 3. Academic Press, London, pp 557–595

    Google Scholar 

  • Barnett JA (1977) The nutritional tests in yeast systematics. J Gen Microbiol 99: 183–190

    Google Scholar 

  • Barnett JA, Payne RW, Yarrow D (1990) Yeasts: characteristics and identification. Cambridge University Press, Cambridge

    Google Scholar 

  • Batra LR (1973) Nematosporaceae (Hemiascomycetidae): taxonomy, pathogenicity, distribution, and vector relations. Tech Bull US Dep Agric 1469: 1–71

    Google Scholar 

  • Bauer R (1987) Uredinales — germination of basidiospores and pyenospores. Stud Mycol 30: 111–125

    Google Scholar 

  • Bergkamp RJM, Kool IM, Geerse RH, Planta RJ (1992) Multiple-copy integration of the α-galactosidase gene from Cyamopsis tetragonoloba into the ribosomal DNA of Kluyveromyces lactis. Curr Genet 21: 365–370

    PubMed  CAS  Google Scholar 

  • Björkling F, Godtfredsen SE, Kirk O (1991) The future impact of industrial lipases. Tib tech 9: 360–363 Björling T, Lindman B (1989) Evaluation of xylose-fermenting yeasts for ethanol production from spent sulfite liquor. Enzym Microb Technol 11: 240–246

    Google Scholar 

  • Boekhout T (1987) Systematics of anamorphs of Ustilaginales (smut fungi) — a preliminary survey. Stud Mycol 30: 137–149

    Google Scholar 

  • Boekhout T (1991a) Systematics of Itersonilia: a comparative phenetic study. Mycol Res 95: 135–146

    Google Scholar 

  • Boekhout T (1991b) A revision of ballistoconidia-forming yeasts and fungi. Stud Mycol 33: 1–194

    Google Scholar 

  • Boekhout T, Bosboom RW (1994) Karyotyping of Malassezia yeasts: taxonomic and epidemiological implications. Syst Appl Microbiol 17: 146–153

    Google Scholar 

  • Boekhout T, Fonseca A, Batenburg-van der Vegte WH (1991) Bulleromyces genus novum (Tremellales), a teleomorph for Bullera alba, and the occurrence of mating in Bullera variabilis. Antonie van Leeuwenhoek J Microbiol 59: 81–93

    PubMed  CAS  Google Scholar 

  • Boekhout T, Kurtzman CP, O’Donnell K, Smith MT (1994) Phylogeny of the yeast genera Mansemiaspura (anamorph Klueckera), Dekkera (anamorph Brettanomyces), and Eeniella as inferred from partial 26S ribosomal DNA nucleotide sequences. Int J Syst Bact 44: 781–786

    CAS  Google Scholar 

  • Boekhout T, Yamada Y, Weijman ACM, Roeijmans HJ, Batenburg-van der Vegte WH (1992) The significance of coenzyme Q, carbohydrate composition and ultrastructure for the taxonomy of ballistoconidia-forming yeasts and fungi. Syst Appl Microbiol 15: 1–10

    CAS  Google Scholar 

  • Boekhout T, Fonseca A, Sampaio J-P, Golubev WI (1993a) Classification of heterobasidiomycetous yeasts: characteristics and affiliation of genera to higher taxa of heterobasidiomycetes. Can J Microbiol 39: 276–290

    PubMed  CAS  Google Scholar 

  • Boekhout T, Renting M, Scheffers WA, Bosboom R (1993b) The use of karyotyping in the systematics of yeasts. Antonie van Leeuwenhoek J Microbiol 63: 157–163

    PubMed  CAS  Google Scholar 

  • Boulton CA, Ratledge C (1984) Cryptococcus terricolus, an oleaginous yeast re-appraised. Appl Microbiol Biotechnol 20: 72–76

    CAS  Google Scholar 

  • Britten RJ, Pavich M, Smith J (1970) A new method for DNA purification. Yearb Carnegie Inst 68: 400–402

    Google Scholar 

  • Britten RJ, Graham DE, Neufeld BR (1974) Analysis of repeating DNA sequences by reassociation. In: Grossman L, Moldave K (eds) Methods in enzymology, vol 29, Nucleic acids and protein synthesis. Academic Press, New York, pp 363–418

    Google Scholar 

  • Bruns TD, White TJ, Taylor JW (1991) Fungal molecular systematics. Annu Rev Ecol Syst 22: 525–564

    Google Scholar 

  • Bucknolz RG, Gleeson MAG (1991) Yeast systems for the commercial production of heterologous proteins. Bio/technology 9: 1067–1072

    Google Scholar 

  • Büttner R, Bode R, Birnbaum D (1991) Characterization of extracellular acid phosphatases from the yeast Arxula adeninivorans. Zentralbl Mikrobiol 146: 399–406

    Google Scholar 

  • Carle GF, Olson MV (1985) A karyotype for yeast. Proc Natl Acad Sci USA 82: 3756–3760

    PubMed  CAS  Google Scholar 

  • Casselton LA, Mutasa ES, Tymon A, Mellon FM, Little PFR, Taylor S, Benhagen J, Stratman R (1989) The molecular analysis of basidiomycete mating type genes. In: Nevalainen H, Penttilä M (eds) Proc EMBO-Alko Workshop Molec. Biol Filamentous Fungi. Found Biotech Ind Ferm Res 6: 139–148

    Google Scholar 

  • Channon AG (1956) Association of a species of Itersonilia with parsnip canker in Great Britain. Nature (Lond) 178: 217

    Google Scholar 

  • Channon AG (1963) Studies on parsnip canker I. The causes of the diseases. Ann Appl Biol 51: 1–15

    Google Scholar 

  • Chernov IY, Bab’eva IP (1988) New species Cryptococcus yeast from tundra soil. Mikrobiologiya 57: 1031–1034

    CAS  Google Scholar 

  • Claisse ML, Péré-Aubert GA, Clavillier LP, Slonimski P (1970) Méthodes d’estimation de la concentration des cytochromes dans les cellules entières de levures. Eur J Biochem 16: 430–438

    PubMed  CAS  Google Scholar 

  • Clare JJ, Rayment FB, Ballantine SP, Sreekrishna K, Romanos MA (1991) High-level expression of tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene. Bio/technology 9: 455–460

    PubMed  CAS  Google Scholar 

  • Cole GT (1983) Graphiola phoenicis: a taxonomic enigma. Mycologia 75: 93–116

    Google Scholar 

  • Coleman AW, Maguire MJ, Coleman JR (1981) Mithramycin- and 4′-6′diamidino-2-phenylindole (DAPI)-DNA staining for fluorescence microspectrophotometric measurement of DNA in nuclei, plastids, and virus particles. J Histochem Cytochem 29: 959–968

    PubMed  CAS  Google Scholar 

  • Cook PR (1984) A general method for preparing intact nuclear DNA. EMBO J 3: 1837–1842

    PubMed  CAS  Google Scholar 

  • Cook WL, Massey JK, Ahearn DG (1973) Degradation of crude oil by yeasts and its effects on Lesbistes reticulatus. In: Ahearn DG, Meyers SP (eds) The microbial degradation of oil. Louisiana State University, Baton Rouge, pp 279–282

    Google Scholar 

  • Cottrell M, Kock JLF, Lategan PM, Britz TJ (1986) Long-chain fatty acid composition as an aid in the classification of the genus Saccharomyces. Syst Appl Microbiol 8: 166–168

    CAS  Google Scholar 

  • Cox DE (1976) A new homobasidiomycete with anomalous basidia. Mycologia 68: 481–510

    Google Scholar 

  • Cregg JM, Vedvick TS, Raschke WC (1993) Recent advances in the expression of foreign genes in Pichia pastoris. Bio/technology 11: 905–910

    PubMed  CAS  Google Scholar 

  • Cryer DR, Eccleshall R, Marmur J (1975) Isolation of DNA. In: Prescott DM (ed) Methods in cell biology, vol 12. Academic Press, New York, pp 39–44

    Google Scholar 

  • Dear PH, Cook PR (1991) Cellular gels, purifying and mapping long DNA molecules. Biochem J 273: 695–699

    PubMed  CAS  Google Scholar 

  • de Hoog GS, Rantio-Lehtimäki AH, Smith MTh (1985) Blastobotrys, Sporothrix and Trichosporiella: generic delimitation, new species, and a Stephanoascus teleomorph. Antonie van Leeuwenhoek J Microbiol 51: 79–109

    PubMed  Google Scholar 

  • de Hoog GS, Smith MTh, Guého E (1986) A revision of the genus Geotrichum and its teleomorphs. Stud Mycol 29: 1–131

    Google Scholar 

  • de Jonge P, de Jongh FCM, Meijers R, Steensma HY, Scheffers WA (1986) Orthogonal-field-alternation gel electrophoresis banding patterns of DNA from yeasts. Yeast 2: 193–204

    PubMed  Google Scholar 

  • Dekker RFH (1982) Ethanol production from D-xylose and other sugars by the yeast Pachysolen tannophilus. Biotechnol Lett 4: 411–416

    CAS  Google Scholar 

  • Dellweg H, Rizzi M, Methner H, Debus D (1984) Xylose fermentation by yeasts 3. Comparison of Pachysolen tannophilus and Pichia stipitis. Biotechnol Lett 6: 395–400

    CAS  Google Scholar 

  • De Mot R, Verachtert H (1985) Purification and characterization of extracellular amylolytic enzymes from the yeast Filobasidium capsuligenum. Appl Environ Microbiol 50:1474–1482

    PubMed  Google Scholar 

  • De Mot R, Verachtert H (1986) Secretion of α-amylase and multiple forms of glucoamylase by the yeast Trichosporon pullulans. Can J Microbiol 32: 47–51

    PubMed  Google Scholar 

  • De Mot R, Andries K, Verachtert H (1984a) Comparative study of starch degradation and amylase production by ascomycetous yeast species. Syst Appl Microbiol 5: 106–118

    Google Scholar 

  • De Mot R, Demeersman M, Verachtert H (1984b) Comparative study of starch degradation and amylase production by non-ascomycetous, yeast species. Syst Appl Microbiol 5: 421–432

    Google Scholar 

  • Detroy RW, Cunningham RL, Bothast RJ, Bagby MO, Herman A (1982) Bioconversion of wheat straw cellulose/hemicellulose to ethanol by Saccharomyces uvarum and Pachysolen tannophilus. Biotech Bioeng 24: 1105–1113

    CAS  Google Scholar 

  • Diddens HA, Lodder J (1942) Die anaskosporogenen Hefen, zweite Hälfte. Noord-Hollandse Uitgevers Maatschappij, Amsterdam

    Google Scholar 

  • Dixon R, Kinghorn JR (1990) Separation of large DNA molecules by pulsed-field gel electrophoresis. Soc gen Microbiol Quart 17: 86–88

    Google Scholar 

  • Dobzhansky T (1976) Organismic and molecular aspects of species formation. In: Ayala FJ (ed) Molecular evolution. Sinauer, Sunderland, pp 95–105

    Google Scholar 

  • Eilam T, Bushnell WR, Anikster Y, McLaughlin DJ (1992) Nuclear DNA content of basidiospores of selected rust fungi as estimated from fluorescence of propidium iodide-stained nuclei. Phytopathology 82: 705–712

    CAS  Google Scholar 

  • Ellis DH, Pfeiffer TJ (1990) Natural habitat of Cryptococcus neoformans var. gattii. J Clin Microbiol 28: 430–431

    Google Scholar 

  • Ellis DH, Pfeiffer T (1992) The ecology of Cryptococcus neoformans. Eur J Epidemiol 8: 321–325

    PubMed  CAS  Google Scholar 

  • Evans CT, Ratledge C (1984a) Effect of nitrogen source on lipid accumulation in oleaginous yeasts. J Gen Microbiol 130: 1693–1704

    CAS  Google Scholar 

  • Evans CT, Ratledge C (1984b) Influence of nitrogen metabolism on lipid accumulation by Rhodosporidium toruloides CBS 14. J Gen Microbiol 130: 1705–1710

    CAS  Google Scholar 

  • Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribo-nucleic acid hydridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39: 224–229

    Google Scholar 

  • Fell JW (1984) Teliospore-forming yeasts. In: Kreger-van Rij NJW (ed) The yeasts, a taxo-nomic study, 3rd edn. Elsevier, Amsterdam, pp 491–495

    Google Scholar 

  • Fell JW (1970) Yeasts with heterobasidiomyctous life cycles. Chap 3. In: Ahearn DG (ed) Recent trends in yeast research. School of arts and sciences, Georgia State University, Atlanta, pp 49–66

    Google Scholar 

  • Fell JW, Statzell Tallman A (1989a) Leucosporidium Fell, Statzell, Hunter & Phaff. In: Kreger-van Rij NJW (ed) The yeasts, a taxonomic study, 3rd edn. Elsevier, Amsterdam, pp 496–508

    Google Scholar 

  • Fell JW, Statzell Tallman A (1984b) Rhodosporidium Banno. In: Kreger-van Rij NJW (ed) The yeasts, a taxonomic study, 3rd edn. Elsevier, Amsterdam, pp 509–531

    Google Scholar 

  • Fell JW, Statzell AC, Hunter IL, Phaff HJ (1969) Leucosporidium gen. n., the heterobasidiomycetous stage of several yeasts of the genus Candida. Antonie van Leeuwenhoek J Microbiol 35: 433–462

    PubMed  CAS  Google Scholar 

  • Fell JW, Statzell-Tallman A, Lutz MJ, Kurtzman CP (1992) Partial rRNA sequences in marine yeasts: a model for identification of marine eukaryotes. Mol Mar Biol Biotechnol 1: 175–186

    PubMed  CAS  Google Scholar 

  • Felsenstein J (1988) Phylogenies from molecular sequences: inference and reliability. Annu Rev Genet 22: 521–565

    PubMed  CAS  Google Scholar 

  • Fiol JB, Claisse M (1987) Les cytochromes des Kluyveromyces: détermination et implications systématiques. Mycopathologia 78: 177–184

    Google Scholar 

  • Fleer R, Yeh P, Amellal N, Maury I, Founder A, Bacchetta F, Baduel P, Jung G, L’Hote H, Becquart J, Fukuhara H, Mayaux JF (1991) Stable multicopy vectors for high-level secretion of recombinant human serum albumin by Kluyveromyces yeasts. Bio/technology 9: 968–975

    PubMed  CAS  Google Scholar 

  • Flegel TW (1977) Let’s call a yeast a yeast. Can J Microbiol 23: 945–946

    PubMed  CAS  Google Scholar 

  • Flegel TW (1981) The pheromonal control of mating in yeasts and its phylogenetic implication: a review. Can J Microbiol 27: 373–389

    PubMed  CAS  Google Scholar 

  • Fonseca A, Sampaio JP (1992) Rhodosporidium lusitaniae sp. nov., a novel homothallic basidiomycetous yeast species from Portugal that degrades phenolic compounds. Syst Appl Microbiol 15: 47–51

    CAS  Google Scholar 

  • Fonseca A, van Uden N (1991) Cryptococcus yarrowii sp. nov., a novel yeast species from Portugal. Antonie van Leeuwenhoek J Microbiol 59: 177–181

    PubMed  CAS  Google Scholar 

  • Foster LM, Kozak KR, Loftus MG, Stevens JJ, Ross IK (1993) The polymerase chain reaction and its application to filamentous fungi. Mycol Res 97: 769–781

    CAS  Google Scholar 

  • Franke AE, Kaczmarek FS, Eisenhard ME, Geoghegan KF, Danley DE, De Zeeuw JR, O’Donnell MM, Gollaher MG, Davidow LS (1988) Expression and secretion of bovine prochymosin in Yarrowia lipolytica. Dev Ind Microbiol 29: 43–57

    CAS  Google Scholar 

  • Furukawa T, Ogino T, Matsuyoshi T (1982) Fermentative production of citric acid from n-paraffins by Saccharomycopsis Lipolytica. J Ferment Technol 60: 281–286

    CAS  Google Scholar 

  • Fuson GB, Presley HL, Phaff HJ (1987) Deoxyribonucleic acid base sequence relatedness among members of the yeast genus Kluyveromyces. Int J Syst Bacteriol 37: 371–379

    Google Scholar 

  • Gams W, Grinbergs J (1970) Ascoidea corymbosa n. spec, ein hefeähnlicher Pilz im Bast von Araucaria araucana. Acta Bot Neerl 19: 794–798

    Google Scholar 

  • Gandy DG (1966) Itersonilia perplexans on chrysanthemums: alternative hosts and ways of overwintering. Trans Br Mycol Soc 49: 499–507

    Google Scholar 

  • Gardiner K (1991) Pulsed field gel electrophoresis. Anal Chem 63: 658–665

    PubMed  CAS  Google Scholar 

  • Gardner DCJ, Heale SM, Stateva LI, Oliver SG (1993) Treatment of yeast cells with wall lytic enzymes is not required to prepare chromosomes for pulsed-field gel analysis. Yeast 9: 1053–1055

    PubMed  CAS  Google Scholar 

  • Gellissen G, Melber K, Janowicz ZA, Dahlems UM, Weydemann U, Piontek M, Strasser AWM, Hollenberg CP (1992) Heterologous protein production in yeast. Antonie van Leeuwenhoek J Microbiol 62: 79–93

    PubMed  CAS  Google Scholar 

  • Gill CO, Hall MJ, Ratledge C (1977) Lipid accumulation in an oleaginous yeast (Candida 107) growing on glucose in single-stage continuous culture. Appl Environ Microbiol 33: 231–239

    PubMed  CAS  Google Scholar 

  • Giménez-Jurado G, van Uden N (1989) Leucosporidium fellii spec. nov., a basidiomycetous yeast that degrades L(+)-tartaric acid. Antonie van Leeuwenhoek 55: 133–141

    PubMed  Google Scholar 

  • Golubev WI (1981) New combinations in Cryptococcus yeasts. Mikol Fitopatol 15: 467–468

    Google Scholar 

  • Golubev WI (1995) Perfect state of Rhodomyces dendrorhous (Phaffia rhodozyma). Yeast 11: 101–110

    PubMed  CAS  Google Scholar 

  • Golubev WI (1989) Catabolism of m-inositol and taxonomic value of D-glucuronate assimilation in yeasts. Mikrobiologiya 58: 276–283

    CAS  Google Scholar 

  • Goto S, Sugiyama J, Hamamoto M, Komagata K (1987) Saitoella, a new anamorph genus in the Cryptococcaceae to accommodate two Himalayan yeasts isolates formerly identified as Rhodotorula glutinis. J Gen Appl Microbiol 33: 75–85

    Google Scholar 

  • Gottschalk M, Blanz P (1985) Untersuchungen an 5S ribosomalen Ribonukleinsäuren als Beitrag zur Klärung von Systematik und Phylogeny der Basidiomyzeten. Z Mykol 51: 205–243

    Google Scholar 

  • Guého E, Kurtzman CP, Peterson SW (1990) Phylogenetic relationship among species of Sterigmatomyces and Fellomyces as determined from partial rRNA sequences. Int J Syst Bacteriol 40: 60–65

    PubMed  Google Scholar 

  • Guého E, Smith MTh, de Hoog GS, Billon-Grand G, Christen R, Batenburg-van der Vegte WH (1992) Contributions to a revision of the genus Trichosporon. Antonie van Leeuwenhoek J Microbiol 61: 289–316

    PubMed  Google Scholar 

  • Guilliermond A (1912) Les levures. Doin, Paris

    Google Scholar 

  • Gunderson K, Chu G (1991) Pulsed-field electrophoresis of megabase-sized DNA. Mol Cell Biol 11: 3348–3354

    PubMed  CAS  Google Scholar 

  • Gurr E (1965) The rational use of dyes in biology. Leonard Hill, London

    Google Scholar 

  • Hamamoto M, Sugiyama J, Komagata K (1986) DNA base composition of strains in the genera Rhodosporidium, Cystofilobasidium, and Rhodotorula determined by reverse-phase high-performance liquid chromatography. J Gen Appl Microbiol 32: 215–223

    CAS  Google Scholar 

  • Hamamoto M, Uchida K, Yamaguchi H (1992) Ubiquinone system and DNA base composition of strains in the genus Malassezia determined by high-performance liquid chromatography. J Gen Appl Microbiol 38: 79–82

    CAS  Google Scholar 

  • Hara T, Shimoda T, Nonaka K, Ogata S (1991) Colorimetric detection of DNA-DNA hybridization in microdilution wells for taxonomic application on bacterial strains. J Ferment Bioengin 72: 122–124

    CAS  Google Scholar 

  • Heath IB (1978) Experimental studies of fungal mitotic systems. A review. In: Heath IB (ed) Nuclear division in the fungi. Academic Press, New York, pp 89–176

    Google Scholar 

  • Heath IB, Ashton ML, Kaminskyi SGW (1987) Mitosis as a phylogenetic marker among the yeasts — review and observations on novel mitotic systems in freeze substituted cells of the Taphrinales. Stud Mycol 30: 279–297

    Google Scholar 

  • Hendriks L, Goris A, Van de Peer Y, Neefs J-M, Vancanneyt M, Kersters K, Hennebert G, De Wachter R (1992a) Phylogenetic analysis of five medically important Candida species as deduced on the basis of small ribosomal subunit RNA sequences. J Gen Microbiol 137: 1223–1230

    Google Scholar 

  • Hendriks L, Goris A, Van de Peer Y, Neefs J-M, Vancanneyt M, Kersters K, Berny J-F, Hennebert G (1992b) Phylogenetic relationships among Ascomycetes and Ascomycete-like yeasts as deduced from small ribosomal subunit RNA sequences. Syst Appl Microbiol 15: 98–104

    CAS  Google Scholar 

  • Heslot H (1990) Genetics and genetic engineering of the industrial yeast Yarrowia lipolytica. In: Fiechter A (ed) Advances in biochemical engineering/biotechnology, vol 43. Springer, Berlin Heidelberg New York, pp 43–73

    Google Scholar 

  • Holm C, Meeks-Wagner DW, Fangman WL, Botstein D (1986) A rapid, efficient method for isolating DNA from yeast. Gene 42: 169–173

    PubMed  CAS  Google Scholar 

  • Iwaguchi S, Homma M, Tanaka K (1990) Variations in the electrophoretic karyotype analysed by the assignment of DNA probes in Candida albicans. J Gen Microbiol 136: 2433–2442

    PubMed  CAS  Google Scholar 

  • Jahnke K-D (1987) Assessing natural relationships by DNA analysis: techniques and applications. Stud Mycol 30: 227–246

    Google Scholar 

  • Jenq WJ, Speckman RA, Crang RE, Steinberg MP (1989) Enhanced conversion of lactose to glycerol by Kluyveromyces fragilis utilizing whey permeate as a substrate. Appl Environ Microbiol 55: 573–578

    PubMed  CAS  Google Scholar 

  • Johnson EA, Conklin DE, Lewis MJ (1977) The yeast Phaffia rhodozyma as a dietary source for salmonids and crustaceans. J Fish Res Board Can 34: 2417–2421

    CAS  Google Scholar 

  • Johnson EA, Lewis MJ, Grau CR (1980) Pigmentation of egg yolks with astaxanthin from the yeast Phaffia rhodozyma. Poult Sci 59: 1777–1782

    CAS  Google Scholar 

  • Johnson-Reid JA, Moore RT (1972) Some ultrastructural features of Rhodosporidium toruloides Banno. Antonie van Leeuwenhoek J Microbiol 38: 417–435

    PubMed  CAS  Google Scholar 

  • Johnston JR (1988) Yeast genetics, molecular aspects. In: Campbell I, Duffus JH (eds) Yeast, a practical approach. IRL Press, Oxford, pp 107–123

    Google Scholar 

  • Jong S-C, Lee F-L (1986) The new species Dekkera naardenensis, teleomorph of Brettanomyces naardenensis. Mycotaxon 25: 147–152

    Google Scholar 

  • Kaltenboeck B, Spatafora JW, Zhang X, Kousalas KG, Blackwell M, Storz J (1992) Efficient production of single-stranded DNA as long as 2kb for sequencing of PCR-amplified DNA. Biotechniques 12: 164–171

    PubMed  CAS  Google Scholar 

  • Kaneko Y, Banno I (1991) Reexamination of Saccharomyces bayanus strains by DNA-DNA hybridization and electrophoretic karyotyping. IFO Res Comm 15: 30–41

    Google Scholar 

  • Katayama-Hirayama K, Tobita S, Hirayama K (1991) Degradation of phenol by yeast Rhodotorula. J Gen Appl Microbiol 37: 147–156

    CAS  Google Scholar 

  • Kendrick B (1987) Yeasts and yeast-like fungi — new concepts and new techniques. Stud Mycol 30: 479–486

    Google Scholar 

  • Kitamoto D, Akiba S, Hioki C, Tabuchi T (1990a) Extracellular accumulation of mannosylerythritol lipids by a strain of Candida antarctica. Agric Biol Chem 54: 31–36

    CAS  Google Scholar 

  • Kitamoto D, Haneishi K, Nakahara T, Tabuchi I (1990b) Production of mannosylerythritol lipids by Candida antarctica from vegetable oils. Agric Biol Chem 54: 37–40

    CAS  Google Scholar 

  • Klein RD, Favreau MA (1988) Transformation of Schwanniomyces occidentalis with an ADE2 gene cloned from S. occidentalis. J Bacteriol 170: 5572–5578

    PubMed  CAS  Google Scholar 

  • Kreger-van Rij NJW (1984a) Saccharomycopsis Schiönning. In: Kreger-van Rij NJW (ed) The yeasts, a taxonomic study, 3rd edn. Elsevier, Amsterdam, pp 399–413

    Google Scholar 

  • Kreger-van Rij NJW (1984b) The species. In: Kreger-van Rij NJW (ed) The yeasts, a taxonomic study, 3rd edn. Elsevier, Amsterdam, p 16

    Google Scholar 

  • Kreger-van Rij NJW, Veenhuis M (1971) A comparative study of the cell wall structure of basidiomycetous and related yeasts. J Gen Microbiol 68: 87–95

    Google Scholar 

  • Kuraishi H, Katayama-Fujimura Y, Sugiyama J, Yokoyama T (1985) Ubiquinone systems in fungi I. Distribution of ubiquinones in the major families of ascomycetes, basidiomycetes, and deuteromycetes, and their taxonomic implications. Trans Mycol Soc Jpn 26: 383–395

    Google Scholar 

  • Kurjan J (1991) Cell-cell interactions involved in yeast mating. In: Dworkin M (ed) Microbial cell-cell interactions. American Society for Microbiology, Washington, pp 113–144

    Google Scholar 

  • Kurtzman CP (1973) Formation of hyphae and chlamydospores by Cryptococcus laurentii. Mycologia 65: 388–395

    PubMed  CAS  Google Scholar 

  • Kurtzman CP (1984) Synonymy of the yeast genera Hansenula and Pichia demonstrated through comparisons of deoxyribonucleic acid relatedness. Antonie van Leeuwenhoek J Microbiol 50: 209–217

    PubMed  CAS  Google Scholar 

  • Kurtzman CP (1985) Molecular taxonomy of fungi. In: Bennett JW, Lasure LL (eds) Gene manipulation in fungi. Academic Press, New York, pp 35–56

    Google Scholar 

  • Kurtzman CP (1987) Prediction of biological relatedness among yeasts from comparison of nuclear DNA complementarity. Stud Mycol 30: 459–468

    Google Scholar 

  • Kurtzman CP (1990) DNA relatedness among species of the genus Zygosaccharomyces. Yeast 6: 213–219

    PubMed  CAS  Google Scholar 

  • Kurtzman CP (1991) DNA relatedness among saturn-spored yeasts assigned to the genera Williopsis and Pichia. Antonie van Leeuwenhoek J Microbiol 60: 13–19

    PubMed  CAS  Google Scholar 

  • Kurtzman CP (1992) rRNA sequence comparisons for assessing phylogenetic relationships among yeasts. Int J Syst Bacteriol 42: 1–6

    PubMed  CAS  Google Scholar 

  • Kurtzman CP (1995) Relationships among the genera Ashbya, Eremothecium, Holleya and Nematospora determined from rDNA sequence divergence. J Indust Microbiol 14: 523–530

    CAS  Google Scholar 

  • Kurtzman CP (1993) DNA-DNA hybridization approaches to species identification in small genome organisms. Methods Enzymol 224: 335–348

    PubMed  CAS  Google Scholar 

  • Kurtzman CP, Liu Z (1990) Evolutionary affinities of species assigned to Lipomyces and Myxozyma estimated from ribosomal RNA sequence divergence. Curr Microbiol 21: 387–393

    CAS  Google Scholar 

  • Kurtzman CP, Phaff HJ (1987) Molecular taxonomy. In: Rose AH, Harrison JS (eds) The yeasts, 2nd edn, vol 1. Academic Press, London, pp 63–94

    Google Scholar 

  • Kurtzman CP, Robnett CJ (1991) Phylogenetic relationships among species of Saccharomyces, Schizosaccharomyces, Debaryomyces and Schwanniomyces determined from partial ribosomal RNA sequences. Yeast 7: 61–72

    PubMed  CAS  Google Scholar 

  • Kurtzman CP, Robnett CJ (1994) Synonymy of the yeast genera Wingea and Debaryomyces. Antonie van Leeuwenhoek J Microbiol 66: 337–342

    PubMed  CAS  Google Scholar 

  • Kurtzman CP, Robnett CJ (1995) Molecular relationships among hyphal ascomycetous yeasts and yeastlike tara. Can J Bot 73: S824-S830

    CAS  Google Scholar 

  • Kurtzman CP, Smiley MJ, Johnson CJ, Wickerham LJ, Fuson GB (1980) Two new and closely related heterothallic species. Pichia amylophila and Pichia mississippiensis: characterization by hybridization and deoxyribonucleic acid reassociation. Int J Syst Bacteriol 30: 208–216

    CAS  Google Scholar 

  • Kurtzman CP, Bothast RJ, VanCauwenberge JE (1982) Conversion of D-xylose to ethanol by the yeast Pachysolen tannophilus. US Patent 4, 359, 534

    Google Scholar 

  • Kurtzman CP, Phaff HJ, Meyer SA (1983) Nucleic acid relatedness among yeasts. In: Smith ARW, Spencer JFT, Spencer DM (eds) Yeast genetics. Fundamental and applied aspects. Springer, Berlin Heidelberg New York, pp 139–166

    Google Scholar 

  • Kwon-Chung KJ (1980) Nuclear genotypes of spore chains in Filobasidiella neoformans (Cryptococcus neoformans). Mycologia 72: 418–422

    PubMed  CAS  Google Scholar 

  • Kwon-Chung KJ, Bennett JE (1978) Distribution of a and a mating types of Cryptococcus neoformans among natural and clinical isolates. Am J Epidemiol 108: 337–340

    PubMed  CAS  Google Scholar 

  • Kwon-Chung KJ, Fell JW (1984) The genus Filobasidiella Kwon-Chung. In: Kreger-van Rij NJW (ed) The yeasts, a taxonomic study, 3rd edn. Elsevier, Amsterdam, pp 472–482

    Google Scholar 

  • Kwon-Chung KJ, Popkin TJ (1976) Ultrastructure of septal complex in Filobasidiella neoformans (Cryptococcus neoformans). J Bacteriol 126: 524–528

    PubMed  CAS  Google Scholar 

  • Kwon-Chung KJ, Wickes BL, Stockman L, Roberts GD, Ellis D, Howard DH (1992) Virulence, serotype, and molecular characteristics of environmental strains of Cryptococcus neoformans var. gattii. Infect Immun 60: 1869–1874

    PubMed  CAS  Google Scholar 

  • Laaser G, Möller E, Jahnke K-D, Prillinger H, Prell H (1987) Ribosomal restriction analysis as a taxonomic tool in separating physiologically similar basidiomycetous yeasts. Syst Appl Microbiol 11: 170–175

    Google Scholar 

  • Lachance M-A (1985) Current views on the yeast species. Microbiol Sci 2: 122–126

    PubMed  CAS  Google Scholar 

  • Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analysis. Proc Natl Acad Sci USA 82: 6955–6959

    PubMed  CAS  Google Scholar 

  • Lee F-L, Jong S-C (1986) New species of Dekkera custersiana and D. lambica, teleomorphs of Brettanomyces. Mycotaxon 25: 455–460

    Google Scholar 

  • Lewis MJ, Ragot N, Berlant MC, Miranda M (1990) Selection of astaxanthin-overproducing mutants of Phaffia rhodozyma with β-ionone. Appl Environ Microbiol 56: 2944–2945

    PubMed  CAS  Google Scholar 

  • Lipke PN, Kurjan J (1992) Sexual agglutination in budding yeasts: structure, function, and regulation of adhesion glycoproteins. Microbiol Rev 56: 180–194

    PubMed  CAS  Google Scholar 

  • Liu Z, Kurtzman CP (1991) Phylogenetic relationships among species of Williopsis and Saturnospora gen. nov. as determined from partial rRNA sequences. Antonie van Leeuwenhoek J Microbiol 60: 21–30

    PubMed  Google Scholar 

  • Lodder J (1934) Die anaskosporogenen Hefen, erste Hälfte. Noord-Hollandsche Uitgevers Maatschappij, Amsterdam

    Google Scholar 

  • Lodder J (ed) (1970) The yeasts, a taxonomic study, 2nd edn. North-Holland Publ, Amsterdam

    Google Scholar 

  • Mahrous M, Lott TJ, Meyer SA, Sawant AD, Ahearn DG (1990) Electrophoretic karyotyping of typical and atypical Candida albicans. J Clin Microbiol 28: 876–881

    PubMed  CAS  Google Scholar 

  • Maleszka R, Clark-Walker GD (1989) A petite positive strain of Kluyveromyces lactis has a 300 kb deletion in the rDNA cluster. Curr Genet 16: 429–432

    PubMed  CAS  Google Scholar 

  • Maleszka R, Skrzypek M (1990) Assignment of cloned genes to electrophoretically separated chromosomes of the yeast Pachysolen tannophilus. FEMS Microbiol Lett 69: 79–82

    CAS  Google Scholar 

  • Maleszka R, Wang PY, Schneider H (1982) Ethanol production from D-galactose and glycerol by Pachysolen tannophilus. Enzyme Microb Technol 4: 349–352

    CAS  Google Scholar 

  • Mann W, Jeffery J (1989) Isolation of DNA from yeasts. Anal Biochem 178: 82–87

    PubMed  CAS  Google Scholar 

  • Marmur J (1961) A procedure for the isolation of DNA from microorganisms. J Mol Biol 3: 208–218

    CAS  Google Scholar 

  • Mathaba LT, Franklyn KM, Warmington JR (1993) A rapid technique for the isolation of DNA from clinical isolates of Candida albicans. J Microbiol Meth 17: 17–25

    CAS  Google Scholar 

  • McArthur CR, Clark-Walker GD (1983) Mitochondrial DNA size diversity in the Dekkera/ Brettanomyces yeasts. Curr Genet 7: 29–35

    CAS  Google Scholar 

  • McCarroll R, Olsen GJ, Stahl YD, Woese CR, Sogin ML (1983) Nucleotide sequence of the Dictyostelium discoideum small-subunit ribosomal acid inferred from the gene sequence: evolutionary implications. Biochemistry 22: 5858–5868

    CAS  Google Scholar 

  • McCluskey K, Russell BW, Mills D (1990) Electrophoretic karyotyping without the need for generating protoplasts. Curr Genet 18: 385–386

    PubMed  Google Scholar 

  • McEachern MJ, Hicks JB (1991) Dosage of the smallest chromosome affects both the yeast-hyphal transition and the white-opaque transition of Candida albicans WO-1. J Bacteriol 173: 7436–7442

    PubMed  CAS  Google Scholar 

  • Mendonça-Hagler LC, Hagler AN, Kurtzman CP (1993) Phylogeny of Metschnikowia species estimated from partial rRNA sequences. Int J Syst Bacteriol 43: 368–373

    PubMed  Google Scholar 

  • Meyer PS, Du Preez JC, Kilian SG (1992) Isolation and evaluation of yeasts for biomass production from bagasse hemicellulose hydrolysate. Syst Appl Microbiol 15: 161–165

    Google Scholar 

  • Meyer SA, Smith MT, Simione FP Jr (1978) Systematics of Hanseniaspora Zikes and Kloeckera Janke. Antonie van Leeuwenhoek J Microbiol 44: 79–96

    PubMed  CAS  Google Scholar 

  • Middelhoven WJ, de Jong IM, de Winter M (1991) Arxula adeninivorans, a yeast assimilating many nitrogen and aromatic compounds. Antonie van Leeuwenhoek 59: 129–137

    PubMed  CAS  Google Scholar 

  • Middelhoven WJ, Koorevaar M, Schuur GW (1992) Degradation of benzene compounds by yeasts in acidic soils. Plant Soil 145: 37–43

    CAS  Google Scholar 

  • Miller MW, Phaff HJ (1984) Nadsonia Sydow. In: Kreger-van Rij NJW (ed) The yeasts, a taxonomic study, 3rd edn. Elsevier, Amsterdam, pp 279–285

    Google Scholar 

  • Miller MW, Yoneyama M, Soneda M (1976) Phaffia, a new yeast genus in the Deuteromycotina (Blastomycetes). Int J Syst Bacteriol 26: 286–291

    Google Scholar 

  • Mills SC, Child JJ, Spencer JFT (1971) The utilization of aromatic compounds by yeasts. Antonie van Leeuwenhoek J Microbiol 37: 281–287

    PubMed  CAS  Google Scholar 

  • Molina FI, Jong S-C, Huffman JL (1993a) PCR amplification of the 3′ external transcribed and intergenic spacers of the ribosomal DNA repeat unit in three species of Saccharomyces. FEMS Microbiol Lett 108: 259–264

    PubMed  CAS  Google Scholar 

  • Molina FI, Shen P, Jong S-C (1993b) Validation of the species concept in the genus Dekkera by restriction analysis of genes coding for rRNA. Int J Syst Bacteriol 43: 32–35

    PubMed  CAS  Google Scholar 

  • Montrocher R, Claisse M (1988) Spectrophotometric analysis of yeasts: cytochrome spectra of some Candida and related taxa. J Gen Appl Microbiol 34: 221–232

    Google Scholar 

  • Moore RT (1980) Taxonomic proposals for the classification of marine yeasts and other yeast-like fungi including the smuts. Bot Mar 23: 361–373

    Google Scholar 

  • Moore RT (1987) Additions to the genus Vanrija. Bibl Mycol 108: 167–173

    Google Scholar 

  • Moore RT, Kreger-van Rij NJW (1972) Ultrastructure of Filobasidium olive. Can J Microbiol 18: 1949–1951

    PubMed  CAS  Google Scholar 

  • Muderhwa JM, Ratomahenina R, Pina M, Graille UJ, Galzy P (1986) Purification and properties of the lipases from Rhodotorula pilimanae Hedrick & Burke. Appl Microbiol Biotechnol 23: 348–354

    CAS  Google Scholar 

  • Nakase T, Takematsu A (1992) Udeniomyces, a newballistosporous anamorphic yeast genus in the Cryptococcaceae proposed for three Bullera species which produce large bilaterally symmetrical ballistospores. FEMS Microbiol Lett 100: 497–502

    Google Scholar 

  • Nakase T, Okada G, Sugiyama J, Itoh M, Suzuki M (1989) Ballistosporomyces, a new ballistospore-forming anamorphic yeast genus. J Gen Appl Microbiol 35: 289–309

    CAS  Google Scholar 

  • Nakase T, Itoh M, Takematsu A, Mikata K, Banno I, Yamada Y (1991) Kockovaella, a new ballistospore-forming anamorphic yeast genus. J Gen Appl Microbiol 37: 175–197

    CAS  Google Scholar 

  • Nei N (1971a) Microbiological decomposition of phenol I. Isolation and identification of phenol metabolizing yeasts. J Ferment Technol 49: 655–660

    CAS  Google Scholar 

  • Nei N (1971b) Microbiological decomposition of phenol II. Decomposition of phenol by Rhodotorula glutinis. J Ferment Technol 49: 852–860

    CAS  Google Scholar 

  • Neujahr HY, Varga JM (1970) Degradation of phenols by intact cells and cell-free preparations of Trichosporon cutaneum. Eur J Biochem 13: 37–44

    PubMed  CAS  Google Scholar 

  • Nilsson R, Enebo L, Lundin H, Myrbäck K (1943) Mikrobielle Fettsynthese unter Verwendung von Rhodotorula glutinis nach dem Lufthefeverfahren. Sven Kem Tidskr 55: 41–51

    CAS  Google Scholar 

  • Nishida H, Sugiyama J (1993) Phylogenetic relationships among Taphrina, Saitoella, and other higher fungi. Mol Biol Evol 10: 431–436

    PubMed  CAS  Google Scholar 

  • Oberwinkler F (1987) Heterobasidiomycetes with ontogenetic yeast-stages — systematic and phylogenetic aspects. Stud Mycol 30: 61–74

    Google Scholar 

  • Oberwinkler F, Bandoni R, Blanz P, Kisimova-Horovitz L (1983) Cystofilobasidium: a new genus in the Filobasidiaceae. Syst Appl Microbiol 4: 114–122

    Google Scholar 

  • O’Donnell K (1993) Fusarium and near relatives. In: Reynolds DP, Taylor JW (eds) The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics CAB, Wallingford, pp 225–233

    Google Scholar 

  • Pal M, Onda C, Hasegawa A (1991) Sexual compatibility and environmental isolates of Cryptococcus neoformans. Jpn J Med Mycol 32: 101–106

    Google Scholar 

  • Park WS, Murphy PA, Glatz BA (1990) Lipid metabolism and cell composition of the oleaginous yeast Apiotrichum curvatum grown at different carbon to nitrogen ratios. Can J Microbiol 36: 318–326

    PubMed  CAS  Google Scholar 

  • Pasari AB, Korus RA, Heimsch RC (1989) A model for continuous fermentations with amylolytic yeasts. Biotechnol Bioeng 33: 338–343

    PubMed  CAS  Google Scholar 

  • Patrignani G, Pellegrini S, Gerola FM (1984) Difference in septal pore apparatus ultrastructure of Tremella mesenterica. Caryologia 37: 77–86

    Google Scholar 

  • Perfect JR, Magee BB, Magee PT (1989) Separation of chromosomes of Cryptococcus neoformans by pulsed field gel electropheresis. Infect Immunol 57: 2624–2627

    CAS  Google Scholar 

  • Peterson SW, Kurtzman CP (1991) Ribosomal RNA sequence divergence among sibling species of yeasts. Syst Appl Microbiol 14: 124–129

    CAS  Google Scholar 

  • Phaff HJ (1981) The species concept in yeasts: physiologic, morphologic, genetic, and ecological parameters. In: Stewart GG, Russell I (eds) Current developments in yeast research. Pergamon Press, Oxford, pp 635–643

    Google Scholar 

  • Phaff HJ (1989) Trends in yeast research. Yeast (Spec Issue) 5: 341–349

    Google Scholar 

  • Phaff HJ, Starmer WT, Tredick-Kline J (1987) Pichia kluyveri sensu lato — a proposal for two new varieties and a new anamorph. Stud Mycol 30: 403–414

    Google Scholar 

  • Price CW, Fuson GB, Phaff HJ (1978) Genome comparison in yeast systematics: delimitation of species within the genera Schwanniomyces, Saccharomyces, Debaryomyces, and Pichia. Microbiol Rev 42: 161–193

    PubMed  CAS  Google Scholar 

  • Prillinger H, Oberwinkler F, Umile C, Tlachac K, Bauer R, Dörfler C, Taufratzhofer E (1993) Analysis of cell wall carbohydrates (neutral sugars) from ascomycetous and basidiomycetous yeasts with and without derivatization. J Gen Appl Microbiol 39: 1–34

    CAS  Google Scholar 

  • Prior BA, Kilian SG, Du Preez JC (1989) Fermentation of D-xylose by the yeasts Candida shehatae and Pichia stipitis. Prospects and problems. Proc Biochem 24: 21–32

    CAS  Google Scholar 

  • Raeder U, Broda P (1985) Rapid preparation of DNA from filamentous fungi. Lett Appl Microbiol 1: 17–20

    CAS  Google Scholar 

  • Ragan MA (1988) Ribosomal RNA and the major lines of evolution: a perspective. Biosystems 21: 177–188

    PubMed  CAS  Google Scholar 

  • Raju NB (1986) A simple fluorescent staining method for meiotic chromosomes of Neurospora. Mycologia 78: 901–906

    CAS  Google Scholar 

  • Ratledge C (1978) Lipids and fatty acids. In: Rose AH (ed) Economic microbiology, vol 2, Primary products of metabolism. Academic Press, London, pp 263–302

    Google Scholar 

  • Ratledge C (1982) Microbial oils and fats: an assessment of their commercial potential. Prog Ind Microbiol 16: 119–206

    CAS  Google Scholar 

  • Ratledge C (1986) Lipids. In: Pape H, Rehm H-J (eds) Biotechnology, vol 4, 1st edn., Microbial products II. VCH, Weinheim, pp 185–213

    Google Scholar 

  • Ratledge C (1993) Single cell oils — have they a biotechnological future? Tibtech 11: 278–284

    CAS  Google Scholar 

  • Ratledge C, Evans CT (1989) Lipids and their metabolism. In: Rose AH, Harrison JS (eds) The yeasts, vol 3, 2nd edn. Academic Press, London, pp 367–455

    Google Scholar 

  • Ratledge C, Hall MJ (1979) Accumulation of lipid by Rhodotorula glutinis in continuous culture. Biotechnol Lett 1: 115–120

    CAS  Google Scholar 

  • Reiser J, Glumoff V, Kälin M, Ochsner U (1990) Transfer and expression of heterologous genes in yeasts other than Saccharomyces cerevisiae. In: Fiechter A (ed) Advances in biochemical engineering/biotechnology vol 43. Springer, Berlin Heidelberg New York, pp 75–102

    Google Scholar 

  • Rezanka T (1991) Overproduction of microbial lipids and lipases. Folia Microbiol 36: 211–224

    CAS  Google Scholar 

  • Rhodes JC, Kwon-Chung KJ, Popkins TJ (1981) Ultrastructure of the septal pore complex in hyphae of Cryptococcus laurentii. J Bacteriol 145: 1410–1412

    PubMed  CAS  Google Scholar 

  • Rolph CE, Moreton RS, Harwood JL (1989) Acyl lipid metabolism in the oleaginous yeast Rhodotorula gracilis (CBS 3043). Lipids 24: 715–720

    CAS  Google Scholar 

  • Romanos MA, Scorer CA, Clare JJ (1992) Foreign gene expression in yeast: a review. Yeast 8: 423–488

    PubMed  CAS  Google Scholar 

  • Rustchenko-Bulgac EP (1991) Variations of Candida albicans electrophoretic karyotypes. J Bacteriol 173: 6586–6596

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual, 2nd edn. CSH Press, New York, pp 6.50–6.59

    Google Scholar 

  • Scheda R (1966) Merkmalsveränderungen bei Hefen der Gattung Saccharomyces. Monatsschr Brau 19: 256–258

    Google Scholar 

  • Scheda R, Yarrow D (1966) The instability of physiological properties used as criteria in the taxonomy of yeasts. Arch Mikrobiol 55: 209–225

    Google Scholar 

  • Schildkraut CL, Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J Mol Biol 4: 430–433

    PubMed  CAS  Google Scholar 

  • Schneider H, Wang PY, Chan YK, Maleszka R (1981) Conversion of D-xylose into ethanol by the yeast Pachysolen tannophtlus. Biotechnol Lett 3: 89–92

    CAS  Google Scholar 

  • Seidler RJ, Mandel M (1971) Quantitative aspects of DNA renaturation: DNA base composition, state of chromosome replication, and polynucleotide homologies. J Bacteriol 106: 608–614

    PubMed  CAS  Google Scholar 

  • Shen R, Lachance M-A (1993) Phylogenetic study of ribosomal DNA of cactophilic Pichia species by restriction mapping. Yeast 9: 315–330

    PubMed  CAS  Google Scholar 

  • Shoda M, Udaka S (1980) Preferential utilization of phenol rather than glucose by Trichosporon cutaneum possessing a partially constitutive catechol 1,2-oxygenase. Appl Environ Microbiol 39: 1129–1133

    PubMed  CAS  Google Scholar 

  • Sleep D, Belfield GP, Bailance DJ, Steven J, Jones S, Evans LR, Moir PD, Goodey AR (1991) Saccharomyces cerevisiae strains that overexpress heterologous proteins. Bio/technology 9: 183–187

    PubMed  CAS  Google Scholar 

  • Smith CL, Matsumoto T, Niwa O, Klco S, Fan J-B, Yanagida M, Cantor CR (1987) An electrophoretic karyotype for Schizosaccharomyces pombe by pulsed field electrophoresis. Nucleic Acids Res 15: 4481–4489

    PubMed  CAS  Google Scholar 

  • Smith MTh, van der Walt JP, Johannsen E (1976) The genus Stephanoascus gen. nov. (Ascoideaceae). Antonie van Leeuwenhoek J Microbiol 42: 119–127

    PubMed  CAS  Google Scholar 

  • Smith MTh, Batenburg-van der Vegte WH, Scheffers WA (1981) Eeniella, a new yeast genus of the Torulopsidales. Int J Syst Bacteriol 31: 196–203

    Google Scholar 

  • Smith MTh, Yamazaki M, Poot GA (1990) Dekkera, Brettanomyces and Eeniella: electrophoretic comparison of enzymes and DNA-DNA homology. Yeast 6: 299–310

    PubMed  CAS  Google Scholar 

  • Sor F, Fukuhara H (1989) Analysis of chromosomal DNA patterns of the genus Kluyveromyces. Yeast 5: 1–10

    PubMed  CAS  Google Scholar 

  • Spencer JFT, Gorin PAJ (1969) Systematics of the genus Candida Berkhout: proton magnetic resonance spectra of the mannans and mannose-containing polysaccharides as an aid in classification. Antonie van Leeuwenhoek J Microb 35: 33–44

    CAS  Google Scholar 

  • Spencer JFT, Gorin PAJ (1970) Systematics of the genus Torulopsis: proton magnetic resonance spectra of the mannose-containing polysaccharides as an aid in classification. Antonie van Leeuwenhoek J Microbiol 36: 509–524

    PubMed  CAS  Google Scholar 

  • Staib F (1981) The perfect state of Cryptococcus neoformans, Filobasidiella neoformans, on pigeon manure agar. Zentralbl Bakteriol, Parasitenkd, Abt 1, 248: 575–578

    CAS  Google Scholar 

  • Steensma HY, de Jongh FCM, Linnekamp M (1988) The use of electrophoretic karyotypes in the classification of yeasts: Kluyveromyces marxianus and K. lactis. Curr Genet 14: 311–317

    CAS  Google Scholar 

  • Stelling-Dekker NM (1930) Die sporogenen Hefen. Verh K Akad Wet Sect 2, pp 1–547

    Google Scholar 

  • Sugiyama J, Kukagawa M, Chiu SW, Komagata K (1985) Cellular carbohydraubiq composition, DNA base composition, ubiquinone systems, and diazoneum blue B color test in the genera Rhodosporidium, Leucosporidium, Rhodotorula and related basidiomycetous yeasts. J Gen Appl Microbiol 31: 519–550

    CAS  Google Scholar 

  • Sugiyama J, Tokuoka K, Suh S-O, Hirata A, Komagata K (1991) Sympodiomycopsis: a new yeast-like anamorph genus with basidiomycetous nature from orchid nectar. Antonie van Leeuwenhoek J Microbiol 59: 95–108

    PubMed  CAS  Google Scholar 

  • Suh S-O, Hirata A, Sugiyama J, Komagata K (1993) Septal ultrastructure of basidiomycetous yeasts and their taxonomic implications with observations on the ultrastructure of Erythrobasidium hasegawianum and Sympodiomycopsis paphiopedili. Mycologia 85: 30–37

    Google Scholar 

  • Suzuki M, Nakase T (1988) The distribution of xylose in the cells of ballistosporous yeasts: application of high performance liquid chromatography without derivatization to the analysis of xylose in whole cell hydrolysates. J Gen Appl Microbiol 34: 95–103

    CAS  Google Scholar 

  • Tahoun MK, El-Merleb Z, Salam A, Youssef A (1987) Biomass and lipids from lactose or whey by Trichosporon beigelii. Biotechnol Bioeng 24: 358–360

    Google Scholar 

  • Taylor JW, Natvig DO (1987) Isolation of fungal DNA. In: Fuller MS, Jaworski A (eds) Zoosporic fungi in teaching and research. Southeastern Publ Corp, Athens, pp 252–258

    Google Scholar 

  • Templeton AR (1983) Systematics of basidiomycetes based on 5S rRNA sequences and other data. Nature (Lond) 303: 731

    Google Scholar 

  • Timberlake WE (1978) Low repetitive DNA content in Aspergillus nidulans. Science 202: 973–975

    PubMed  CAS  Google Scholar 

  • Török T, Royer C, Rockhold D, King AD (1992) Electrophoretic karyotyping of yeasts, and southern blotting using whole chromosomes as templates for the probe preparation. J Gen Appl Microbiol 38: 313–325

    Google Scholar 

  • Toyama R, Okayama H (1990) Human chorionic gonadotropin α and human cytomegalovirus promoters are extremely active in the fission yeast Schizosaccharomyces pombe. FEBS Lett 268: 271–221

    Google Scholar 

  • Treco DA (1989) Preparation of yeast DNA. In: Ausubel FM (ed) Current protocols in molecular biology Wiley, New York, pp 13.11.1–13.11.5

    Google Scholar 

  • Uno I, Matsumoto K, Adachi K, Ishihana T (1984) Characterization of cyclic AMP-requiring yeast mutants altered in the catalytic subunit of proteinkinase. J Biol Chem 259: 12508–12513

    PubMed  CAS  Google Scholar 

  • Valadon LRG (1976) Carotenoids as additional taxonomic characters in fungi: a review. Trans Br Mycol Soc 67: 1–15

    Google Scholar 

  • Vancanneyt M, Van Lerberge E, Berny J-F, Hennebert GL, Kersters K (1992) The application of whole-cell protein electrophoresis for the classification and identification of basidiomycetous yeast species. Antonie van Leeuwenhoek J Microbiol 61: 69–78

    PubMed  CAS  Google Scholar 

  • Vandamme EJ, Derycke DG (1983) Microbial inulases: fermentation process, properties, and applications. Adv Appl Microbiol 29: 139–175

    PubMed  CAS  Google Scholar 

  • van den Berg JA, van der Laken KJ, van Ooyen AJJ, Renniers TCHM, Rietveld K, Schaap A, Brake AJ, Bishop RJ, Schultz K, Moyer D, Richman M, Shuster JR (1990) Kluyveromyces as a host for heterologous gene expression: expression and secretion of prochymosin. Bio/technology 8: 135–139

    PubMed  Google Scholar 

  • Van de Peer Y, Hendriks L, Goris A, Neefs J-M, Vancanneyt M, Kersters K, Berny J-F, Hennebert G, De Wachter R (1992) Evolution of basidiomycetous yeasts as deduced from small ribosomal subunit RNA sequences. Syst Appl Microbiol 15: 250–258

    Google Scholar 

  • van der Walt JP (1987) The yeasts — a conspectus. Stud Mycol 30: 19–31

    Google Scholar 

  • van der Westhuizen JPJ, Kock JLF, Smith EJ (1991) The potential use of cellular long-chain fatty acid composition in the taxonomy of the carotenoid pigment producing genera Rhodosporidium Banno and Rhodotorula Harrison. Syst Appl Microbiol 14:282–290

    Google Scholar 

  • Vaughan Martini A (1991) Intraspecific discontinuity within the yeast species Cryptococcus albidus as revealed by nDNA/nDNA reassociations. Exp Mycol 15: 140–145

    Google Scholar 

  • Vaughan Martini A, Kurtzman CP (1985) Deoxyribonucleic acid relatedness among species of the genus Saccharomyces sensu stricto. Int J Syst Bacteriol 35: 508–511

    Google Scholar 

  • Vaughan Martini A, Martini A (1987) Three newly delimited species of Saccharomyces sensu stricto. Antonie van Leeuwenhoek J Microbiol 53: 77–84

    Google Scholar 

  • Vaughan Martini A, Martini A, Cardinale G (1993) Electrophoretic karyotyping as a taxo-nomic tool in the genus Saccharomyces. Antonie van Leeuwenhoek 63: 145–156

    Google Scholar 

  • Vezinhet F, Blondin B, Hallet J-N (1990) Chromosomal DNA patterns and mitochondrial DNA polymorphism as tools for identification of enological strains of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 32: 568–571

    CAS  Google Scholar 

  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172: 4238–4246

    PubMed  CAS  Google Scholar 

  • Viljoen BC, Kock JLF, Lategan PM (1986) Long-chain fatty acid composition of selected genera of yeasts belonging to the Endomycetales. Antonie van Leeuwenhoek J Microbiol 52: 45–51

    PubMed  CAS  Google Scholar 

  • Vishniac HS, Kurtzman CP (1992) Cryptococcus antarcticus sp. nov. and Cryptococcus albidosimilis sp. nov., basidioblastomycetes from Antarctic soils. Int J Syst Bacteriol 42: 547–553

    Google Scholar 

  • Vollrath D, Davis RW (1987) Resolution of DNA molecules greater than 5 megabases by contour-clamped homogeneous electric fields. Nucleic Acids Res 15: 7865–7876

    PubMed  CAS  Google Scholar 

  • Weijman ACM (1979) Carbohydrate composition and taxonomy of Geotrichum, Trichosporon and allied genera. Antonie van Leeuwenhoek J Microbiol 45: 119–127

    PubMed  CAS  Google Scholar 

  • Weijman ACM, Golubev WI (1987) Carbohydrate patterns and taxonomy of yeasts and yeast-like fungi. Stud Mycol 30: 361–371

    Google Scholar 

  • Weijman ACM, Rodrigues de Miranda L (1983) Xylose distribution within and taxonomy of the genera Bullera and Sporobolomyces. Antonie van Leeuwenhoek J Microbiol 49:559–562

    PubMed  CAS  Google Scholar 

  • Weijman ACM, Rodrigues de Miranda L, van der Walt JP (1988) Redefinition of Candida Berkhout and the consequent emendation of Cryptococcus Kützing and Rhodotorula Harrison. Antonie van Leeuwenhoek J Microbiol 54: 545–553

    PubMed  CAS  Google Scholar 

  • West M, Emerson GW, Sullivan PA (1990) Purification and properties of two lactose hydrolases from Trichosporon cutaneum. J Gen Microbiol 136: 1483–1490

    PubMed  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  • Wickerham LJ (1951) Taxonomy of yeasts. Tech Bull US Dept Agric 1029: 1–56

    Google Scholar 

  • Wiley EO (1981) Phylogenetics. The theory and practice of phylogenetics systematics. Wiley, New York

    Google Scholar 

  • Winge O, Roberts C (1949) Inheritance of enzymatic characters in yeasts, and the phenomenon of long-term adaptation. CR Trav Carlsberg Sér Physiol 24: 263–315

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271

    PubMed  CAS  Google Scholar 

  • Wong GJ (1987) A comparison of the mating system of Tremella mesenterica and other modified bifactorial species. Stud Mycol 30: 431–441

    Google Scholar 

  • Yamada Y, Kawasaki H (1989a) The molecular phylogeny of the Q8-equipped basidiomycetous yeast genera Mrakia Yamada et Komagata and Cystofilobasidium Oberwinkler et Bandoni based on the partial sequences of 18S and 26S ribosomal ribonucleic acids. J Gen Appl Microbiol 35: 173–183

    CAS  Google Scholar 

  • Yamada Y, Kawasaki H (1989b) The genus Phaffia is phylogeneticlly separate from the genus Cryptococcus (Cryptococcaceae). Agric Biol Chem 53: 2845–2846

    CAS  Google Scholar 

  • Yamada Y, Komagata K (1987) Mrakia gen. nov., a heterobasidiomycetous yeast genus for the Q8-equipped, selfsporulating organisms which produce a unicellular metabasidium, formerly classified in the genus Leucosporidium. J Gen Appl Microbiol 33: 455–457

    CAS  Google Scholar 

  • Yamada Y, Kondo K (1973) Coenzyme Q system in the classification of the yeast genera Rhodotorula and Cryptococcus, and the yeast-like genera Sporobolomyces and Rhodosporidium. J Gen Appl Microbiol 19: 59–77

    CAS  Google Scholar 

  • Yamada Y, Matsumoto A (1988) An electrophoretic comparison of enzymes in strains of species in the genus Mrakia Yamada et Komagata (Filobasidiaceae). J Gen Appl Microbiol 34: 201–208

    CAS  Google Scholar 

  • Yamada Y, Nakagawa (1990) The molecular phylogeny of the basidiomycetous yeast species Leucosporidium scottii based on the partial sequences of 18S and 26S ribosomal ribonucleic acids. J Gen Appl Microbiol 36: 63–68

    CAS  Google Scholar 

  • Yamada Y, Nakagawa Y (1992) The phylogenetic relationships of some heterobasidiomycetous yeast species based on the partial sequences of 18S and 26S ribosomal RNAs. J Gen Appl Microbiol 38: 559–565

    CAS  Google Scholar 

  • Yamada Y, Ohishi T, Kondo I (1973) Coenzyme Q system in the classification of the ascosporogenous yeast genera Hansenula and Pichia. J Gen Appl Microbiol 19: 189–208

    CAS  Google Scholar 

  • Yamada Y, Banno I, von Arx JA, van der Walt JP (1987) Taxonomic significance of the coenzyme Q system in yeasts and yeast-like fungi. Stud Mycol 30: 299–308

    Google Scholar 

  • Yamada Y, Kawasaki H, Itoh M, Banno I, Nakase T (1988) Tsuchiyaea gen. nov., an anamorphic yeast genus for the Q9-equipped organisms whose reproduction is either by enteroblastic budding or by the formation of conidia which are disjointed at a septum in the mid-region of the sterigma and whose cells contain xylose. J Gen Appl Microbiol 34: 507–510

    CAS  Google Scholar 

  • Yamada Y, Nakagawa Y, Banno I (1989a) The phylogenetic relationship of the Q9-equipped species of the heterobasidiomycetous yeast genera Rhodosporidium and Leucosporidium based on the partial sequences of 18S and 26S ribosomal ribonucleic acids: the proposal of a new genus Kondoa. J Gen Appl Microbiol 35: 377–385

    CAS  Google Scholar 

  • Yamada Y, Kawasaki H, Nakase T, Banno I (1989b) The phylogenetic relationship of the conidium-forming anamorphic yeast genera Sterigmatomyces, Kurtzmanomyces, Tsuchiyaea, and Fellomyces, and the teleomorphic yeast genus Sterigmatosporidium on the basis of the partial sequences of 18S and 26S ribosomal ribonucleic acids. Agric Biol Chem 53: 2993–3001

    CAS  Google Scholar 

  • Yamada Y, Nakagawa Y, Banno I (1990a) The molecular phylogeny of the Q10-equipped species of the heterobasidiomycetous yeast genus Rhodosporidium Banno based on the partial sequences of 18S and 26S ribosomal ribonucleic acids. J Gen Appl Microbiol 36: 435–444

    CAS  Google Scholar 

  • Yamada Y, Nagahama T, Kawasaki H, Banno I (1990b) The phylogenetic relationships of the genera Phaffia Miller, Yoneyama et Soneda and Cryptococcus Kützing emend. Phaff et Spencer (Cryptococcaceae) based on the partial sequences of 18S and 26S ribosomal ribonucleic acids. J Gen Appl Microbiol 36: 403–414

    CAS  Google Scholar 

  • Yamada Y, Nagahama T, Banno I (1991a) The molecular phylogeny of the Q9-equipped ascomycetous teleomorphic yeast genus Debaryomyces Lodder et Kreger-van Rij based on the partial sequences of 18S and 26S ribosomal ribonucleic acids. J Gen Appl Microbiol 37: 277–288

    CAS  Google Scholar 

  • Yamada Y, Nagahama T, Banno I, Giménez-Jurado G, van Uden N (1991b) The phylogenetic relationship of Kurtzmanomyces tardus Giménez-Jurado et van Uden (Cryptococcaceaea) based on the partial sequences of 18S and 26S ribosomal RNA’s. J Gen Appl Microbiol 37: 321–324

    CAS  Google Scholar 

  • Yamazaki M, Goto S, Komagata K (1983) An electrophoretic comparison of the enzymes of Saccharomyces yeasts. J Gen Appl Microbiol 29: 305–318

    CAS  Google Scholar 

  • Yamazaki M, Goto S, Komagata K (1985) Taxonomic studies of the genus Tilletiopsis on physiological properties and electrophoretic comparison of enzymes. Trans Mycol Soc Jpn 26: 13–22

    Google Scholar 

  • Ykema A, Verbree EC, Kater MM, Smith H (1988) Optimization of lipid production in the oleaginous yeast Apiotrichum curvatum in whey permeate. Appl Microbiol Biotechnol 29: 211–218

    CAS  Google Scholar 

  • Ykema A, Kater MM, Smit H (1989a) Lipid production in whey permeate by an unsaturated fatty acid mutant of the oleaginous yeast Apiotrichum curvatum. Biotechnol Lett 11: 477–482

    CAS  Google Scholar 

  • Ykema A, Verbree EC, Nijkamp HJH, Smit H (1989b) Isolation and characterization of fatty acid autotrophs from the oleaginous yeast Apiotrichum curvatum. Appl Microbiol Biotechnol 32: 76–84

    CAS  Google Scholar 

  • Zache G, Rehm H-J (1989) Degradation of phenol by a coimmobilized entrapped mixed culture. Appl Microbiol Biotechnol 30: 426–432

    CAS  Google Scholar 

  • Zhang TY, Smith CL, Cantor CR (1991) Secondary pulsed field gel electrophoresis: a new method for faster separation of larger DNA molecules. Nucleic Acids Res 19: 1291–1296

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boekhout, T., Kurtzman, C.P. (1996). Principles and Methods Used in Yeast Classification, and an Overview of Currently Accepted Yeast Genera. In: Nonconventional Yeasts in Biotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79856-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79856-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79858-0

  • Online ISBN: 978-3-642-79856-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics