Skip to main content

Nitric Oxide Formation in the Vascular Wall: Regulation and Functional Implications

  • Chapter
The Role of Nitric Oxide in Physiology and Pathophysiology

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 196))

Abstract

Numerous investigations have indicated that in both health and disease the shortlived radical nitric oxide (NO) is a key effector in the vascular system (Fig. 1). NO is generated by a five-electron oxidation of one of the terminal guanidino nitrogen atoms of l-arginine, catalyzed by NO synthases, and reaches the surrounding target cells by simple diffusion. The principal physiological source of NO in the vascular system is the endothelium, which constitutively expresses a NO synthase. The most important functions of endothelium-derived NO are the control of blood flow, and hence the supply of oxygen to organs, and the control of blood cell interaction with the vascular wall. Under certain pathophysiological conditions, endothelial cells are no longer the main source of NO. Indeed, in most types of vascular cells (e.g., vascular smooth muscle cells, macrophages, fibroblasts and endothelial cells) a NO producing pathway is induced following exposure to cytokines, such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), the levels of which are elevated in response to infection and injury. NO generated by this pathway in large amounts may account, at least in part, for the cytotoxic effect of macrophages and thus play a crucial role in host defense. The finding that NO can have such contrasting effects, i.e., to be protective and yet also cytotoxic, may be explained by the involvement of two NO-generating systems regulated by distinctly different mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abu-Soud HM, Stuehr DJ (1993) Nitric oxide synthases reveal a role for calmodulin in controlling electron transfer. Proc Natl Acad Sci USA 90: 10769–10772

    Article  PubMed  CAS  Google Scholar 

  • Aisaka K, Gross SS, Griffith OW, Levi R (1989) NG-methylarginine, an inhibitor of endothelium-derived nitric oxide synthesis, is a potent pressor agent in the guinea pig — does nitric oxide regulate blood pressure in vivo. Biochem Biophys Res Commun 160: 881–886

    Article  PubMed  CAS  Google Scholar 

  • Busconi L, Michel T (1993) Endothelial nitric oxide synthase: N-terminal myristoylation determines subcellular localization. J Biol Chem 268: 8410–8413

    PubMed  CAS  Google Scholar 

  • Busse R, Fleming I (1993) The endothelial organ. Curr Opin Cardiol 8: 719–727

    Article  Google Scholar 

  • Busse R, Mülsch A (1990a) Calcium-dependent nitric oxide synthesis in endothelial cytosol is mediated by calmodulin. FEBS Lett 265: 133–136

    Article  PubMed  CAS  Google Scholar 

  • Busse R, Mülsch A (1990b) Induction of nitric oxide synthase by cytokines in vascular smooth muscle cells. FEBS Lett 275: 87–90

    Article  PubMed  CAS  Google Scholar 

  • Busse R, Lückhoff A, Bassenge E (1987) Endothelium-derived relaxant factor inhibits platelet activation. Naunyn-Schmiedebergs Arch Pharmacol 336: 566–571

    PubMed  CAS  Google Scholar 

  • Busse R, Hecker M, Fleming I (1994) Control of nitric oxide and prostacyclin synthesis in endothelial cells. Arzneimittel Forschung/Drug Res 44 [Suppl]: 392–396

    CAS  Google Scholar 

  • Cho HJ, Xie QW, Calaycay J, Mumford RA, Swiderek KM, Lee TD, Nathan C (1992) Calmodulin is a subunit of nitric oxide synthase from macrophages. J Exp Med 176: 599–604

    Article  PubMed  CAS  Google Scholar 

  • Corbett JA, Sweetland MA, Lancaster JR, McDaniel ML (1993) A 1-hour pulse with IL-113 induces formation of nitric oxide and inhibits insulin secretion by rat islets of Langerhans: evidence for a tyrosine kinase signaling mechanism. FASEB J 7: 369–374

    PubMed  CAS  Google Scholar 

  • Craven PA, DeRubertis FR (1978) Restoration of the resposiveness of purified guanylyl cyclase to nitrosoguanidine, nitric oxide, and related activators ba heme and hemeproteins. J Biol Chem 253: 8433–8443

    PubMed  CAS  Google Scholar 

  • Dimmeler S, Lottspeich F, Brune B (1992) Nitric oxide causes ADP-ribosylation and inhibition of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 267: 1 6771–16774

    PubMed  CAS  Google Scholar 

  • Drapier JC, Hibbs JB (1986) Murine cytotoxic activated macrophages inhibit aconitase in tumor cells. Inhibition involves the iron-sulfur prosthetic group and is reversible. J Clin Invest 78: 790–797

    Article  PubMed  CAS  Google Scholar 

  • Durante W, Schini VB, Catovsky S, Kroll MH, Vanhoutte PM, Schafer Al (1993) Plasmin potentiates induction of nitric oxide synthesis by interleukin-1 3 in vascular smooth muscle cells. Am J Physiol 264: H617 — H624

    PubMed  CAS  Google Scholar 

  • Durante W, Schini VB, Kroll MH, Catovsky S, Scott-Burden T, White JG, Vanhoutte PM, Schafer Al (1994) Platelets inhibit the induction of nitric oxide synthesis by interleukin-1)3 in vascular smooth muscle cells. Blood 83: 1831–1838

    PubMed  CAS  Google Scholar 

  • Fleming I, Gray GA, Schott C, Stoclet JC (1991) Inducible but not constitutive production of nitric oxide by vascular smooth muscle cells. Eur J Pharmacol 200: 375–376

    Article  PubMed  CAS  Google Scholar 

  • Fleming I, Hecker M, Busse R (1994) Intracellular alkalinization induced by bradykinin sustains activation of the constitutive nitric oxide synthase in endothelial cells. Circ Res 74: 1220–1226

    PubMed  CAS  Google Scholar 

  • Förstermann U, Pollock JS, Schmidt HHHW, Heller M, Murad F (1991) Calmodulin-dependent endothelium-derived relaxing factor/nitric oxide synthase activity is present in the particulate and cytosolic fractions of bovine aortic endothelial cells. Proc Natl Acad Sci USA 88: 1788–1792

    Article  PubMed  Google Scholar 

  • Furchgott Rf, Vanhoutte PM (1989) Endothelium-derived relaxing and contracting factors. FASEB J 3: 2007–2018

    Google Scholar 

  • Galle J, Bauersach J, Bassenge E, Busse R (1993) Arterial size determines the enhancement of contractile responses after supression of endothelium-derived relaxing factor formation. Pflugers Arch 422: 564–569

    Article  PubMed  CAS  Google Scholar 

  • Gardiner SM, Compton AM, Bennett T, Palmer RMJ, Moncada S (1990) Control of regional blood flow by endothelium-derived nitric oxide. Hypertension 15: 486–492

    PubMed  CAS  Google Scholar 

  • Garg UC, Hassid A (1989) Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine mono-phosphate inihibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 83: 1774–1777

    Article  PubMed  CAS  Google Scholar 

  • Griffith TM, Edwards DH, Lewis MJ, Newby AC, Henderson AH (1984) The nature of endothelium-derived vascular relaxant factor. Nature 308: 645–647

    Article  PubMed  CAS  Google Scholar 

  • Gross SS, Levi R (1992) Tetrahydrobiopterin synthesis. J Biol Chem 267: 25722–25729

    PubMed  CAS  Google Scholar 

  • Gruetter CA, Barry BK, McNamara BD, Gruetter DY, Kadowitz PJ, Ignarro LJ (1979) Relaxation of bovine coronary artery and activation of coronary arterial guanylate cyclase by nitric oxide, nitoprusside and a carcinogenic nitrosoamine. J Cycl Nucl Res 5: 211–224

    CAS  Google Scholar 

  • Hecker M, Mülsch A, Bassenge E, Busse R (1993) Vasoconstriction and increased flow: two principle mechanisms of shear stress-dependent endothelial autacoid relase. Am J Physiol 265: H828 — H833

    PubMed  CAS  Google Scholar 

  • Hecker M, Mülsch A, Bassenge E, Förstermann U, Busse R (1994) Subcellular localization and characterization of nitric oxide synthase(s) in endothelial cells–Physiologic implications. Biochem J 299: 247–252

    PubMed  CAS  Google Scholar 

  • Hibbs JB, Taintor RR, Vavrin Z, Rachlin EM (1988) Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun 157: 87–94

    Article  PubMed  CAS  Google Scholar 

  • lyengar R, Stuehr DJ, Marlette MA (1987) Macrophage synthesis of nitrite, nitrate, and N-nitrosamines: precursors and role of the respiratory burst. Proc Natl Acad Sci USA 84: 6369–6373

    Article  Google Scholar 

  • Julou-Schaeffer G, Gray GA, Fleming I, Parratt JR, Stoclet JC (1991) Activation of the L-arginine pathway is involved in vascular hyporeactivity induced by endotoxin. J Cardiovasc Pharmacol 17: S207 - S212

    Article  CAS  Google Scholar 

  • Karaki H, Sato K, Ozaki H, Murakami K (1988) Effects of sodium nitroprusside on cytosolic calcium level in vascular smooth muscle. Eur J Pharmacol 156: 259–266

    Article  PubMed  CAS  Google Scholar 

  • Katsuki S, Arnold WP, Mittal CK, Murad F (1977) Stimulation of guanylate cyclase by sodium nitroprusside, nitroglycerin and nitric oxide in various tissue preparations and comparison to the effects of sodium azide and hydroxylamine. J Cycl Nucl Prot Phosphoryl Res 3: 23–35

    CAS  Google Scholar 

  • Keaney JF, Simon DI, Stamler JS, Jaraki O, Scharfstein J, Vita JA, Loscalzo J (1993) NO forms an adduct with serum albumin that has endothelium-derived relaxing factor-like properties. J Clin Invest 91: 1582–1589

    Article  PubMed  CAS  Google Scholar 

  • Kilbourn RG, Belloni P (1990) Endothelial cell production of nitrogen oxides in response to interferon-gamma in combination with tumor necrosis factor, interleukin-1, or endotoxin. J Natl Cancer I ns 82: 772–776

    Article  CAS  Google Scholar 

  • Koide M, Kawahara Y, Nakayama I, Tsuda T, Yokoyama M (1993) Cyclic AMP elevating agents induce an inducible type of nitric oxide synthase in cultured vascular smooth muscle cells. J Biol Chem 268: 24959–24966

    PubMed  CAS  Google Scholar 

  • Kourembanas S, McQuillan LP, Leung GK, Faller DV (1993) Nitric oxide regulates the expression of vasoconstrictors and growth factors by vascular endothelium under both normoxia and hypoxia. J Clin Invest 92: 99–104

    Article  PubMed  CAS  Google Scholar 

  • Kunz D, Mühl H, Walker G, Pfeilschifter J (1994) Two distinct signalling pathways trigger the expression of inducible nitric oxide synthase in rat mesangial cells. Proc Natl Acad Sci USA 91: 5387–5391

    Article  PubMed  CAS  Google Scholar 

  • Lamas S, Marsden PA, Li GK, Tempst P, Michel T (1992) Endothelial nitric oxide syntahse: molecular cloning and characterization of a distinct constitutive enzyme isoform. Proc Natl Acad Sci USA 89: 6348–6352

    Article  PubMed  CAS  Google Scholar 

  • Lamontagne D, Pohl U, Busse R (1992) Mechanical deformation of vessel wall and shear stress determine the basal release of endothelium-derived relaxing factor in the intact rabbit coronary vascular bed. Circ Res 70: 123–130

    PubMed  CAS  Google Scholar 

  • Marczin N, Papapetropoulos A, Catravas JD (1993) Tyrosine kinase inhibitors suppress endotoxin-and IL-ill-induced NO synthesis in aortic smooth muscle cells. Am J Physiol 265: H1014 - H1018

    PubMed  CAS  Google Scholar 

  • Marsden PA, Scheppert KT, Chen HS, Flowers M, Sundell CI, Wilcox JN, Lamas S, Michel T (1992) Molecular cloning and characterization of human endothelial nitric oxide synthase. FEBS Lett 307: 287–293

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Furchgott RF, Villani GM, Jothianandan D (1986) Depression of contractile responses in rat aorta by spontaneously released endothelium-derived relaxing factor. J Pharmacol Exp Ther 237: 529–538

    PubMed  CAS  Google Scholar 

  • McIlion BT, Ignarro LJ, Ohlstein EH, Pontecorvo EG, Hyman AL, Kadowitz PJ (1981) Evidence for the inhibitory role of guanosine 3’,5’-monophosphate in ADP-induced human platelet aggregation in the presence of nitric oxide and related vasodilators. Blood 57: 946–955

    Google Scholar 

  • Molina-y-Vedia L, McDonald B, Reep B, Brüne B, DiSilvio M, Billiar TR, Lapetina EG (1992) Nitric oxide-induced S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase inhibits enzymatic activity and increases endogenous ADP-ribosylation. J Biol Chem 267: 24929–24932

    PubMed  CAS  Google Scholar 

  • Moore PK, Alswayeh OA, Chong NWS, Evans RA, Gibson A (1990) L-N3-nitro arginine (L-NOARG), a novel L-arginine-reversible inhibitor of endothelium-dependent vasodilatation in vitro. Br J Pharmacol 99: 408–412

    Google Scholar 

  • Mülsch A, Busse R (1990) NG-nitro-L-arginine (N5-[iminolnitroamino)methyll-L-ornithine) impairs endothelium-dependent dilations by inhibiting cytosolic nitric oxide synthesis from L-arginine. NaunynSchmiedebergs Arch Pharmacol 341: 143–147

    Google Scholar 

  • Nathan C (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J 6: 3051–3064

    PubMed  CAS  Google Scholar 

  • Nishida K, Harrison DG, Navas JP, Fisher AA, Dockery Sp, Uematsu M, Nerem RM, Alexander RW, Murphy TJ (1992) Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase. J Clin Invest 90: 2092–2096

    Article  PubMed  CAS  Google Scholar 

  • Pohl U, Lamontagne D, Bassenge E, Busse R (1994) Attenuation of coronary autoregulation in the isolated rabbit heart by endothelium derived nitric oxide. Cardiovasc Res 28: 414–419

    Article  PubMed  CAS  Google Scholar 

  • Rees DD, Palmer RM, Moncada S (1989e) Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci USA 86: 3375–3378

    Article  PubMed  CAS  Google Scholar 

  • Rees DD, Palmer RMJ, Hodson HF, Moncada S (1989b) A specific inhibitor of nitric oxide formation from L-arginine attenuates endothelium-dependent relaxation. Br J Pharmacol 96: 418–424

    PubMed  CAS  Google Scholar 

  • Schini VB, Durante W, Elizondo E, Scott-Burden T, Junquero DC, Schafer Al, Vanhoutte PM (1992) The induction of nitric oxide synthase activity is inhibited by TGFj31, PDGFAB and PDGFBB in vascular smooth muscle cells. Eur J Pharmacol 216: 379–383

    Article  PubMed  CAS  Google Scholar 

  • Schini VB, Catovsky S, Durante W, Scott-Burden T, Schafer Al, Vanhoutte PM (1993) Thrombin inhibits induction of nitric oxide synthase in vascular smooth muscle cells. Am J Physiol 264: H611–H616

    PubMed  CAS  Google Scholar 

  • Schray-Utz B, Zeiher AM, Busse R (1993) The expression of monocyte chemoattractant protein (MCP-1) mRNA in human endothelial cells is modulated by nitric oxide. FASEB J 7: A130

    Google Scholar 

  • Scott-Burden T, Schini VB, Elizondo E, Junquero DC, Vanhoutte PM (1992) Platelet-derived growth factor suppresses and fibroblast growth factor enhances cytokine-induced production of nitric oxide by cultured smooth muscle cells; effects on cell proliferation. Circ Res 71: 1088–1100

    PubMed  CAS  Google Scholar 

  • Sessa WC, Harrison JK, Barber CM, Zeng D, Durieux ME, D’ Angelo DD, Lynch KE, Peach MJ (1992) Molecular cloning and expression of cDNA encoding endothelial cell nitric oxide synthase. J Biol Chem 267: 1 52 74–1 52 76

    Google Scholar 

  • Sessa WC, Barber CM, Lynch KR (1993) Mutation of N-myristoylation site converts endothelial cell nitric oxide synthase from a membrane to a cytosolic protein. Circ Res 72: 921–924

    PubMed  CAS  Google Scholar 

  • Sessa WC, Pritchard K, Seyedi N, Wang J, Hintze TH (1994) Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ Res 74: 249–353

    Google Scholar 

  • Stamler JS, Jaraki O, Osborne J, Simon Dl, Keaney J, Vita J, Singel D, Valeri CR, Loscalzo J (1992a) Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proc Natl Acad Sci USA 89: 7674–7677

    Article  PubMed  CAS  Google Scholar 

  • Stamler JS, Simon Dl, Osborne JA, Mullins ME, Jaraki O, Michel T, Singel DJ, Loscalzo J (1992b) Snitrosylation of proteins with nitric oxide—synthesis and characterization of biologically active compounds. Proc Natl Acad Sci USA 89: 444–448

    Article  PubMed  CAS  Google Scholar 

  • Thiemermann C, Vane JR (1990) Inhibition of nitric oxide synthesis reduces the hypotension induced by bacterial lipopolysaccharides in the rat in vivo. Eur J Pharmacol 182: 591–595

    Article  PubMed  CAS  Google Scholar 

  • Valiance P, Collier J, Moncada S (1989) Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet 2: 997–1000

    Article  Google Scholar 

  • Werner ER, Werner-Felmayer G, Fuchs D, Hausen A, Reibnegger G, Wachter H (1989) Parallel induction of tetrahydrobiopterin biosynthesis and indoleamine 2,3-dioxygenase activity in human cells and cell lines by interferon-gamma. Biochem J 262: 861–868

    PubMed  CAS  Google Scholar 

  • Xie Qw, Whisnant R, Nathan C (1993) Promotor of the mouse gene encoding calcium-dependent nitric oxide synthase confers inducibility by interferon gamma and bacterial lipopolysaccharide. J Exp Med 177: 1779–1784

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Busse, R., Fleming, I., Schini, V.B. (1995). Nitric Oxide Formation in the Vascular Wall: Regulation and Functional Implications. In: Koprowski, H., Maeda, H. (eds) The Role of Nitric Oxide in Physiology and Pathophysiology. Current Topics in Microbiology and Immunology, vol 196. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79130-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79130-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79132-1

  • Online ISBN: 978-3-642-79130-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics