Skip to main content

Transposition of Phage Mu DNA

  • Chapter
Transposable Elements

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 204))

Abstract

The temperate bacteriophage Mu has been an extremely useful model system for studies on the mechanistic aspects of DNA transposition. Mu was the first element for which a soluble in vitro transposition system was established (Mizuuchi 1983). Furthermore, some of the features of the Mu system, such as the polarity of strand transfer and the chemical steps of the reaction, appear to be conserved in a wide variety of elements from bacterial transposons through mammalian viruses. The purpose of this review is to summarize the biochemical details of Mu DNA transposition which have been gleaned over recent years. Due to space limitations, an exhaustive review of the literature cannot be performed here and the reader is also referred to several other recent reviews (Pato 1989; Mizuuchi 1992a, b; Haniford and Chaconas 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adzuma K, Mizuuchi K (1988) Target immunity of Mu transposition reflects a differential distribution of Mu B protein. Cell 53: 257–266

    Article  PubMed  CAS  Google Scholar 

  • Adzuma K, Mizuuchi K (1989) Interaction of proteins located at a distance along DNA: mechanism of target immunity in the Mu DNA strand-transfer reaction. Cell 57: 41–47

    Article  PubMed  CAS  Google Scholar 

  • Adzuma K, Mizuuchi K (1991) Steady-state kinetic analysis of ATP hydrolysis by the B protein of bacteriophage Mu. J Biol Chem 266: 6159–6167

    PubMed  CAS  Google Scholar 

  • Allison RG, Chaconas G (1992) Role of the A protein-binding sites in the in vitro transposition of Mu DNA: a complex circuit of interactions involving the Mu ends and the transpositional enhancer. J Biol Chem 267: 19963–19970

    PubMed  CAS  Google Scholar 

  • Allison RG, Chaconas G (1995) Assignment of Mu end-enhancer partners in an early stage of Mu DNA transposition (submitted)

    Google Scholar 

  • Baker TA, Luo L (1994) Identification of residues in the Mu transposase essential for catalysis. Proc Natl Acad Sci USA 91: 6654–6658

    Article  PubMed  CAS  Google Scholar 

  • Baker TA, Mizuuchi K (1992) DNA-promoted assembly of the active tetramer of the Mu transposase. Genes Dev 6: 2221–2232

    Article  PubMed  CAS  Google Scholar 

  • Baker TA, Mizuuchi M, Mizuuchi K (1991) MuB protein allosterically activates strand transfer by the transposase of phage Mu. Cell 65: 1003–1013

    Article  PubMed  CAS  Google Scholar 

  • Baker TA, Mizuuchi M, Savilahti H, Mizuuchi K (1993) Division of labor among monomers within the Mu transposase tetramer. Cell 74: 723–733

    Article  PubMed  CAS  Google Scholar 

  • Baker TA, Kremenstova E, Luo L (1994) Complete transposition requires four active monomers in the Mu transposase tetramer. Genes Dev 8: 2416–2428

    Article  PubMed  CAS  Google Scholar 

  • Beese L, Steitz TA (1991) Structural basis for the 3–5’ exonuclease activity of Escherichia coli DNA Polymerase l=a two metal ion mechanism. EMBO J 10: 25–33

    PubMed  CAS  Google Scholar 

  • Boocock MR, Rowland S-J, Stark WM, Sherratt DJ (1992) Insistent and intransigent: a phage Mu enhancer functions in trans. TIG 8: 151–153

    Article  PubMed  CAS  Google Scholar 

  • Chaconas G (1987) Transposition of Mu DNA in vivo. In: Symonds N, Toussaint A, van de Putte P, Howe MM (eds) Phage Mu. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 137–157

    Google Scholar 

  • Chaconas G, Harshey RM, Sarvetnick N, Bukhari AI (1981) Predominant end-products of prophage Mu DNA transposition during the lytic cycle are replicón fusions. J Mol Biol 150: 341–359

    Article  PubMed  CAS  Google Scholar 

  • Chaconas G, Gloor G, Miller JL (1985) Amplification and purification of the bacteriophage Mu-encoded B transposition protein. J Biol Chem 260: 2662–2669

    PubMed  CAS  Google Scholar 

  • Craig NL, Nash HA (1984) E. coli integration host factor binds to specific site in DNA. Cell 39: 707–716

    Article  PubMed  CAS  Google Scholar 

  • Craigie R, Mizuuchi K (1985) Mechanism of transposition of bacteriophage Mu: structure of a transposition intermediate. Cell 41: 867–876

    Article  PubMed  CAS  Google Scholar 

  • Criaigie R, Mizuuchi K (1986) Role of DNA topology in Mu transposition: mechanism of sensing the relative orientation of two DNA segments. Cell 45: 793–800

    Article  Google Scholar 

  • Craigie R, Mizuuchi K (1987) Transposition of Mu DNA: joining of Mu to target DNA can be uncoupled from cleavage at the ends of Mu. Cell 51: 493–501

    Article  PubMed  CAS  Google Scholar 

  • Craigie R, Mizuuchi M, Mizuuchi K (1984) Site-specific recognition of the bacteriophage Mu ends by the Mu A protein. Cell 39: 387–394

    Article  PubMed  CAS  Google Scholar 

  • Craigie R, Arndt-Jovin DJ, Mizuuchi K (1985) A defined system for the DNA strand-transfer reaction at the initiation of bacteriophage Mu transposition: protein and DNA substrate requirements. Proc Natl Acad Sci USA 82: 7570–7574

    Article  PubMed  CAS  Google Scholar 

  • Ding Z-M, Harshey RM, Hurley LH (1993) (+)-CC-1065 as a structural probe of Mu transposase-induced bending of DNA: overcoming limitations of hydroxyl-radical footprinting. Nucleic Acids Res 21: 4281–4287

    Google Scholar 

  • Drlica K, Rouviere-Yaniv J (1987) Histonelike proteins of bacteria. Microbiol Rev 51: 310–319

    Google Scholar 

  • Engleman A, Mizuuchi K, Craigie R (1991) HIV—1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell 67:1211–1221

    Article  Google Scholar 

  • Freemont PS, Friedman JM, Beese LS, Sanderson MR, Steitz TA (1988) Cocrystal structure of an editing complex of klenow fragment with DNA. Proc Natl Acad Sci USA 85: 8924–8928

    Article  PubMed  CAS  Google Scholar 

  • Groenen MAM, van de Putte P (1985) Mapping of a site for packaging of bacteriophage Mu DNA. Virology 144: 520–522

    Article  PubMed  CAS  Google Scholar 

  • Groenen MAM, van de Putte P (1986) Analysis of the attachment sites of bacteriophage Mu using site- directed mutagenesis. J Mol Biol 189: 597–602

    Article  PubMed  CAS  Google Scholar 

  • Haniford DB, Chaconas G (1992) Mechanistic aspects of DNA transposition. Curr Opin Genes Dev 2: 698–704

    Article  CAS  Google Scholar 

  • Harel J, Duplessis L, Kahn JS, DuBow MS (1990) The c/s-acting DNA sequences required in vivo for bacteriophage Mu helper-mediated transposition and packaging. Arch Microbiol 154: 67–72

    Article  PubMed  CAS  Google Scholar 

  • Harshey RM, Cuneo SD (1986) Carboxyl-terminal mutants of phage Mu transposase. J Genet 65: 159–164

    Article  CAS  Google Scholar 

  • Haykinson MJ, Johnson RC (1993) DNA looping and the helical repeat in vitro and in vivo: effect of HU protein and enhancer location on Hin invertasome assembly. EMBO J 12: 2503–2512

    PubMed  CAS  Google Scholar 

  • Heichman KA, Johnson RC (1990) The Hin invertasome: protein-mediated joining of distant recombination sites at the enhancer. Science 249: 511–517

    Article  PubMed  CAS  Google Scholar 

  • Higgins NP, Collier DA, Kilpatrick MW, Krause HM (1989) Supercoiling and integration host factor change the DNA conformation and alter the flow of convergent transcription in phage Mu. J Biol Chem 264: 3035–3042

    PubMed  CAS  Google Scholar 

  • Hodges-Garcia Y, Hagerman PJ, Pettijohn DE (1989) DNA ring closure mediated by protein HU. J Biol Chem 264: 14621–14623

    PubMed  CAS  Google Scholar 

  • Hwang DS, Kornberg A (1992) Opening of the replication origin of Escherichia coli by DnaA protein with protein HU or IHF. J Biol Chem 15: 23083–23086

    Google Scholar 

  • Kanaar R, Cozzarelli NR (1992) Roles of Supercoiled DNA structure in DNA transactions. Curr Opin Struct Biol 2: 369–379

    Article  CAS  Google Scholar 

  • Kulkosky J, Jones KS, Katz RA, Mack JPG, Skalka AM (1992) Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases. Mol Cell Biol 12: 2331–2338

    PubMed  CAS  Google Scholar 

  • Kuo C-F, Zou A, Jayaram M, Getzoff E, Harshey R (1991) DNA-protein complexes during attachment- site synapsis in mu DNA transposition. EMBO J 10: 1585–1591

    PubMed  CAS  Google Scholar 

  • Lavoie BD, Chaconas G (1990) Immunoelectron microscopic analysis of the A, B, and HU protein content of bacteriophage Mu transpososomes. J Biol Chem 265: 1623–1627

    PubMed  CAS  Google Scholar 

  • Lavoie BD, Chaconas G (1993) Site-specific HU binding in the Mu transpososome: conversion of a sequence-independent DNA-binding protein into a chemical nuclease. Genes Dev 7: 2510–2519

    Article  PubMed  CAS  Google Scholar 

  • Lavoie BD, Chaconas G (1994) A second high-affinity HU-binding site in the phage Mu transpososome. J Biol Chem 269: 15571–15576

    PubMed  CAS  Google Scholar 

  • Lavoie BD, Chan BS, Allison RG, Chaconas G (1991) Structural aspects of a higher order nucleoprotein complex: induction of an altered DNA structure at the Mu-host junction of the Mu type 1 transpososome. EMBO J 10:3051–3059

    PubMed  CAS  Google Scholar 

  • Leung PC, Harshey RM (1991) Two mutations of phage Mu transposase that affect strand transfer or interactions with B protein lie in distinct polypeptide domains. J Mol Biol 219: 189–199

    Article  PubMed  CAS  Google Scholar 

  • Leung PC, Teplow DB, Harshey RM (1989) Interaction of distinct domains in Mu transposase with Mu DNA ends and an internal transpositional enhancer. Nature 338: 656–658

    Article  PubMed  CAS  Google Scholar 

  • Maxwell A, Craigie R, Mizuuchi K (1987) B protein of bacteriophage Mu is an AT Pase that preferentially stimulates intermolecular DNA strand transfer. Proc Natl Acad Sci USA 84: 699–703

    Article  PubMed  CAS  Google Scholar 

  • Miller JL, Chaconas G (1986) Electron microscopic analysis of in vitro transposition intermediates of bacteriophage Mu DNA. Gene 48: 101–108

    Article  PubMed  CAS  Google Scholar 

  • Miller JL, Anderson SK, Fujita DJ, Chaconas G, Baldwin DL, Harshey RM (1984) The nucleotide sequence of the B gene of bacteriophage Mu. Nucleic Acids Res 12: 8627–8638

    Article  PubMed  CAS  Google Scholar 

  • Mizuuchi K (1983) In vitro transposition qf bacteriophage Mu: a biochemical approach to a novel replication reaction. Cell 35: 785–794

    Article  PubMed  CAS  Google Scholar 

  • Mizuuchi K (1984) Mechanism of transposition of bacteriophage Mu: polarity of the strand-transfer reaction at the initiation of transposition. Cell 39: 395–404

    Article  PubMed  CAS  Google Scholar 

  • Mizuuchi K (1992a) Transpositional recombination: mechanistic insights from studies of Mu and other elements. Annu Rev Biochem 61: 1011–1051

    Article  PubMed  CAS  Google Scholar 

  • Mizuuchi K (1992b) Polynucleotidyl transfer reactions in transpositional DNA recombination. J Biol Chem 267:21273–21276

    PubMed  CAS  Google Scholar 

  • Mizuuchi K, Adzuma K (1991) Inversion of the phosphate chirality at the target site of Mu DNA strand transfer: evidence for a one-step transesterification mechanism. Cell 66:129–140

    Article  PubMed  CAS  Google Scholar 

  • Mizuuchi M, Mizuuchi K (1989) Efficient Mu transposition requires interaction of transposase with a DNA sequence at the Mu operator: implications for regulation. Cell 58: 399–408

    Article  PubMed  CAS  Google Scholar 

  • Mizuuchi M, Baker TA, Mizuuchi K (1991) DNase protection analysis of the stable synaptic complexes involved in Mu transposition. Proc Natl Acad Sei USA 88: 9031–9035

    Article  CAS  Google Scholar 

  • Mizuuchi M, Baker TA, Mizuuchi K (1992) Assembly of the active form to the transposase-Mu DNA complex: a critical control point in Mu transposition. Cell 70: 303–3

    Article  PubMed  CAS  Google Scholar 

  • Nakayama C, Teplow DB, Harshey RM (1987) Structural domains in phage Mu transposase: identification of the site-specific DNA-binding domain. Proc Natl Acad Sci USA 84: 1809–1813

    Article  PubMed  CAS  Google Scholar 

  • Namgoong S-Y, Jayaram M, Kim K, Harshey RM (1994) DNA-protein cooperativity in the assembly and stabilization of Mu strand transfer complex: relevance of DNA phasing and att site cleavage. J Mol Biol 238: 514–527

    Article  PubMed  CAS  Google Scholar 

  • Nash HA (1990) Bending and supercoiling of DNA at the attachment site of bacteriophage lambda. TIBS 15: 222–227

    PubMed  CAS  Google Scholar 

  • Nash HA, Robertson CA (1981) Purification and properties of the E coli protein factor required for X integrative recombination. J Biol Chem 256: 9246–9253

    PubMed  CAS  Google Scholar 

  • Panigrahi GB, Walker IG (1991) Use of monoacetyl-4-hydroxyaminoquinoline 1-oxide to probe contacts between guanines and protein in the minor and major grooves of DNA: interaction of Escherichia coli integration host factor with its recognition site in the early promoter and transposition enhancer of bacteriophage Mu. Biochemistry 30: 9761–9767

    Article  PubMed  CAS  Google Scholar 

  • Pato ML (1989) Bacteriophage Mu. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington DC, pp 23–52

    Google Scholar 

  • Pettijohn DE (1988) Histone-like proteins and bacterial chromosome structure. J Biol Chem 263: 12793–12796

    PubMed  CAS  Google Scholar 

  • Robertson CA, Nash HA (1988) Bending of the bacteriophage X attachment site by Escherichia coli integration host factor. J Biol Chem 263: 3554–3557

    PubMed  CAS  Google Scholar 

  • Rouviere-Yaniv J, Gros F (1975) Characterization of a novel, low-molecular-weight DNA-binding protein from Escherichia coli. Proc Natl Acad Sci USA 72: 3428–3432

    Article  PubMed  CAS  Google Scholar 

  • Schmid MB (1990) More than just “histone-like” proteins. Cell 63: 451–453

    Article  PubMed  CAS  Google Scholar 

  • Schneider GJ, Sayre MH, Geiduschek EP (1991) DNA-binding properties of TF1. J Bidl Chem 221:777–794

    CAS  Google Scholar 

  • Serrano M, Salas M, Hermoso JM (1993) Multimeric complexes formed by DNA-binding proteins of low sequence specificity. TIBS 18: 202–206

    PubMed  CAS  Google Scholar 

  • Shore D, Langowski J, Baldwin R (1981) DNA flexibility studied by covalent closure of short fragments into circles. Proc Natl Acad Sci USA 78: 4833–4837

    Article  PubMed  CAS  Google Scholar 

  • Suck D (1992) Nuclease structure and catalytic function. Curr Opin Struct Biol 2: 84–92

    Article  Google Scholar 

  • Suck D, Oefner C (1986) Structure of DNase I at 2.0 Ä resolution suggests a mechanism for binding to and cutting DNA. Nature 321: 620–625

    Article  PubMed  CAS  Google Scholar 

  • Suck D, Lahm A, Oefner C (1988) Structure refined to 2 A of a nicked DNA octanucleotide complex with DNase I. Nature 332: 464–468

    Article  PubMed  CAS  Google Scholar 

  • Surette MG, Chaconas G (1989) A protein factor that reduces the negative supercoiling requirement in the Mu strand-transfer reaction is Escherichia coli integration host factor. J Biol Chem 264: 3028–3034

    PubMed  CAS  Google Scholar 

  • Surette MG, Chaconas (1991) Stimulation of the Mu DNA strand cleavage and intramolecular strand- transfer reactions by the Mu B protein is independent of stable binding of the Mu B protein to DNA. J Biol Chem 266: 17306–17313

    PubMed  CAS  Google Scholar 

  • Surette MG, Chaconas G (1992) The Mu transpositional enhancer can function in trans: requirement of the enhancer for synapsis but not strand cleavage. Cell 68:1101–1108

    Article  PubMed  CAS  Google Scholar 

  • Surette MG, Buch SJ, Chaconas G (1987) Transpososomes: stable protein-DNA complexes involved in the in vitro transposition of bacteriophage Mu DNA. Cell 49: 253–262

    Article  PubMed  CAS  Google Scholar 

  • Surette MG, Lavoie BD, Chaconas G (1989) Action at a distance in Mu DNA transposition: an enhancerlike element is the site of action of supercoiling relief activity by integration host factor [IHF]. EMBO J 8: 3483–3489

    PubMed  CAS  Google Scholar 

  • Surette MG, Harkness T, Chaconas G (1991) Stimulation of the Mu A protein-mediated strand cleavage reaction by Mu B protein, and the requirement of DNA nicking for stable type-1 transpososome formation. J Biol Chem 266: 3118–3124

    PubMed  CAS  Google Scholar 

  • Tanaka I, Appelt D, Dijk J, White SW, Wilson KS (1984) 3-A resolution structure of a protein with histone-like properties in prokaryotes. Nature 310: 376–381

    Google Scholar 

  • Teplow DB, Nakayama C, Leung PC, Harshey RM (1988) Structure-function relationships in the transposition protein B of bacteriophage Mu. J Biol Chem 263: 10851–10857

    PubMed  CAS  Google Scholar 

  • Thompson JF, Landy A (1988) Empirical estimation of protein-induced DNA binding angles: applications to X site-specific recombination complexes. Nucleic Acids Res 16: 9687–9705

    Article  PubMed  CAS  Google Scholar 

  • Vink C, Yeheskiely E, van der Marel GA, van Boom JH, Plasterk RHA (1991) Site-specific hydrolysis and alcoholysis of human immunodeficiency virus DNA termini mediated by the viral integrase protein. Nucleic Acids Res 19: 6691–6698

    Article  PubMed  CAS  Google Scholar 

  • Vologodskii AV, ievene SD, Klenin KV, Frank-Kamenetskii M, Cozzarelli NR (1992) Conformational and thermodynamic properties of supercoiled DNA. J Mol Biol 227:1224–1243

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Harshey RM (1994) Crucial role for DNA supercoiling in Mu transposition: kinetic study. Proc Natl Acad Sci USA 91: 699–703

    Article  PubMed  CAS  Google Scholar 

  • Weston SA, Lahm A, Suck D (1992) X-ray structure of the DNAse l-d(GGTATACC)2 complex at 2.3 angstrom resolution. J Mol Biol 226: 1237–1256

    Article  PubMed  CAS  Google Scholar 

  • White SW, Appelt K, Wilson KS, Tanaka I (1989) A protein structural motif that bends DNA. Proteins 5: 281–288

    Article  PubMed  CAS  Google Scholar 

  • Wu Z, Chaconas G (1992) Flanking host sequences can exert an inhibitory effect on the cleavage step of the in vitro Mu DNA strand transfer reaction. J Biol Chem 267: 9552–9558

    PubMed  CAS  Google Scholar 

  • Wu Z, Chaconas G (1994) Characterization of a region in phage Mu transposase that is involved in interaction with the Mu B protein. J Biol Chem 269: 28829–28833

    PubMed  CAS  Google Scholar 

  • Yang C-C, Nash HA (1989) The interaction of E. coli IHF protein with its specific binding sites. Cell 57: 869–880

    Article  PubMed  CAS  Google Scholar 

  • Zou A, Leung PC, Harshey RM (1991) Transposase contacts with Mu DNA ends. J Biol Chem 266: 20476–20482

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lavoie, B.D., Chaconas, G. (1996). Transposition of Phage Mu DNA. In: Saedler, H., Gierl, A. (eds) Transposable Elements. Current Topics in Microbiology and Immunology, vol 204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79795-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79795-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79797-2

  • Online ISBN: 978-3-642-79795-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics