Skip to main content

The Structure of the HMG Box and Its Interaction with DNA

  • Chapter
Nucleic Acids and Molecular Biology

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 9))

Abstract

A number of eukaryotic DNA binding domains are now known which recognise DNA by insertion of an α-helix (pre-existing or induced), into the major groove of the DNA, e.g. the homeobox, zinc finger and bZIP/bHLH motifs. The HMG box differs from these domains in three important respects: (1) the principle contacts are to the minor groove, (2) a considerable bend is introduced into the DNA on binding and (3) there is wide variation in the DNA sequence specificity between members of the HMG box family. From this it is clear that new principles will be revealed by understanding the nature of the interaction between the HMG box and DNA. However, the structure of an HMG box bound to DNA is not presently available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bachvarov D, Moss T (1991) The RNA polymerase I transcription factor xUBF contains 5 tandemly repeated HMG homology boxes. Nucleic Acids Res 19:2331–2335

    Article  PubMed  CAS  Google Scholar 

  • Bazett-Jones DP, Leblanc B, Herfort M, Moss T (1994) Short-range DNA looping by the Xenopus HMG-box transcription factor, xUBF. Science 264:1134–1137

    Article  PubMed  CAS  Google Scholar 

  • Bellon SF, Lippard SJ (1990) Bending studies of DNA site-specifically modified by cisplatin, trans-diamminedichloroplatinum (II) and cis-[Pt(NH3)2(N3-cytosine)Cl]+. Biophys Chem 35:179–188

    Article  PubMed  CAS  Google Scholar 

  • Bellon SF, Coleman JH, Lippard SJ (1991) DNA unwinding produced by sitespecific intrastrand cross-links of the antitumour drug cis-diamminedichloroplatinum (II). Biochemistry 30:8026–8035

    Article  PubMed  CAS  Google Scholar 

  • Berta P, Hawkins JR, Sinclair AH, Taylor A, Griffiths BL, Goodfellow PN, Fellous M (1990) Genetic evidence equating SRY and the testis-determining factor. Nature (Lond) 348:448–450

    Article  CAS  Google Scholar 

  • Bianchi ME, Beltrame M, Paonessa G (1989) Specific recognition of cruciform DNA by nuclear protein HMG1. Science 243:1056–1059

    Article  PubMed  CAS  Google Scholar 

  • Bianchi ME, Beltrame M, Falciola L (1992a) The HMG box motif. In: Eckstein F, Lilley DMJ (eds) Nucleic acids and molecular biology, vol 6. Springer, Berlin Heidelberg New York, pp 112–128

    Chapter  Google Scholar 

  • Bianchi ME, Falciola L, Ferrari S, Lilley DMJ (1992b) The DNA binding site of HMG1 protein is composed of two similar segments (HMG boxes), both of which have counterparts in other eukaryotic regulatory proteins. EMBO J 11:1055–1063

    PubMed  CAS  Google Scholar 

  • Billings PC, Davis RJ, Engelsberg BN, Skov KA, Hughes EN (1992) Characterization of high mobility group protein binding to cisplatin-damaged DNA. Biochem Biophys Res Commun 188:1286–1294

    Article  PubMed  CAS  Google Scholar 

  • Blundell TL, Pitts JE, Tickle SP, Wu C-W (1981) X-ray analysis (1.4-Å resolution) of avian pancreatic Polypeptide: small globular protein hormone. Proc Natl Acad Sci USA 78:4175–4179

    Article  PubMed  CAS  Google Scholar 

  • Boissonneault G, Lau YFC (1993) A testis-specific gene encoding a nuclear highmobility-group box protein located in elongating spermatids. Mol Cell Biol 13:4323–4330

    PubMed  CAS  Google Scholar 

  • Bonne C, Sautiere P, Duget M, De Recondo A-M (1982) Identification of a singlestranded DNA binding protein with high mobility group protein 1. J Biol Chem 257:2722–2725

    PubMed  CAS  Google Scholar 

  • Brown SJ, Kellett PJ, Lippard SJ (1993) Ixr1, a yeast protein that binds to platinated DNA and confers sensitivity to cisplatin. Science 261:603–605

    Article  PubMed  CAS  Google Scholar 

  • Bruhn SL, Pil PM, Essigmann JM, Houseman DE, Lippard SJ (1992) Isolation and characterization of human cDNA clones encoding a high mobility group box protein that recognizes structural distortions to DNA caused by binding of the anticancer agent cisplatin. Proc Natl Acad Sci USA 89:2307–2311

    Article  PubMed  CAS  Google Scholar 

  • Bruhn SL, Housman DE, Lippard SJ (1993) Isolation and characterization of cDNA clones encoding the Drosophila homolog of the HMG-box SSRP family that recognizes specific DNA structures. Nucleic Acids Res 21:1643–1646

    Article  PubMed  CAS  Google Scholar 

  • Carlsson P, Waterman ML, Jones KA (1993) The hLEF/TCF-1α HMG protein contains a context-dependent transcriptional activation domain that induces the TCRα enhancer in T-cells. Genes Dev 7:2418–2430

    Article  PubMed  CAS  Google Scholar 

  • Cohen DR, Sinclair AH, McGovern JD (1994) SRY protein enhances transcription of Fos-related antigen 1 promoter constructs. Proc Natl Acad Sci USA 91:4372–4376

    Article  PubMed  CAS  Google Scholar 

  • Connor F, Cary PD, Read CM, Preston NS, Driscoll PC, Denny P, Crane-Robinson C, Ashworth A (1994) DNA binding and bending properties of the post-meiotically expressed Sry-related protein Sox-5. Nucleic Acids Res 22:3339–3346

    Article  PubMed  CAS  Google Scholar 

  • Copenhaver GP, Putnam CD, Denton ML, Pikaard CS (1994) The RNA polymerase I transcription factor UBF is a sequence-tolerant HMG-box protein that can recognize structured nucleic acids. Nucleic Acids Res 22:2651–2657

    Article  PubMed  CAS  Google Scholar 

  • Crothers DM (1993) Architectural elements in nucleoprotein complexes. Curr Biol 3:675–676

    Article  PubMed  CAS  Google Scholar 

  • Denny P, Swift S, Connor F, Ashworth A (1992) An Sry-related gene expressed during spermatogenesis in the mouse encodes a sequence-specific DNA-binding protein. EMBO J 11:3705–3712

    PubMed  CAS  Google Scholar 

  • Diffley JFX, Stillman B (1991) A close relative of the nuclear, chromosomal highmobility group protein HMG1 in yeast mitochondria. Proc Natl Acad Sci USA 88:7864–7868

    Article  PubMed  CAS  Google Scholar 

  • Diffley JFX, Stillman B (1992) DNA binding properties of an HMG1-related protein from yeast mitochondria. J Biol Chem 267:3368–3374

    PubMed  CAS  Google Scholar 

  • Dooijes D, van de Wetering M, Knippels L, Clevers H (1993) The Schizosaccharomyces pombe mating-type gene mat-Mc encodes a sequence-specific DNA-binding high mobility group box protein. J Biol Chem 268:24813–24817

    PubMed  CAS  Google Scholar 

  • Falciola L, Murchie AIH, Lilley DMJ, Bianchi ME (1994) Mutational analysis of the DNA binding domain A of chromosomal protein HMG1. Nucleic Acids Res 22:285–292

    Article  PubMed  CAS  Google Scholar 

  • Ferrari S, Harley VR, Pontiggia A, Goodfellow PN, Lovell-Badge R, Bianchi ME (1992) SRY, like HMG1, recognizes sharp angles in DNA. EMBO J 11:4497–4506

    PubMed  CAS  Google Scholar 

  • Fisher RP, Lisowsky T, Parisi MA, Clayton DA (1992) DNA wrapping and bending by a mitochondrial high mobility group-like transcriptional activator protein. J Biol Chem 267:3358–3367

    PubMed  CAS  Google Scholar 

  • Giese K, Amsterdam A, Grossehedl R (1991) DNA-binding properties of the HMG domain of the lymphoid-specific transcriptional regulator LEF-1. Genes Dev 5:2567–2578

    Article  PubMed  CAS  Google Scholar 

  • Giese K, Cox J, Grosschedl R (1992) The HMG domain of Lymphoid Enhancer Factor 1 bends DNA and facilitates assembly of functional nucleoprotein structures. Cell 69:185–195

    Article  PubMed  CAS  Google Scholar 

  • Giese K, Pagel J, Grosschedl R (1994) Distinct DNA-binding properties of the high mobility group domain of murine and human SRY sex-determining factors. Proc Natl Acad Sci USA 91:3368–3372

    Article  PubMed  CAS  Google Scholar 

  • Goodfellow PN, Lovell-Badge R (1993) SRY and sex determination in mammals. Annu Rev Genet 27:71–92

    Article  PubMed  CAS  Google Scholar 

  • Grasser KD, Feix G (1991) Isolation and characterization of maize cDNAs encoding a high mobility group protein displaying a HMG-box. Nucleic Acids Res 19:2573–2577

    Article  PubMed  CAS  Google Scholar 

  • Griess EA, Rensing SA, Grasser KD, Maier UG, Feix G (1993) Phylogenetic relationships of HMG box DNA-binding domains. J Mol Evol 37:204–210

    Article  PubMed  CAS  Google Scholar 

  • Grossehedl R, Giese K, Pagel J (1994) HMG domain proteins — architectural elements in the assembly of nucleoprotein structures. Trends Genet 10:94–100

    Article  Google Scholar 

  • Gubbay J, Collignon J, Koopman P, Capel B, Economou A, Munsterberg A, Vivian N, Goodfellow P, Lovell-Badge R (1990) A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature (Lond) 346:245–250

    Article  CAS  Google Scholar 

  • Guntaka RV, Kandala JC, Reddy VD (1992) Cloning and characterization of a highly conserved HMG-like protein (PF16) gene from Plasmodium falciparum. Biochem Biophys Res Commun 182:412–419

    Article  PubMed  CAS  Google Scholar 

  • Haggren W, Kolodrubetz D (1988) The Saccharomyces cerevisiae ACP2 gene encodes an essential HMG1-like protein. Mol Cell Biol 8:1282–1289

    PubMed  CAS  Google Scholar 

  • Hamada H, Bustin M (1985) Hierarchy of binding sites for chromosomal proteins HMG1 and 2 in supercoiled deoxyribonucleic acid. Biochemistry 24:1428–1433

    Article  PubMed  CAS  Google Scholar 

  • Hambor JE, Mennone J, Coon ME, Hanke JH, Kavathas P (1993) Identification and characterization of an Alu-containing, T-cell-specific enhancer located in the last intron of the human CD8α gene. Mol Cell Biol 13:7056–7070

    PubMed  CAS  Google Scholar 

  • Hansen PK, Christensen JH, Nyborg J, Lillelund O, Thogerson HC (1993) Dissection of the DNA-binding domain of Xenopus laevis TFIIIA — quantitative DNase-I footprinting analysis of specific complexes between a 5S RNA gene fragment and N-terminal fragments of TFIIIA containing 3-zinc-finger, 4-zinc-finger or 5-zincfinger domains. J Mol Biol 233:191–202

    Article  PubMed  CAS  Google Scholar 

  • Haqq CM, King CY, Donahoe PK, Weiss MA (1993) SRY recognizes conserved DNA sites in sex-specific promoters. Proc Natl Acad Sci USA 90:1097–1101

    Article  PubMed  CAS  Google Scholar 

  • Harley VR, Jackson DI, Hextall PJ, Hawkins JR, Berkovitz GD, Sockanathan S, Lovell-Badge R, Goodfellow PN (1992) DNA binding activity of recombinant SRY from normal males and XY females. Science 255:453–456

    Article  PubMed  CAS  Google Scholar 

  • Harley VR, Lovell-Badge R, Goodfellow PN (1994) Definition of a consensus DNA binding site for SRY. Nucleic Acids Res 22:1500–1501

    Article  PubMed  CAS  Google Scholar 

  • Hawkins JR (1993) The SRY gene. Trends Endocrinol Metab 4:328–332

    Article  PubMed  CAS  Google Scholar 

  • Hawkins JR, Taylor A, Goodfellow PN, Migeon CJ, Smith KD, G.D.B. (1992a) Evidence for increased prevalence of SRY mutations in XY females with complete rather than partial gonadal dysgenesis. Am J Hum Genet 51:979–984

    PubMed  CAS  Google Scholar 

  • Hawkins JR, Taylor A, Berta P, Levilliers J, van de Auwera B, Goodfellow PN (1992b) Mutational analysis of SRY: nonsense and missense mutations in XY sex reversal. Hum Genet 88:471–474

    Article  PubMed  CAS  Google Scholar 

  • Hisatake K, Hasegawa S, Takada R, Nakatani Y, Horikoshi M, Roeder RG (1993) The p250 subunit of native TATA box-binding factor TFIID is the cell-cycle regulatory protein CCG1. Nature (Lond) 362:179–181

    Article  CAS  Google Scholar 

  • Hsu T, King DL, LaBonne C, Kafatos FC (1993) A drosophila single strand DNA/RNA binding factor contains a high mobility group box and is enriched in the nucleolus. Proc Natl Acad Sci USA 90:6488–6492

    Article  PubMed  CAS  Google Scholar 

  • Hu CH, McStay B, Jeong SW, Reeder RH (1994) xUBF, an RNA polymerase I transcription factor, binds crossover DNA with low sequence specificity. Mol Cell Biol 14:2871–2882

    PubMed  CAS  Google Scholar 

  • Hughes EN, Engelsberg BN, Billings PC (1992) Purification of nuclear proteins that bind to cisplatin-damaged DNA — identity with high mobility group proteins 1 and 2. J Biol Chem 267:13520–13527

    PubMed  CAS  Google Scholar 

  • Isackson PJ, Fishback JL, Bidney DL, Reeck GR (1979) Preferential affinity of high molecular weight high mobility group non-histone chromatin proteins for singlestranded DNA. J Biol Chem 254:5569–5572

    PubMed  CAS  Google Scholar 

  • Jager RJ, Harley VR, Pfeiffer RA, Goodfellow PN, Scherer G (1992) Familial mutation in the testis-determining gene SRY shared by both sexes. Hum Genet 90:350–355

    Article  PubMed  CAS  Google Scholar 

  • Jantzen HM, Chow AM, King DS, Tjian R (1992) Multiple domains of the RNA polymerase-I activator hUBF interact with the TATA-binding protein complex hSL1 to mediate transcription. Genes Dev 6:1950–1963

    Article  PubMed  CAS  Google Scholar 

  • Javaherian K, Liu LF, Wang JC (1978) Nonhistone proteins HMG1 and HMG2 change the DNA helical structure. Science 199:1345–1346

    Article  PubMed  CAS  Google Scholar 

  • Jones DNM, Searles MA, Shaw GL, Churchill MEA, Ner SS, Keeler J, Travers AA, Neuhaus D (1994) The solution structure and dynamics of the DNA-binding domain of HMG-D from Drosophila melanogaster. Structure 2:609–627

    Article  PubMed  CAS  Google Scholar 

  • Kelly M, Burke J, Smith M, Klar A, Beach D (1988) Four mating-type genes control sexual differentiation in the fission yeast. EMBO J 7:1537–1547

    PubMed  CAS  Google Scholar 

  • Kim YC, Geiger JH, Hahn S, Sigler PB (1993a) Crystal structure of a yeast TBP/TATA-box complex. Nature (Lond) 365:512–520

    Article  CAS  Google Scholar 

  • Kim JL, Nikolov DB, Burley SK (1993b) Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature (Lond) 365:520–527

    Article  CAS  Google Scholar 

  • King CY, Weiss MA (1993) The SRY high-mobility-group box recognizes DNA by partial intercalation in the minor groove — a topological mechanism of sequence specificity. Proc Natl Acad Sci USA 90:11990–11994

    Article  PubMed  CAS  Google Scholar 

  • Kolodrubetz D, Burgum A (1990) Duplicated NHP6 genes of Saccharomyces cerevisiae encode proteins homologous to bovine high mobility group protein 1. J Biol Chem 265:3234–3239

    PubMed  CAS  Google Scholar 

  • Kolodrubetz D, Burgum A (1991) Sequence and genetic analysis of NHP2: a moderately abundant high mobility group-like nuclear protein with an essential function in Saccharomyces cerevisiae. Yeast 7:79–90

    Article  PubMed  CAS  Google Scholar 

  • Kruger W, Herskowitz I (1991) A negative regulator of HO transcription, SIN1 (SPT2), is a nonspecific DNA-binding and DNA-bending protein related to HMG1. Mol Cell Biol 11:4135–4146

    PubMed  CAS  Google Scholar 

  • Landsman D (1993) No HMG-1 box signature. Nature (Lond) 363:590

    Article  CAS  Google Scholar 

  • Landsman D, Bustin M (1993) A signature for the HMG-1 box DNA-binding proteins. Bioessays 15:539–546

    Article  PubMed  CAS  Google Scholar 

  • Laudet V, Stehelin D, Clevers H (1993) Ancestry and diversity of the HMG box superfamily. Nucleic Acids Res 21:2493–2501

    Article  PubMed  CAS  Google Scholar 

  • Laughon A (1991) DNA binding specificity of homeodomains. Biochemistry 30:11357–11367

    Article  PubMed  CAS  Google Scholar 

  • Laux T, Goldberg RB (1991) A plant DNA binding protein shares highly conserved sequences motifs with HMG-box proteins. Nucleic Acids Res 19:4769

    Article  PubMed  CAS  Google Scholar 

  • Lawrence DL, Engelsberg BN, Farid RS, Hughes EN, Billings PC (1993) Localization of the binding region of high mobility group protein-2 to cisplatin-damaged DNA. J Biol Chem 268:23940–23945

    PubMed  CAS  Google Scholar 

  • Learned RM, Learned TK, Haitiner MM, Tjian RT (1986) Human rRNA transcription is modulated by the coordinate binding of two factors to an upstream control element. Cell 45:847–857

    Article  PubMed  CAS  Google Scholar 

  • Leblanc B, Read C, Moss T (1993) Recognition of the xenopus ribosomal core promoter by the transcription factor xUBF involves multiple HMG box domains and leads to an xUBF interdomain interaction. EMBO J 12:513–525

    PubMed  CAS  Google Scholar 

  • Lefebvre O, Carles C, Conesa C, Swanson RN, Bouet F, Riva M, Sentenac A (1992) TFC3: gene encoding the B-block binding subunit of the yeast transcription factor IIIC. Proc Natl Acad Sci USA 89:10512–10516

    Article  PubMed  CAS  Google Scholar 

  • Li X, Sutcliffe MJ, Schwartz TW, Dobson CM (1992) Sequence-specific 1H NMR assignments and solution structure of bovine pancreatic Polypeptide. Biochemistry 31:1245–1253

    Article  PubMed  CAS  Google Scholar 

  • Lowry CV, Leiber R (1986) Negative regulation of the Saccharomyces cerevisiae ANB1 gene by heme, as mediated by the ROX1 gene product. Mol Cell Biol 6:4145–4148

    PubMed  CAS  Google Scholar 

  • Majumdar A, Brown D, Kerby S, Rudzinski I, Polte T, Randhawa Z, Seidman MM (1991) Sequence of human HMG2 cDNA. Nucleic Acids Res 19:6643

    Article  PubMed  CAS  Google Scholar 

  • Mathis DJ, Kindelis A, Spadafora C (1980) HMG proteins (1+2) form beaded structures when complexed with closed circular DNA. Nucleic Acids Res 8:2577–2590

    Article  PubMed  CAS  Google Scholar 

  • McElreavey K, Vilain E, Cotinot C, Payen E, Fellous M (1993) Control of sex determination in animals. Eur J Biochem 218:769–783

    Article  PubMed  CAS  Google Scholar 

  • Moss T, Stefanovsky VY (1994) Promotion and regulation of ribosomal transcription in eukaryotes by RNA polymerase I. Prog Nucleic Acids Res Mol Biol (in press)

    Google Scholar 

  • Nasrin N, Buggs C, Kong XF, Carnazza J, Goebl M, Alexander-Bridges M (1991) DNA-binding properties of the product of the testis-determining gene and a related protein. Nature (Lond) 354:317–320

    Article  CAS  Google Scholar 

  • Ner SS (1992) HMGs everywhere. Curr Biol 2:208–210

    Article  PubMed  CAS  Google Scholar 

  • Ner SS, Churchill MEA, Searles MA, Travers AA (1993) dHMG-Z, a second HMG1-related protein in Drosophila melanogaster. Nucleic Acids Res 21:4369–4371

    Article  PubMed  CAS  Google Scholar 

  • Oosterwegel M, van de Wetering M, Dooijes D, Klomp L, Winoto A, Georgopoulos K, Meijlink F, Clevers H (1991a) Cloning of murine TCF-1, a T cell-specific transcription factor interacting with functional motifs in the CD3-ε and T cell receptor α enhancers. J Exp Med 173:1133–1142

    Article  PubMed  CAS  Google Scholar 

  • Oosterwegel MA, Vandewetering ML, HOlstege FCP, Prosser HM, Owen MJ, Clevers HC (1991b) TCF-1, a T-cell-specific transcription factor of the HMG box family, interacts with sequence motifs in the TCRβ and TCRδ enhancers. Int Immunol 3:1189–1192

    Article  PubMed  CAS  Google Scholar 

  • Oosterwegel M, van de Wetering M, Clevers H (1993) HMG box proteins in early T-cell differentiation. Thymus 22:67–81

    PubMed  CAS  Google Scholar 

  • Parisi MA, Clayton DA (1991) Similarity of human mitochondrial transcription factor 1 to high mobility group proteins. Science 252:965–969

    Article  PubMed  CAS  Google Scholar 

  • Pauli TT, Haykinson MJ, Johnson RC (1993) The nonspecific DNA-binding and DNA-bending proteins HMG1 and HMG2 promote the assembly of complex nucleoprotein structures. Genes Dev 7:1521–1534

    Article  Google Scholar 

  • Pentecost BT, Wright JM, Dixon GH (1985) Isolation and sequence of cDNA clones coding for a member of the family of high mobility group proteins (HMG-T) in trout and analysis of HMG-T-mRNA’s in trout tissues. Nucleic Acids Res 13:4871–4888

    Article  PubMed  CAS  Google Scholar 

  • Percival-Smith P, Muller M, Affolter M, Gehring WJ (1990) The interaction with DNA of wild-type and mutant fushi tarazu homeodomains. EMBO J 9:3967–3974

    PubMed  CAS  Google Scholar 

  • Pikaard CS, McStay B, Schultz MC, Bell SP, Reeder RH (1989) The Xenopus ribosomal gene enhancers bind an essential polymerase I transcription factor, xUBF. Genes Dev 3:1779–1788

    Article  PubMed  CAS  Google Scholar 

  • Pikaard CS, Copenhaver GP, Putnam CD, Denton ML (1994) J Cell Biochem Suppl 18C:L509

    Google Scholar 

  • Pil PM, Lippard SJ (1992) Specific binding of chromosomal protein HMG1 to DNA damaged by the anticancer drug cisplatin. Science 256:234–237

    Article  PubMed  CAS  Google Scholar 

  • Pil PM, Chow CS, Lippard SJ (1993) High-mobility-group-1 protein mediates DNA bending as determined by ring closures. Proc Natl Acad Sci USA 90:9465–9469

    Article  PubMed  CAS  Google Scholar 

  • Poulat F, Soullier S, Goze C, Heitz F, Calas B, Berta P (1994) Description and functional implications of a novel mutation in the sex-determining gene SRY. Hum Mutat 3:200–204

    Article  PubMed  CAS  Google Scholar 

  • Putnam CD, Pikaard CS (1992) Cooperative binding of the xenopus RNA polymerase-I transcription factor xUBF to repetitive ribosomal gene enhancers. Mol Cell Biol 12:4970–4980

    PubMed  CAS  Google Scholar 

  • Read CM, Larose A-M, Leblanc B, Bannister AJ, Firek S, Smith DR, Moss T (1992) High resolution studies of the Xenopus laevis ribosomal gene promoter in vivo and in vitro. J Biol Chem 267:10961–10967

    PubMed  CAS  Google Scholar 

  • Read CM, Cary PD, Crane-Robinson C, Driscoll PC, Norman DG (1993) Solution structure of a DNA-binding domain from HMG1. Nucleic Acids Res 21:3427–3436

    Article  PubMed  CAS  Google Scholar 

  • Read CM, Cary PD, Preston NS, Lnenicek-Allen M, Crane-Robinson C (1994) The DNA sequence specificity of HMG boxes lies in the minor wing of the structure. EMBO J 13:5639–5646

    PubMed  CAS  Google Scholar 

  • Sawada S, Littman DR (1991) Identification and characterization of a T-cell-specific enhancer adjacent to the murine CD4 gene. Mol Cell Biol 11:5506–5515

    PubMed  CAS  Google Scholar 

  • Schultz SC, Shields GC, Steitz TA (1991) Crystal structure of a CAP-DNA complex: the DNA is bent by 90°. Science 253:1001–1007

    Article  PubMed  CAS  Google Scholar 

  • Scott MP, Tamkun JW, Hartzell III GW (1989) The structure and function of the homeodomain. Biochim Biophys Acta 989:25–48

    PubMed  CAS  Google Scholar 

  • Sekiguchi T, Nohiro Y, Nakamura Y, Hisamoto N, Nishimoto T (1991) The human CCG1 gene, essential for progression of the G1 phase, encodes a 210-kilodalton nuclear DNA-binding protein. Mol Cell Biol 11:3317–3325

    PubMed  CAS  Google Scholar 

  • Sheflin LG, Spaulding SW (1989) High mobility group proteinl preferentially conserves torsion in negatively supercoiled DNA. Biochemistry 28:5658–5664

    Article  PubMed  CAS  Google Scholar 

  • Sheflin LG, Fucile NW, Spaulding SW (1993) The specific interactions of HMG-1 and HMG-2 with negatively supercoiled DNA are modulated by their acidic C-terminal domains and involve cysteine residues in their HMG-1/2 boxes. Biochemistry 32:3238–3248

    Article  PubMed  CAS  Google Scholar 

  • Shirakata M, Huppi K, Usuda S, Okazaki K, Yoshida K, Sakano H (1991) HMG1-related DNA-binding protein isolated with V-(D)-J recombination signal probes. Mol Cell Biol 11:4528–4536

    PubMed  CAS  Google Scholar 

  • Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, Foster JW, Frischauf AM, Lovell-Badge R, Goodfellow PN (1990) A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature (Lond) 346:240–244

    Article  CAS  Google Scholar 

  • Staben C, Yanofsky C (1990) Neurospora crassa a mating-type region. Proc Natl Acad Sci USA 87:4917–4921

    Article  PubMed  CAS  Google Scholar 

  • Stevanovic M, Lovell-Badge R, Collignon J, Goodfellow PN (1923) SOX3 Is an X-linked gene related to SRY. Hum Mol Genet 2:2013–2018

    Article  Google Scholar 

  • Stros M, Stokrova J, Thomas JO (1994) DNA looping by the HMG-box domains of HMG1 and modulation of DNA binding by the acidic C-terminal domain. Nucleic Acids Res 22:1044–1051

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto A, Iino Y, Maeda T, Watanabe Y, Yamamoto M (1991) Schizosaccharomyces pombe ste11+ encodes a transcription factor with an HMG motif that is a critical regulator of sexual development. Genes Dev 5:1990–1999

    Article  PubMed  CAS  Google Scholar 

  • Theunissen O, Rudt F, Guddat U, Mentzel H, Pieler T (1992) RNA and DNA binding zinc fingers in Xenopus TFIIIA. Cell 71:679–690

    Article  PubMed  CAS  Google Scholar 

  • Tjian R, Maniatis T (1994) Transcriptional activation: a complex puzzle with few easy pieces. Cell 77:5–8

    Article  PubMed  CAS  Google Scholar 

  • Travers AA, Ner SS, Churchill MEA (1994) DNA chaperones: a solution to a persistence problem? Cell 77:167–169

    Article  PubMed  CAS  Google Scholar 

  • Travis A, Amsterdam A, Belanger C, Grosschedl R (1991) LEF-1, a gene encoding a lymphoid-specific protein with an HMG domain, regulates T-cell receptor α enhancer function. Genes Dev 5:880–894

    Article  PubMed  CAS  Google Scholar 

  • Treiber DK, Zhai XQ, Jantzen HM, Essigmann JM (1994) Cisplatin-DNA adducts are molecular decoys for the ribosomal RNA transcription factor hUBF (human upstream binding factor). Proc Natl Acad Sci USA 91:5672–5676

    Article  PubMed  CAS  Google Scholar 

  • Van de Wetering M, Clevers H (1992) Sequence-specific interaction of the HMG box proteins TCF-1 and SRY occurs within the minor groove of a Watson-Crick double helix. EMBO J 11:3039–3044

    PubMed  Google Scholar 

  • Van de Wetering M, Oosterwegel M, Dooijes D, Clevers H (1991) Identification and cloning of TCF-1, a T lymphocyte-specific transcription factor containing a sequence-specific HMG box. EMBO J 10:123–132

    PubMed  Google Scholar 

  • Van de Wetering M, Oosterwegel M, van Norren K, Clevers H (1993) Sox 4, an Sry like HMG box protein, is a transcriptional activator in lymphocytes. EMBO J 12:3847–3854

    PubMed  Google Scholar 

  • Van Houte L, van Oers A, van de Wetering M, Dooijes D, Kaptein R, Clevers H (1993) The sequence-specific high mobility group-1 box of TCF-1 adopts a predominantly α-helical conformation in solution. J Biol Chem 268:18083–18087

    PubMed  Google Scholar 

  • Wagner CR, Hamana K, Elgin SCR (1992) A high mobility group protein and its cDNAs from Drosophila melanogaster. Mol Cell Biol 12:1915–1923

    PubMed  CAS  Google Scholar 

  • Wang L, Precht P, Balakir R, Horton WEJ (1993) Rat and chick cDNA clones encoding HMG like proteins. Nucleic Acids Res 21:1493

    Article  PubMed  CAS  Google Scholar 

  • Waterman ML, Jones KA (1990) Purification of TCF1α, a T-cell specific transcription factor that activates the T-cell receptor α gene enhancer in a contextdependent manner. New Biol 2:621–636

    PubMed  CAS  Google Scholar 

  • Waterman ML, Fischer WH, Jones KA (1991) A thymus-specific member of the HMG protein family regulates the human T cell recptor Cα enhancer. Genes Dev 5:656–669

    Article  PubMed  CAS  Google Scholar 

  • Weir HM, Kraulis PJ, Hill CS, Raine ARC, Laue ED, Thomas JO (1993) Structure of the HMG box motif in the B-domain of HMG1. EMBO J 12:1311–1319

    PubMed  CAS  Google Scholar 

  • Wen L, Huang JK, Johnson BH, Reeck GR (1989) A human placental cDNA clone that encodes nonhistone chromosomal protein HMG-1. Nucleic Acids Res 17:1197–1214

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski JR, Schulze E (1992) Insect proteins homologous to mammalian high mobility group protein 1 — characterization and DNA-binding properties. J Biol Chem 267:17170–17177

    PubMed  CAS  Google Scholar 

  • Wright JM, Dixon GH (1988) Induction by torsional stress of an altered DNA conformation 5′ upstream of the gene for a high mobility group protein from trout and specific binding to flanking sequences by the gene product HMG-T. Biochemistry 27:576–581

    Article  PubMed  CAS  Google Scholar 

  • Xie W, O’Mahony DJ, Smith SD, Lowe D, Rothblum LI (1992) Analysis of the rat ribosomal DNA promoter: characterization of linker-scanning mutants and of the binding of UBF. Nucleic Acids Res 20:1587–1592

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Read, C.M., Cary, P.D., Crane-Robinson, C., Driscoll, P.C., Carrillo, M.O.M., Norman, D.G. (1995). The Structure of the HMG Box and Its Interaction with DNA. In: Eckstein, F., Lilley, D.M.J. (eds) Nucleic Acids and Molecular Biology. Nucleic Acids and Molecular Biology, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79488-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79488-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79490-2

  • Online ISBN: 978-3-642-79488-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics