Skip to main content

Humic Substances and Plant Nutrition

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany/Fortschritte der Botanik ((BOTANY,volume 56))

Abstract

Since the studies by Liebig (1856), it is well known that plants, as long as they are adequately supplied with light and mineral nutrients, can live in the absence of the organic and inorganic structural components of the soil. Nowadays the use of hydroponics is popular not only among plant physiologists but also in certain commercial activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiken GR, McKnight DM, Wershaw RL, MacCarthy P (1985) In: Aiken GR et al. (eds) Humic substances in soil sediment and water. Wiley New York, pp 1–9.

    Google Scholar 

  • Albuzio A, Ferrari G (1989) Plant Soil 113: 237–241.

    CAS  Google Scholar 

  • Albuzio A, Ferrari G, Nardi S (1986) Can J Soil Sci 66: 731–736.

    CAS  Google Scholar 

  • Albuzio A, Dell’Agnola G, Dibona D, Concheri G, Nardi S (1993) In: Paoletti MG, Foissner W, Coleman D (eds) Soil biota, nutrient cycling, and farming systems. Lewis, Boca Raton, pp 15–25.

    Google Scholar 

  • Allison FE (1973) Soil organic matter and its role in crop production. Elsevier, Amsterdam. Anderson HA, Russell JD (1976) Nature 260: 597.

    Google Scholar 

  • Aso S, Takenaga H (1975) Trans Int Symp Humus et Planta VI, Prague, pp 1–17.

    Google Scholar 

  • Asp H, Berggren D (1990) Physiol Plant 80: 307–314.

    CAS  Google Scholar 

  • Baes CF, Mesmer RE (1976) The hydrolysis of cations. Wiley, New York.

    Google Scholar 

  • Bedrock CN, Cheshire MV, Chudek JA, Goodman BA, Shand CA (1994) Sci Total Environ (in press).

    Google Scholar 

  • Bienfait HF (1985) J Bioenerg Biomembr 17: 73–83.

    PubMed  CAS  Google Scholar 

  • Bohn HL (1976) J Soil Sci Soc Am Proc 40: 468–470.

    Google Scholar 

  • Boyd SA, Sommers LE, Nelson DW (1979) Soil Sci Soc Am J 43: 893–899.

    CAS  Google Scholar 

  • Boyd SA, Sommers LE, Nelson DW (1981) Soil Sci Soc Am J 45: 1241–1242.

    CAS  Google Scholar 

  • Cabrera D, Young SD, Rowell DL (1988) Plant Soil 105: 195–204.

    CAS  Google Scholar 

  • Cacco G, Dell’Agnola G (1984) Can J Soil Sci 64: 225–228.

    CAS  Google Scholar 

  • Cameron RS, Thornton BK, Swift RS, Posner AM (1972) J Soil Sci 23: 394–408.

    CAS  Google Scholar 

  • Carpita N, Sabularse D, Montezinos D, Delmer DP (1979) Science 205: 1144–1147.

    PubMed  CAS  Google Scholar 

  • Chen Y, Aviad T (1990) In: MacCarthy P et al. (eds) Humic substances in soil and crop sciences: selected readings. American Society of Agronomy and Soil Science Society of America, Madison, pp 161–186.

    Google Scholar 

  • Chen Y, Schnitzer M (1976) Soil Sci Soc Am J 40: 866–872.

    CAS  Google Scholar 

  • Chen Y, Schnitzer M (1978) Soil Sci 125: 7–15.

    CAS  Google Scholar 

  • Crane FL, Morre’ DJ, Loew HE, Boettger M (1991) In: Crane FL et al. (eds) Oxidoreduction at the plasma membrane: relation to growth and transport, vol II. CRC Press, Boca Raton, pp 21–33.

    Google Scholar 

  • Dawson HJ, Hrutfiord BF, Zasoski RJ, Ugolini FC (1981) Soil Sci 132: 191–198.

    CAS  Google Scholar 

  • De Almeida RM, Pospisil F, Vackova K, Kutacek M (1980) Biol Plant 22: 167–175.

    Google Scholar 

  • Dell’Agnola G, Ferrari G (1971) Proc VIII Int Symp Agrochem, Venice, pp 298–304.

    Google Scholar 

  • Dell’Agnola G, Ferrari G (1975) Trans Int Symp Humus et Planta VI, Prague, pp 389–393.

    Google Scholar 

  • Dell’Agnola G, Nardi S (1987) Biol Fertil Soils 4: 115–118.

    Google Scholar 

  • Dormaar JF (1975) Can J Soil Sci 55: 111–118.

    CAS  Google Scholar 

  • Ernst WHO, Kraak MHS, Stoots L (1987) J Plant Phys 127: 171–175.

    CAS  Google Scholar 

  • Fagbenro JA, Agboola AA (1993) J Plant Nutr 16: 1465–1483.

    CAS  Google Scholar 

  • Farmer VC, Pisaniello DL (1985) Nature 313: 474–475.

    CAS  Google Scholar 

  • Fernandez VH (1968) Pontif Acad Sci Scr Varia 32: 805–850.

    Google Scholar 

  • Flaig W (1960) Sci Proc Royal Dublin Soc 4: 49–62.

    Google Scholar 

  • Flaig W, Riemer H (1971) Trans Int Symp Humus et Planta V, Prague, pp 519–523.

    Google Scholar 

  • Fuehr F, Sauerbeck D (1967a) In: Report FAO/IAEA Meeting, Vienna, Pergamon Press, Oxford pp 73–82.

    Google Scholar 

  • Fuehr F, Sauerbeck D (1967b) In: Report FAO/IAEA Meeting, Vienna, Pergamon Press, Oxford pp 317–327.

    Google Scholar 

  • Ghosh K, Schnitzer M (1980) Soil Sci 129: 266–276.

    CAS  Google Scholar 

  • Giovannini G, Sequi P (1976) J Soil Sci 27: 148–153.

    CAS  Google Scholar 

  • Gjessing ET, Riise G, Petersen RC, Andruchow E (1989) Sci Total Environ 81/82:683–690.

    Google Scholar 

  • Guminski S, Sulej J, Glabiszewski J (1983) Acta Soc Bot Pol 52: 149–164.

    CAS  Google Scholar 

  • Haworth RD (1971) Soil Sci 111: 71–79.

    CAS  Google Scholar 

  • Hayes MHB (1991) In: Wilson WS (ed) Advances in soil organic matter research: the impact on agriculture and the environment. Royal Society of Chemistry, Cambridge, pp 3–22.

    Google Scholar 

  • Hayes MHB, MacCarthy P, Malcolm R, Swift RS (eds) (1989) Humic substances II. In search of structure. Wiley Interscience, Chichester.

    Google Scholar 

  • Helal HM, Sauerbeck DR (1984) Plant Soil 76: 175–182.

    CAS  Google Scholar 

  • Houghton C, Rose FA (1976) Appi Environ Microbiol 31: 969–976.

    CAS  Google Scholar 

  • Irintoto B, Tan KH, Sommer HE (1993) J Plant Nutr 16: 1109–1118.

    CAS  Google Scholar 

  • Jenkinson DS, Rayner JH (1977) Soil Sci 123:298–305.

    CAS  Google Scholar 

  • Khristeva LA, Galushko AM, Gorovaya AI, Kolbassin AA, Shortshai LP, Tkatshanko LK, Fot LV, Luk’yianenco NV (1980) Proc VI Int Peat Congr, Minnesota, pp 403–404.

    Google Scholar 

  • Kuikman PJ, van Veen AJ (1989) Biol Fertil Soil 8: 13–18.

    Google Scholar 

  • Lee YS, Bartlett RJ (1976) Soil Sci Soc Am J 40: 876–879.

    CAS  Google Scholar 

  • Levesque M (1970) Can J Soil Sci 50: 385–395.

    CAS  Google Scholar 

  • Liebig J (1856) J R Agric Soc 17: 284–326.

    Google Scholar 

  • Linehan DJ (1976) Soil Biol Biochem 8: 511–517.

    CAS  Google Scholar 

  • Linehan DJ (1977) J Soil Sci 28: 369–378.

    CAS  Google Scholar 

  • Linehan DJ (1985) In: Vaughan D, Malcolm RE (eds) Soil organic matter and biological activity. Martinus Nijhoff/Dr W Junk, The Hague, Netherlands, pp 403–421.

    Google Scholar 

  • Linehan DJ, Shepherd H (1979) Plant Soil 52: 281–289.

    CAS  Google Scholar 

  • Linsday WL (1991) In: Mortvedt JJ et al. (eds) Micronutrients in agriculture. Soil Science Society of America, Madison, pp 89–112.

    Google Scholar 

  • Lobartini JC, Orioli GA (1988) Plant Soil 106: 153–157.

    CAS  Google Scholar 

  • Maggioni A, Varanini Z, Nardi S, Pinton R (1987) Sci Total Environ 62: 355–363.

    CAS  Google Scholar 

  • Malcolm RE, Vaughan D (1979a) Plant Soil 51: 117–126.

    CAS  Google Scholar 

  • Malcolm RE, Vaughan D (1979b) Soil Biol Biochem 11: 65–72.

    CAS  Google Scholar 

  • Marschner H, Roemheld V, Horst WJ, Martin P (1986) Z Pflanzenernaeh Bodenkd 149: 441–456.

    CAS  Google Scholar 

  • Marte» AE (1975) Pure Appi Chem 44: 81–113.

    Google Scholar 

  • Mato MC, Fabregas R, Mendez J (1971) Soil Biol Biochem 3: 285–288

    CAS  Google Scholar 

  • Mato MC, Olmedo MG, Mendez J (1972a) Soil Biol Biochem 4: 469–473.

    CAS  Google Scholar 

  • Mato MC, Gonzalez-Alonso LM, Mendez J (1972b) Soil Biol Biochem 4: 475–478.

    CAS  Google Scholar 

  • Mench M, Morel JL, Guckert A, Guillet B (1988) J Soil Sci 39: 521–527.

    CAS  Google Scholar 

  • Mirave JP, Orioli GA (1987) Plant Soil 104: 214–219.

    Google Scholar 

  • Mirave JP, Orioli GA (1989) Sci Total Environ 81/82:679–682.

    Google Scholar 

  • Muscolo A, Felici M, Concheri G, Nardi S (1993) Biol Fertil Soils 15: 127–131.

    CAS  Google Scholar 

  • Mylonas VA, McCants CV (1980a) J Plant Nutr 2: 377–393.

    CAS  Google Scholar 

  • Mylonas VA, McCants CV (1980b) Plant Soil 54: 485–490.

    CAS  Google Scholar 

  • Nannipieri P, Sequi P (1982) In: Evolution du niveau de fertilité des sols dans différents systèmes de culture. Critères pour mesurer cette fertilité. Bari Italy Istituto sperimentale Agronomico, pp 141–151.

    Google Scholar 

  • Nardi S, Arnoldi G, Dell’Agnola G (1988) Can J Soil Sci 68: 563–567.

    CAS  Google Scholar 

  • Nardi S, Concheri G, Dell’Agnola G, Scrimin P (1991) Soil Biol Biochem 23: 833–836.

    CAS  Google Scholar 

  • O’Donnell RV (1973) Soil Sci 116: 106–112.

    Google Scholar 

  • Oades JM (1984) In: Tinslay J, Darbyshire JF (eds) Biological processes and soil fertility. Martinus Nijhoff/Dr W Junk, The Hague, pp 319–338.

    Google Scholar 

  • Piccolo A, Mbagwu JSC (1990) Plant Soil 123: 27–37.

    CAS  Google Scholar 

  • Piccolo A, Nardi S, Concheri G (1992) Soil Biol Biochem 24: 373–380.

    CAS  Google Scholar 

  • Pinton R, Varanini Z, Vizzotto G, Maggioni A (1992) Plant Soil 142: 203–210.

    CAS  Google Scholar 

  • Poole RJ (1978) Plant Physiol 29: 437–460.

    CAS  Google Scholar 

  • Prat S, Pospisil F (1959) Biol Plant 1: 71–80.

    CAS  Google Scholar 

  • Rauthan BS, Schnitzer M (1981) Plant Soil 63: 491–495.

    CAS  Google Scholar 

  • Roemheld V (1991) In: Chen Y, Hadar Y (eds) Iron nutrition and interactions in plants. Kluwer, Dordrecht pp 159–166.

    Google Scholar 

  • Samson G, Visser SA (1989) Soil Biol Biochem 21: 343–347.

    CAS  Google Scholar 

  • Schindler JE, Williams DJ, Zimmerman AP (1976) Environ Biochem 1: 109–115.

    CAS  Google Scholar 

  • Schnitzer M (1977) In: Proc Symp Soil Org Matter Studies, Braunschweig, Int Atomic Energy Agency, Vienna, pp 117–131.

    Google Scholar 

  • Schnitzer M (1978) In: Schnitzer M, Khan SV (eds) Soil organic matter. Elsevier, Amsterdam, pp 1–64.

    Google Scholar 

  • Schnitzer M (1985) In: Aiken GR et al. (eds) Humic substances in soil sediment and water. Wiley, New York, pp 303–325.

    Google Scholar 

  • Schnitzer M (1990) In: MacCarthy P et al. (eds) Humic substances in soil and crop sciences: selected readings. American Society of Agronomy and Soil Science Society of America, Madison, pp 65–90.

    Google Scholar 

  • Schnitzer M, Hansen EH (1970) Soil Sci 109: 333–340.

    CAS  Google Scholar 

  • Schnitzer M, Khan SU (1972) Humic substances in the environment. Marcel Dekker, New York. Schnitzer M, Kodama H (1975) Geoderma 13: 279–287.

    Google Scholar 

  • Schnitzer M, Poapst PA (1967) Nature 213: 598–599.

    CAS  Google Scholar 

  • Sequi P, Guidi G, Petruzzelli G (1975) Geoderma 13: 153–161.

    CAS  Google Scholar 

  • Sladky Z (1959) Biol Plant 1: 142–150.

    Google Scholar 

  • Sladky Z, Tichy’ V (1959) Biol Plant 1: 9–15.

    Google Scholar 

  • Slesak E (1992) Electrophysiology of plant mineral nutrition, Wroclaw University, Breslau.

    Google Scholar 

  • Slesak E, Jurek J (1988) Acta Univ Wratislaviensis 888: 13–19.

    Google Scholar 

  • Slesak E, Tretyn A, Jurek J (1983) Trans Int Symp Humus et Planta VIII Prague, pp 260–262.

    Google Scholar 

  • Stevenson FJ (1982) Humus chemistry: genesis, composition, reactions. Wiley, New York

    Google Scholar 

  • Stevenson FJ (1991) In: Mortvedt JJ et al. (eds) Micronutrients in agriculture. Soil Science Society of America, Madison, pp 145–186.

    Google Scholar 

  • Stevenson FJ, Ardakani MS (1972) In: Mortvedt JJ et al. (eds) Micronutrients in agriculture. Soil Science Society of America, Madison, pp 79–114.

    Google Scholar 

  • Stevenson FJ, He X-T (1990) In: MacCarthy et al. (eds) Humic substances in soil and crop sciences: selected readings. American Society of Agronomy and Soil Science Society of America, Madison, pp 91–109.

    Google Scholar 

  • Swift RS, Posner AM (1971) J Soil Sci 22: 237–249.

    CAS  Google Scholar 

  • Tan KH (1978) Goederma 21: 67–74.

    CAS  Google Scholar 

  • Tan KH, Nopamornbodi V (1979) Plant Soil 51: 283–287.

    CAS  Google Scholar 

  • Tarafdar JC, Jungk A (1987) Biol Fertil Soil 3: 199–204.

    CAS  Google Scholar 

  • Theng BKG (1979) Formation and properties of clay-polymer complexes. Hilger, London. Tinslay J, Salam A (1961) Soils Fert 21: 81–90.

    Google Scholar 

  • Vakhmistrov DB, Mishustina NE, Zverkova OA, Debets EYu (1989) Fiziol Rast 36:980–989.

    CAS  Google Scholar 

  • Van der Werf MM, Out T (1981) Biochem Physiol Pflanz 176: 274–282.

    Google Scholar 

  • Van Dijk H (1971) Geoderma 5: 53–67.

    Google Scholar 

  • Varanini Z, Pinton R, De Biasi MG, Astolfi S, Maggioni A (1993) Plant Soil 153: 61–69.

    CAS  Google Scholar 

  • Vaughan D (1967) Soil Biol Biochem 1: 15–28.

    Google Scholar 

  • Vaughan D (1974) Soil Biol Biochem 6: 241–247.

    CAS  Google Scholar 

  • Vaughan D, McDonald IR (1971) J Exp Bot 22, 400–410.

    CAS  Google Scholar 

  • Vaughan D, McDonald IR (1976) Soil Biol Biochem 8: 415–421.

    CAS  Google Scholar 

  • Vaughan D, Linehan DJ (1976) Plant Soil 44: 445–449.

    CAS  Google Scholar 

  • Vaughan D, Malcolm RE (1979) Soil Biol Biochem 11: 57–63.

    CAS  Google Scholar 

  • Vaughan D, Malcolm RE (1985) In: Vaughan D, Malcolm RE (eds) Soil organic matter and biological activity. Martinus Nijhoff/Dr W Junk, The Hague, Netherlands, pp 37–75.

    Google Scholar 

  • Vaughan D, Ord BG (1981) J Exp Bot 32: 679–687.

    Google Scholar 

  • Vaughan D, Cheshire MV, Mundie CM (1974) Biochem Soc Trans 2: 126–129.

    CAS  Google Scholar 

  • Vaughan D, Ord BG, Malcolm RE (1978) J Exp Bot 29: 1337–1344.

    CAS  Google Scholar 

  • Visser SA (1964) Nature 204: 581.

    CAS  Google Scholar 

  • Visser SA (1985) Soil Biol Biochem 17: 457–462.

    CAS  Google Scholar 

  • Visser SA (1987) Sci Total Environ 62: 347–354.

    PubMed  CAS  Google Scholar 

  • Wilson MA (1990) In: MacCarthy P et al. (eds) Humic substances in soil and crop sciences: selected readings. American Society of Agronomy and Soil Science Society of America, Madison, pp 221–260.

    Google Scholar 

  • Yeagle P (1987) The membranes of cells. Academic Press, Orlando.

    Google Scholar 

  • Yonebayashi K, Hattori T (1987) Sci Total Environ 62: 55–64.

    CAS  Google Scholar 

  • Zimmerman AP (1981) Hydrobiologia 78: 259–265.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Varanini, Z., Pinton, R. (1995). Humic Substances and Plant Nutrition. In: Behnke, HD., Lüttge, U., Esser, K., Kadereit, J.W., Runge, M. (eds) Progress in Botany. Progress in Botany/Fortschritte der Botanik, vol 56. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79249-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79249-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79251-9

  • Online ISBN: 978-3-642-79249-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics