Skip to main content

Abstract

We will now proceed to discuss some recent applications of the present description of quantum correlation effects of disordered condensed matter using the theoretical development in the previous Chapter, i.e. in terms of coherent dissipative structures. The present view-point has led to the study of resonances in quantum chemistry, e.g. in atomic, molecular and solid state theory but recent emphasis on collective non-linear effects has produced many new surprising and unexpected applications to physical chemistry and the physics of disordered condensed matter. Predictions and theoretical interpretations have been made, see below, and to recapitulate the situation we will start by stressing the following fundamental points:

  1. 1.

    by refering to a density matrix, which subscribe to the general decomposition, see the previous chapter on the second order reduced density matrix and the extreme case, as (neglecting the “tail”)

    $$ {\Gamma^{(2)}}=\Gamma_L^{(2)}+\Gamma_S^{(2)}+(\Gamma_T^{(2)}) $$

    where the first part is the “large component” associated with coherence and the possible development of ODLRO and the second “small part“ relates to the correlation sector,

  2. 2.

    by extending the quantum mechanical formulation through the theory of complex scaling (CSM), so that irreversibility is naturally embedded in the dynamics from the beginning, and simultaneously, through the reduction above, to far from equilibrium situations,

  3. 3.

    by considering the thermal quantum correlations obtained from the thermalization of the reduced density matrix Γ(2),

  4. 4.

    by showing that these thermal quantum correlations can not refer to a wave function, like those at T = 0 K,

  5. 5.

    and by not considering any specific physical mechanism, except the general perturbational influence given by universal, environmental quantum correlations as exhibited through the extreme case previously described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brändas EJ, Chatzidimitriou-Dreismann CA (1991) Int J Quant Chem 40: 649

    Article  Google Scholar 

  2. Brändas EJ, Chatzidimitriou-Dreismann CA, Brändas E, Elander N (1989) Eds., Lecture Notes in Physics 325, p. 486–533

    Google Scholar 

  3. Chatzidimitriou-Dreismann CA (1991) Adv Chem Phys 80: 201

    Article  CAS  Google Scholar 

  4. Chatzidimitriou-Dreismann CA, Brändas EJ (1991) Ber Bunsenges Phys Chem 95: 263

    CAS  Google Scholar 

  5. Weingärtner H, Chatzidimitriou-Dreismann CA (1990) Nature 346: 548

    Article  Google Scholar 

  6. Chatzidimitriou-Dreismann CA, Brändas EJ (1989) Ber Bunsenges Phys Chem 93: 1065

    CAS  Google Scholar 

  7. Brändas EJ, Chatzidimitriou-Dreismann CA (1991) Ber Bunsenges Phys Chem 95: 462

    Google Scholar 

  8. Karlsson E, Brändas EJ, Chatzidimitriou-Dreismann CA (1991) Physica Scripta 44: 77

    Article  CAS  Google Scholar 

  9. Chatzidimitriou-Dreismann CA, Brändas EJ, Karlsson E (1990) Phys Rev Rapid Communications B 42: 2704

    Google Scholar 

  10. Brändas EJ (1993) Ber Bunsenges Phys Chem 97: 55

    Google Scholar 

  11. Chatzidimitrious-Dreismann CA, Brändas EJ (1992) Physica C 201: 340

    Article  Google Scholar 

  12. Brändas EJ (1993) Ed. Proceedings of the Nobel Satellite Symposium on Resonances and Microscopic Irreversibility, Uppsala, December 1991, Int J Quant Chem 46: Nr. 3

    Google Scholar 

  13. Brändas EJ (1993) Proceedings from the BEAM-COOL Workshop, Montreaux, October 4–8

    Google Scholar 

  14. Eigen M, De Maeyer L (1958) Proc R Soc (London) 247: 505

    Article  CAS  Google Scholar 

  15. Meiboom S (1961) J Chem Phys 34: 375

    Article  CAS  Google Scholar 

  16. Hertz HG (1987) Chemica Scripta 27: 479

    CAS  Google Scholar 

  17. Hertz HG, Brown BM, Müller KJ, Maurer R (1987) J Chem Ed 64: 777

    Article  CAS  Google Scholar 

  18. Schuster P, Zundel G, Sandorfy C (1976) The hydrogen bond, vols I-III North Holland, Amsterdam

    Google Scholar 

  19. Robinson RA, Stokes RH (1970) Electrolytic solutions, Butterworths, London

    Google Scholar 

  20. Pfeifer R, Hertz HG (1990) Ber Bunsenges Phys Chem 94: 1349

    CAS  Google Scholar 

  21. Chatzidimitriou-Dreismann CA, Brändas EJ (1990) Int J Quant Chem 37: 155

    Article  CAS  Google Scholar 

  22. Halle B, Karlström G (1983) J Chem Soc Faraday Trans 2, 79: 1031

    Google Scholar 

  23. Brändas EJ, Chatzidimitriou-Dreismann CA (1989) Int J Quant Chem Symp 23: 147

    Google Scholar 

  24. Chatzidimitriou-Dreismann CA (1989) Int J Quant Chem Symp 23: 153

    CAS  Google Scholar 

  25. Bednorz JG, Müller KA (1986) Z Phys B 64: 189

    Article  CAS  Google Scholar 

  26. Chu CW (1987) Proc Natl Acad Sci USA, 84: 4681

    Article  CAS  Google Scholar 

  27. Burns G (1992) High-temperature superconductivity. An Introduction, Academic Press, Inc., New York

    Google Scholar 

  28. Anderson PW, Schrieffer R (1991) Physics Today June

    Google Scholar 

  29. Bedell KS, Coffey D, Meltzer DE, Pines D, Schrieffer JR (1990) (Eds.), High Temperature Superconductivity: Proceedings, Addison-Wesley, Redwood City, Calif

    Google Scholar 

  30. Wollman DA, Van Harlingen DJ, Lee WC, Ginsberg DM, Leggett AI (1993) Phys Rev Letters 71: 2134

    Article  CAS  Google Scholar 

  31. Jansen L, Block R (1993) Physica A 198: 551

    Article  CAS  Google Scholar 

  32. Jansen L, Chandran L, Block R (1993) Chem Phys 176: 1

    Article  CAS  Google Scholar 

  33. Uemura YJ et al. (1989) Phys Rev Lett 62: 2317

    Article  CAS  Google Scholar 

  34. Lynn JW (ed) (1990) High temperature superconductivity. Springer, Berlin Heidelberg New York

    Google Scholar 

  35. Zhang H, Sato H (1993) Phys Rev Lett 70: 1697

    Article  CAS  Google Scholar 

  36. Dahl PF (1992) Superconductivity. Its historical roots and development from mercury to the ceramic oxides, American Institute of Physics, New York

    Google Scholar 

  37. von Klitzing K, Dorda G, Pepper M (1980) Phys Rev Lett 45: 494

    Article  Google Scholar 

  38. Prange RE, Girvin SM (1990) The quantum hall effect second edition, Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  39. Tsui DC, Störmer HL, Gossard AC (1982) Phys Rev Lett 48: 1559

    Article  CAS  Google Scholar 

  40. Wigner E (1934) Phys Rev 46: 1002

    Article  CAS  Google Scholar 

  41. Laughlin RB (1983) Phys Rev Lett 50: 1395

    Article  Google Scholar 

  42. Leinaas JM, Myrheim J (1977) Nouvo Cimento 37 B 1

    Google Scholar 

  43. Wilczek F (1982) Phys Rev Lett 49: 1

    Article  Google Scholar 

  44. Suen YW, Engel LW, Santos MB, Shayegan M, Tsui DC (1992) Phys Rev Lett 68, 1379

    Article  CAS  Google Scholar 

  45. Eisenstein JP, Boebinger GS, Pfeiffer LN, West KW, Song He (1992) Phys Rev Lett 68: 1383

    Article  CAS  Google Scholar 

  46. Coxeter HSM (1973) Regular Polytopes, Dover Publications, Inc., third edition

    Google Scholar 

  47. Kuhn TS (1962) The structure of scientific revolutions, The university of Chigago Press; second edition, enlarged (1970)

    Google Scholar 

  48. Haken H, Mikhailov A (1993) Interdisciplinary approaches to nonlinear complex systems, Springer Series in Synergetics, Vol. 62

    Google Scholar 

  49. Bohm D (1951) Quantum Theory, Prentice-Hall, Inc., New York

    Google Scholar 

  50. Twiss RQ (1958) Aust J Phys 11: 564

    Article  Google Scholar 

  51. Schneider J (1959) Phys Rev Lett 2: 504

    Article  Google Scholar 

  52. Sprangle P, Drobot AT (1977) IEEE Trans Microwave Theory Tech 25: 528

    Article  Google Scholar 

  53. Hirshfeld JL, Wachtel JM (1964) Phys Rev Lett 12: 533

    Article  Google Scholar 

  54. Ikegami H (1990) Phys Rev Lett 64, 1737 (1990); ibid 2593

    Google Scholar 

  55. Bell J (1990), Against measurement, Physics World, Volume 3, No 8, 33, August

    Google Scholar 

  56. Redhead M (1987) Incompleteness, Nonlocality, and Realism, Clarendon Press, Oxford

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brändas, E. (1995). Applications of CSM Theory. In: Lippert, E., Macomber, J.D. (eds) Dynamics During Spectroscopic Transitions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79407-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79407-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79409-4

  • Online ISBN: 978-3-642-79407-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics