Skip to main content

Caps, Cors, Dehydrins, and Molecular Chaperones: Their Relationship with Low Temperature Responses in Spinach

  • Conference paper
Biochemical and Cellular Mechanisms of Stress Tolerance in Plants

Part of the book series: NATO ASI Series ((ASIH,volume 86))

Abstract

When exposed to low non-freezing temperatures (0–10°C), the freezing tolerance of spinach increases in a time dependent fashion from an LT50 of -4°C to -14°C. Associated with the low temperature induction of freezing tolerance is the increased expression of at least 20 proteins. Three of these low temperature responsive proteins were selected for study and found to belong to two families of stress proteins, the LEA/dehydrin/Rab and the heat shock 70s. Their possible role in low temperature tolerance mechanisms and a model for the role of ATP in peptide binding activities of the 70 kDa heat shock molecular chaperones are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alber, T (1989) Mutational effects on protein stability. Ann Rev Biochem 58: 765–798

    Article  PubMed  CAS  Google Scholar 

  • Anderson, JV, Li, Q-B, Haskell, DW, Guy, CL (1993) Structural organization of the spinach ERlumenal HSC70 gene and its expression during cold acclimation. In review.

    Google Scholar 

  • Ausubel, FM, Brent, R, Kingston, RE, Moore, DD, Seidmon, JG, Smith, JA, Struhl, K (1989) Current Protocols in Molecular Biology, Wiley Interscience, New York.

    Google Scholar 

  • Beckmann, RP, Mizzen, LA, Welch, WJ (1990) Interaction of Hsp 70 with newly synthesized proteins: Implications for protein folding and assembly. Science 248: 850–854

    Google Scholar 

  • Bock, PE, Frleden, C (1978) Another look at the cold lability of enzymes. Trends Biochem Sci 3: 100–103

    Article  CAS  Google Scholar 

  • Bork, P, Sander, C, Valencia, A (1992) An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin and hsp70 heat shock proteins. Proc Natl Acad Sci USA 89: 7290–7294

    Article  PubMed  CAS  Google Scholar 

  • Braell, WA, Schlossman, DM, Schmid, SL, Rothman, JE (1984) Dissociation of clathrin coats coupled to the hydrolysis of ATP: Role of an uncoating ATPase. J Cell Biol 99: 734–741

    Google Scholar 

  • Brodsky, JL, Hamamoto, S, Feldheim, D, Schekman, R (1993) Reconstitution of protein translocation from solubilized yeast membranes reveals topological distinct roles for BiP and cytosolic Hsc70. J Cell Biol 120: 95–102

    Article  PubMed  CAS  Google Scholar 

  • Burton, V, Mitchell, HK, Young, P, Petersen, NS (1988) Heat shock protection against cold stress of Drosophila melanogaster. Mol Cell Biol 8: 3550–3552

    PubMed  CAS  Google Scholar 

  • Carlino, A, Toledo, H, Skaleris, D, DeLisio, R, Weissbach, H, Brot, N (1992) Interactions of liver Grp78 and Escherichia coli recombinant Grp78 with ATP: multiple species and disaggregation. Proc Natl Acad Sci USA 89: 2081–2085

    Article  PubMed  CAS  Google Scholar 

  • Chiang, H-L, Terlecky, SR, Plant, CP, Dice, JF (1989) A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science 246: 382–385

    Article  PubMed  CAS  Google Scholar 

  • Chirico, WJ, Waters, MG, Blobel, G (1988) 70K heat shock related proteins stimulate protein translocation into microsomes. Nature 332: 805–810

    Article  PubMed  CAS  Google Scholar 

  • Close, TJ, Kortt, AA, Chandler, PM (1989) A cDNA-based comparison of dehydration-induced proteins (dehydrins) in barley and corn. Plant Mol Biol 13: 95–108

    Article  PubMed  CAS  Google Scholar 

  • Craig, EA (1989) Essential roles of 70kDa heat inducible proteins. BioEssays 11: 48–52

    Article  PubMed  CAS  Google Scholar 

  • Creighton, TE (1990) Understanding protein folding pathways and mechanisms. In LM Gierasch and J King ed, Protein Folding: Deciphering the Second Half of the Genetic Code. AAAS, Washington, DC, pp 157–170

    Google Scholar 

  • Deshaies, RJ, Koch, BD, Werner-Washburne, M, Craig, EA, Schekman, R (1988) A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature 332: 800–805

    Article  PubMed  CAS  Google Scholar 

  • Dickens, BF, Thompson, GA (1981) Rapid membrane response during low temperature acclimation. Correlation of early changes in the physical properties and lipid composition of Tetrahymena microsomal membranes. Biochim Biophys Acta 664: 211–218

    Google Scholar 

  • Duck, N, McCormick, S, Winter, J (1989) Heat shock protein hsp70 cognate gene expression in vegetative and reproductive organs of Lycopersicon esculentum. Proc Natl Acad Sci USA 86: 3674–3678

    Article  PubMed  CAS  Google Scholar 

  • Dure III, L, (1993) A repeating 11-mer amino acid motif and plant desiccation. Plant J 3: 363–369

    Article  PubMed  CAS  Google Scholar 

  • Ellis, RJ, van der Vies, SM (1991) Molecular chaperones. Ann Rev Biochem 60: 321–347

    Article  PubMed  CAS  Google Scholar 

  • Flaherty, KM, DeLuca-Flaherty, C, McKay, DB (1990) Three-dimensional structure of the ATPase fragment of a 70k heat-shock cognate protein. Nature 346: 623–628

    Article  PubMed  CAS  Google Scholar 

  • Flaherty, KM, McKay, DB, Kabsch, W, Holmes, KC (1991) Similarity of the three-dimensional structures of actin and the ATPase fragment of a 70-kDa heat shock cognate protein. Proc Natl Acad Sci USA 88: 5041–5045

    Article  PubMed  CAS  Google Scholar 

  • Freiden, PJ, Gaut, JR, Hendershot, LM (1992) Interconversion of three differentially modified and assembled forms of BiP. EMBO J 11: 63–70

    PubMed  CAS  Google Scholar 

  • Gaitanaris, GA, Papavassiliou, AG, Rubock, P, Silverstein, SJ, Gottesman, ME (1990) Renaturation of denatured X repressor requires heat shock proteins. Cell 61: 1013–1020

    Article  PubMed  CAS  Google Scholar 

  • Gaut, JR, Hendershot, LM (1992) The in vivo and in vitro phosphorylation of BiP occur at different sites but have similar consequences on function. Abstract #3, Molecular chaperones: Functions in protein folding and cellular metabolism.

    Google Scholar 

  • Gething, M-J, Sambrook, J (1992) Protein folding in the cell. Nature 355: 33–45

    Article  PubMed  CAS  Google Scholar 

  • Gilmour, SJ, Artus, NN, Thomashow, MF (1992) cDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana. Plant Mol Biol 18: 13–21

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, J, Pollitt, NS, Inouye, M (1990) Major cold shock protein of Escherichia coli. Proc Natl Acad Sci USA 87: 283–287

    Article  PubMed  CAS  Google Scholar 

  • Guo, W, Ward, RW, Thomashow, MF (1992) Characterization of a cold-regulated wheat gene related to Arabidopsis cor47. Plant Physiol 100: 915–922

    Article  PubMed  CAS  Google Scholar 

  • Guy, CL (1990) Cold acclimation and freezing tolerance: Role of protein metabolism. Ann Rev Plant Physiol Plant Mol Biol 41: 187–223

    Google Scholar 

  • Guy, CL, Yelenosky, G, Sweet, HC (1981) Distribution of 14C photosynthetic assimilates in Valencia orange seedlings at 10° and 25°C. J Am Soc Hort Sci 106: 433–437

    CAS  Google Scholar 

  • Guy, CL, Plesofsky-Vig, N, Brambl, R (1986) Heat shock protection of germinating Neurospora crassa conidiospores against intracellular freezing stress. J Bacteriol 167: 124–129

    PubMed  CAS  Google Scholar 

  • Guy, CL, Haskell, D (1987) Induction of freezing tolerance in spinach is associated with the synthesis of cold acclimation induced proteins. Plant Physiol 84: 872–878

    Article  PubMed  CAS  Google Scholar 

  • Guy, CL, Huber, JLA, and Huber, SC (1992a) Sucrose phosphate synthase and sucrose accumulation at low temperature. Plant Physiol 100: 502–508

    Article  PubMed  CAS  Google Scholar 

  • Guy, CL, Haskell, DW, Neven, LN, Klein, P, and Smelser, C (1992b) Hydration-state-responsive proteins link cold and drought stress in spinach. Planta 188: 265–270

    Article  CAS  Google Scholar 

  • Hahn, M, Walbot, V (1989) Effects of cold-treatment on protein synthesis and mRNA levels in rice leaves. Plant Physiol 91: 930–938

    Article  PubMed  CAS  Google Scholar 

  • Hardies, SC, Garvin, LD (1991) Can molecular evolution provide clues to the folding code? In BT Nail, KA Dill, ed, Conformations and Forces in Protein Folding. AAAS, Washington DC, pp 69–76

    Google Scholar 

  • Hajela, RK, Horvath, DP, Gilmour, SJ, Thomashow, MF (1990) Molecular cloning and expression of cor (cold-regulated) genes in Arabidopsis thaliana. Plant Physiol 93: 1246–1252

    Article  PubMed  CAS  Google Scholar 

  • Hofig, A, Neven, LG, Li, Q-B, Haskell, D, and Guy, CL (1993) Expression of a plant cold stress protein in Escherichia coli imparts enhanced freezing tolerance. Submitted.

    Google Scholar 

  • Hopf, N, Plesofsky-Vig, N, Brambl, R (1992) The heat shock response of pollen and other tissues of maize. Plant Mol Biol 19: 623–630

    Article  PubMed  CAS  Google Scholar 

  • Houde, M, Danyluk, J, Laibert, J-F, Rassart, E, Dhindsa, RS, Sarhan, F (1992) Cloning, characterization, and expression of a cDNA encoding a 50-kilodalton protein specifically induced by cold acclimation in wheat. Plant Physiol 99: 1381–1387

    Article  PubMed  CAS  Google Scholar 

  • Jones, RL, Bush, DS (1991) Gibberellic acid regulates the level of a BiP cognate in the endoplasmic reticulum of barley aleurone cells. Plant Physiol 97: 456–459

    Article  PubMed  CAS  Google Scholar 

  • Joplin, KH, Yocum, GD, Denlinger, DL (1990) Cold shock elicits expression of heat shock proteins in the flesh fly, Sarcophaga crassipalpis. J Insect Physiol 36: 825–834

    Google Scholar 

  • Kassenbrock, CK, Kelly, RB (1989) Interaction of heavy chain binding protein (BiP/GRP78) with adenine nucleotides. EMBO J 8: 141–1467

    Google Scholar 

  • Kauzmann, W (1959) Some factors in the interpretation of protein denaturation. In CB Afinsen, ML Anson, K Bailey, JT Edsall eds, Advances in Protein Chemistry. Academic Press, New York, pp 1–63

    Google Scholar 

  • Kim, PS, Bole, D, Arvan, P (1992) Transient aggregation of nascent thyroglobulin in the endoplasmic reticulum: Relationship to the molecular chaperone, BiP J Cell Biol 118: 541–549

    Google Scholar 

  • King, J, Fane, B, Haase-Pettingell, C, Mitraki, A, Villafane, R, Yu, M-H (1990) Identification of amino acid sequences influencing intracellular folding pathways using temperature-sensitive folding mutations. In LM Gierasch, J King ed, Protein Folding: Deciphering the Second Half of the Genetic Code. AAAS, Washington, pp 225–240

    Google Scholar 

  • Knittler, MR, Haas, IG (1992) Interaction of BiP with newly synthesized immunoglobulin light chain molecules: cycles of sequential binding and release. EMBO J 11: 1573–1581

    PubMed  CAS  Google Scholar 

  • Kondo, K, Inouye, M (1991) 77P7, a cold shock-inducible.gene of Saccharomyces cerevisiae. J Biol Chem 266: 17537–17544

    PubMed  CAS  Google Scholar 

  • Kondo, K, Kowalski, RZ, Inouye, M (1992) Cold shock induction of yeast NSR1 protein and its role in pre-RNA processing. J Biol Chem 267: 16259–16265

    PubMed  CAS  Google Scholar 

  • Kurkela, S, Franck, M (1990) Cloning and characterization of a cold- and ABA-inducible Arabidopsis. Plant Mol Biol 15: 137–144

    Article  PubMed  CAS  Google Scholar 

  • Ling, V, Palva, ET (1992) The expression of a rab-related gene, rab18, is induced by abscisic acid during the cold acclimation process of Arabidopsis thaliana ( L.) Heynh. Plant Mol Biol 20: 951–962

    Google Scholar 

  • Langer, T, Lu, C, Echols, H, Flanagan, J, Hayer, MK, Hartl, FU (1992) Successive action of DnaK, DnaJ, and GroEL along the pathway of chaperone-mediated protein folding. Nature 356: 683–689

    Google Scholar 

  • Levitt, J (1962) A sulfhydryl-disulfide hypothesis of frost injury and resistance in plants. J Theoret Biol 3: 355–391

    Article  CAS  Google Scholar 

  • Levitt, J (1980) Responses of Plants to Environmental Stresses. New York: Academic Press. 697 pp

    Google Scholar 

  • Leustek, T, Amir-Shapira, D, Toledo, H, Brot, N, Weissbach, H (1992) Autophosphorylation of 70 kDa heat shock proteins Cell Mol Biol 38: 1–10

    CAS  Google Scholar 

  • Lewis, MJ, Pelham, HRB (1985) Involvement of ATP in the nuclear and nucleolar functions of the 70 kd heat shock protein. EMBO J 4: 3137–3143

    PubMed  CAS  Google Scholar 

  • Knittler, MR, Haas, IG (1992) Interaction of BiP with newly synthesized immunoglobulin light chain molecules: cycles of sequential binding and release. EMBO J 11: 1573–1581

    PubMed  CAS  Google Scholar 

  • Lin, C, Thomashow, MF (1992) DNA sequence analysis of a complementary DNA for cold-regulated Arabidopsis gene cor15 and characterization of the COR15 polypeptide. Plant Physiol 99: 519–525

    Article  PubMed  CAS  Google Scholar 

  • Lin, Y, Gross, JK (1981) Molecular cloning and characterization of winter flounder antifreeze cDNA. Proc Natl Acad Sci USA 78: 2825–2829

    Article  PubMed  CAS  Google Scholar 

  • Lissin, NM, Venyaminov, SY, Girshovich, AS (1990) (Mg-ATP)-dependent self-assembly of molecular chaperone GroEL. Nature 348: 339–342

    Article  PubMed  CAS  Google Scholar 

  • Luo, M, Liu, J-H, Mohapatra, S, Hill, RD, Mohapatra, SS (1992) Characterization of a gene family encoding abscisic acid- and environmental stress-inducible proteins of alfalfa. J Biol Chem 267: 15367–15374

    PubMed  CAS  Google Scholar 

  • Maniak, M, Nellen, W (1988) A developmentally regulated membrane protein gene in Dictyostelium discoideum is also induced by heat shock and cold shock. Mol Cell Biol 8: 153–159

    PubMed  CAS  Google Scholar 

  • McCarty, JS, Walker, GC (1991) DnaK as a thermometer: Threonine-199 is site of autophosphorylation and is critical for ATPase activity. Proc Natl Acad Sci USA 88: 9513–9517

    Article  PubMed  CAS  Google Scholar 

  • Miernyk, JA, Duck, NB, Shatters, RG, Folk, WR (1992) The 70-kilodalton heat shock cognate can act as a molecular chaperone during the membrane translocation of a plant secretory protein precursor. Plant Cell 4: 821–829

    Article  PubMed  CAS  Google Scholar 

  • Minton, KW, Karmin, P, Hahn, GM, Minton, AP (1982) Nonspecific stabilization of stress-susceptible proteins by stress-resistant proteins: A model for the biological role of heat shock proteins. Proc Natl Acad Sci USA 79: 7107–7111

    Google Scholar 

  • Mundy, J, Chua, NH (1988) Abscisic acid and water-stress induce the expression of a novel rice gene. EMBO J 8: 2279–2286

    Google Scholar 

  • Munro, S, Pelham, HRB (1986) An Hsp70-like protein in the ER: Identity with the 78 kd glucoseregulated protein and immunoglobulin heavy chain binding protein. Cell 46: 291–300

    Article  PubMed  CAS  Google Scholar 

  • Neven LG, Haskell DW, Guy CL, Denslow N, Klein PA, Green LG, Silverman A (1992) Association of 70 kDa heat shock cognate proteins with acclimation to cold. Plant Physiol 99: 1362–1369

    Article  PubMed  CAS  Google Scholar 

  • Neven, LG, Haskell, DW, Hofig, A, Li, Q-B, Guy, CL (1993) Characterization of a spinach gene responsive to low temperature and water stress. Plant Mol Biol 21: 291–305

    Article  PubMed  CAS  Google Scholar 

  • Nilsson, B, Kuntz, ID, Anderson, S (1990) Expression and stabilization: Bovine pancreatic trypsin inhibitor folding mutants in Escherichia coii. In LM Gierasch, J King ed, Protein Folding: Deciphering the Second Half of the Genetic Code. AAAS, Washington, pp 117–122

    Google Scholar 

  • Nordin, K, Heino, P, Palva, ET (1991) Separate signal pathways regulate the expression of a low temperature-induced gene in Arabidopsis thaliana ( L.) Heynh. Plant Mol Biol 16: 1061–1071

    Google Scholar 

  • Ouellet, F, Houde, M, Sarhan, F (1993) Purification, characterization and cDNA cloning of the 200 kDa protein induced by cold acclimation in wheat Plant Cell Physiol 34: 59–65

    CAS  Google Scholar 

  • Orr, W, Lu, B, White, TC, Robert, LS, Singh, J (1992) Complementary DNA sequence of a low temperature-induced Brassica napus gene with homology to the Arabidopsis thaliana kin1 gene. Plant Physiol 98: 1532

    Article  PubMed  CAS  Google Scholar 

  • Pace, CN (1990) Conformational stability of globular proteins. Trends Biochem Sci 15: 14–17

    Article  PubMed  CAS  Google Scholar 

  • Paiieros, DR, Welch, WJ, Fink, AL (1991) Interaction of hsp70 with unfolded proteins: Effects of temperature and nucleotides on the kinetics of binding. Proc Natl Acad Sci USA 88: 5719–5723

    Google Scholar 

  • Pearce, RS (1988) Extracellular ice and cell shape in frost-stressed cereal leaves: A low-temperature scanning-electron-microscopy study. Planta 175: 313–324

    Google Scholar 

  • Pelham, HRB (1986) Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell 46: 959–961

    Article  PubMed  CAS  Google Scholar 

  • Petersen, NS, Young, P, Burton, V (1990) Heat shock mRNA accumulation during recovery from cold shock in Drosophila melanogaster. Insect Biochem 20: 679–684

    Article  CAS  Google Scholar 

  • Privalov, PL (1990) Cold denaturation of proteins. Crit Rev Biochem Mol Biol 25: 281–305

    Article  PubMed  CAS  Google Scholar 

  • Rubin, DM, Mehta, AD, Zhu, J, Shoham, S, Chen, X, Wells, QR, Palter, KB (1993) Genomic structure and sequence analysis of Drosophila melanogaster HSC70 genes. Gene (in press).

    Google Scholar 

  • Sakai, A, Larcher, W (1987) Frost Survival of Plants: Responses and Adaptation to Freezing Stress. Springer-Verlag, Berlin, pp 321

    Google Scholar 

  • Sato, N (1992) Cloning of a low-temperature-induced gene Iti2 from the cyanobacterium Anabaena variabilis M3 that is homologous to a-amylases. Plant Mol Biol 18: 165–170

    Article  PubMed  CAS  Google Scholar 

  • Schmid, SL, Braell, WA, Rothman, JE (1985) ATP catalyzes the sequestration of clathrin during enzymatic uncoating. J Biol Chem 260: 10057–10062

    PubMed  CAS  Google Scholar 

  • Sherman, MY, Goldberg, AL (1992) Heat shock in Escherichia coli alters the protein-binding properties of the chaperonin groEL by inducing its phosphorylation. Nature 357: 167–169

    Article  PubMed  CAS  Google Scholar 

  • Skowyra, D, Georgopoulos, C, Zylicz, M (1990) TheE coli dnaK gene product, the hsp70 homolog, can reactivate heat-inactivated RNA polymerase in an ATP hydrolysis-dependent manner. Cell 62: 939–944

    Article  PubMed  CAS  Google Scholar 

  • Snutch, TP, Heschl, MFP, Baillie, DL (1988) The Caenorhabditis elegans hsp70 gene family: a molecular genetic characterization. Gene 64: 241–255

    Article  PubMed  CAS  Google Scholar 

  • Steponkus, PL (1984) Role of the plasma membrane in freezing injury and cold acclimation. Ann Rev Plant Physiol 35: 543–584

    Article  CAS  Google Scholar 

  • Sutton, F, Ding, X, Kenefick, DG (1992) Group 3 LEA gene HVA1 regulation by cold acclimation and deacclimation in two barley cultivars with varying freeze resistance. Plant Physiol 99: 338–340

    Article  PubMed  CAS  Google Scholar 

  • VanBogelen, RA, Neidhardt, FC (1990) Ribosomes as sensors of heat and cold shock in Escherichia coli. Proc Natl Acad Sci 87: 5589–5593

    Article  Google Scholar 

  • Vierling, E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42: 579–620

    Article  CAS  Google Scholar 

  • Weiser CJ (1970) Cold resistance and injury in woody plants. Science 169: 1269–1278

    Article  PubMed  CAS  Google Scholar 

  • Willimsky, G, Bang, H, Fischer, G, Marahiel, MA (1992) Characterization of cspB, a Bacillus subtilis inducible cold shock gene affecting cell viability at low temperature. J Bacteriol 174: 6326–6335

    PubMed  CAS  Google Scholar 

  • Zylicz, M, LeBowitz, JH, McMacken, R, Georgopolous, C (1983) The dnaK protein of Escherichia coli possesses an ATPase and autophosphorylating activity and is essential in an in vitro DNA replication system. Proc Natl Acad Sci USA 80: 6431–6435

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guy, C.L., Anderson, J.V., Haskell, D.W., Li, QB. (1994). Caps, Cors, Dehydrins, and Molecular Chaperones: Their Relationship with Low Temperature Responses in Spinach. In: Cherry, J.H. (eds) Biochemical and Cellular Mechanisms of Stress Tolerance in Plants. NATO ASI Series, vol 86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79133-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79133-8_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79135-2

  • Online ISBN: 978-3-642-79133-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics