Skip to main content

The Last Two Glacial-Interglacial Cycles Simulated by the LLN Model

  • Conference paper
Long-Term Climatic Variations

Part of the book series: NATO ASI Series ((ASII,volume 22))

Abstract

A 2-dimensional model which links the atmosphere, the mixed layer of the ocean, the sea ice, the continents, the ice sheets and their underlying bedrock has been used to test the Milankovitch theory over the last two glacial-interglacial cycles. A series of sensitivity analyses have allowed us to better understand the internal mechanisms which drive the simulated climate system and in particular the feedbacks related to surface albedo and water vapour.

It was found that orbital variations alone can induce, in such a system, feedbacks sufficient to generate the low frequency part of the climatic variations over the last 122 kyr. These simulated variations at the astronomical time scale are broadly in agreement with reconstructions of ice-sheet volume and of sea level independently obtained from geological data. Imperfections in the simulated climate were the insufficient southward extent of the ice sheets and the too small hemispheric cooling at the last glacial maximum. These deficiencies were partly remedied in a further experiment by using the time-dependent atmospheric CO2 concentration given by the Vostok ice core in addition to the astronomical forcing. In this transient simulation, 70% of the northern hemisphere ice volume is related to the astronomical forcing and the related changes in the albedo, the remaining 30% being due to the CO2 changes. Analysis of the processes involved shows that variations of ablation are more important for the ice-sheet response than are variations of snow precipitation. A key mechanism in the deglaciation after the last glacial maximum appears to be the “ageing” of snow which significantly decreases its albedo. The other factors which play an important role are ice-sheet altitude, insolation, taiga cover, ice-albedo feedback, ice-sheet configuration (“continentality” and “desert” effect), isostatic rebound, CO2 changes and temperature-water vapour feedback.

Numerical experiments have also been carried out with a 1-D radiative-convective model in order to quantify the influence of the CO2 changes and of the water vapour feedback on the climate evolution of the northern hemisphere over the last 122 kyr. Results of these experiments indicate that 67% of the simulated cooling at the last glacial maximum can be attributed to the astronomical forcing and the subsequent surface albedo increase, the remaining 33% being associated with the reduced CO2 concentration. Moreover, the water vapour feedback explains 40% of the simulated cooling in all the experiments done.

The transient response of the climate system to both the astronomical and CO2 forcing was also simulated by the LLN (Louvain-la-Neuve) 2.5-D model over the two last glacial-interglacial cycles. It is particularly significant that spectral analysis of the simulated northern hemisphere global ice volume variations reproduces correctly the relative intensity of the peaks at the orbital frequencies. Except for variations with time scales shorter than 5 kyr, the simulated long term variations of total ice volume are comparable to that reconstructed from deep sea cores. For example, the model simulates glacial maxima of similar amplitudes at 134 kyr BP and 15 kyr BP, followed by abrupt deglaciations. The complete deglaciation of the three main northern hemisphere ice sheets, which is simulated around 122 kyr BP, is in partial disagreement with reconstructions indicating that the Greenland ice sheet survived during the Eemian interglacial. The continental ice volume variations during the last 122 kyr of the 200 kyr simulation are, however, not significantly affected by this shortcoming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aoki T., 1978a. Semi-direct band models for the transmittance calculation. J. Met. Soc. Japan, 56 (2), pp. 112–119.

    Google Scholar 

  • Aoki T., 1978b. Semi-direct random band model for exponential-tailed S−1 intensity distribution. J. Met. Soc. Japan, 56 (5), pp. 508–515.

    Google Scholar 

  • Barnola J.-M., Raynaud Y., Korotkevich Y.S., and CI. Lorius, 1987. Vostok ice core provides 160,000-yr record of atmospheric CO2. Nature, pp. 408–414.

    Google Scholar 

  • Berger A., 1976. Long-term variations of daily and monthly insolation during the last Ice Age. EOS, 57 (4), pp. 254.

    Google Scholar 

  • Berger A., 1978. Long-term variations of daily insolation and Quaternary climatic changes. Journal of Atmospheric Science, 35 (12), pp. 2362–2367.

    Article  Google Scholar 

  • Berger A., 1979. Insolation signatures of Quaternary climatic changes. Il Nuovo Cimento, 2C (1), pp. 63–87.

    Article  Google Scholar 

  • Berger A., Guiot J., Kukla G., and P. Pestiaux, 1981. Long term variations of monthly insolation as related to climate change. Geologischen Rundschau, Bd. 70 (2), pp. 748–758.

    Google Scholar 

  • Berger A., Gallée H., Fichefet Th., Marsiat I., and C. Tricot, 1990. Testing the astronomical theory with a coupled climate-ice sheet model. In: Geochemical Variability in the Oceans, Ice and Sediments. Palaeogr., Palaeoclimatol., Palaeoecol., 89(1/2), L.D. Labeyrie and C. Jeandel (eds), Global and Planetary Change Section, 3 (1/2), pp. 125–141.

    Google Scholar 

  • Berger A. and M.F. Loutre, 1991. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews, 10 n°4, pp. 297–317.

    Google Scholar 

  • Berger A., and C. Tricot, 1992. The greenhouse effect. Surveys in Geophysics, 13, pp. 523–549.

    Article  Google Scholar 

  • Berger A., Gallée H., and C. Tricot, 1992. Glaciation and déglaciation mechanisms in a coupled 2-D climate - ice sheet model. J. of Glaciology, (in press).

    Google Scholar 

  • Berlyand T.G., Strokina L.A. and L.Y.E. Greshnikova, 1980. Zonal cloud distribution on the Earth. Meteorol. Gidrol., 3, pp. 15–23.

    Google Scholar 

  • Birchfield G.E., Weertmann J., and A.T. Lunde, 1982. A model study of high-latitude topography in the climatic response to orbital insulation anomalies. J. Atmos. Sci., 39, pp. 71–87.

    Article  Google Scholar 

  • Boulton G.S., Smith G.D., Jones A.S., and J. Newsome, 1985. Glacial geology and glaciology of the last mid-latitude ice sheets. J. Geol. Soc. London, 142, pp. 447–474.

    Article  Google Scholar 

  • Broecker W.S., Peteet D.M., and D. Rind, 1985. Does the ocean-atmosphere system have more than one stable mode of operation ? Nature, 315, pp. 21–26.

    Article  Google Scholar 

  • Broecker W.S., Andree M., Wolfi W., Oeschger H., Bonani C., Kennett J., and D. Peteet, 1988. The chronology of the last déglaciation: implications to the cause of the Younger Dryas event. Paleoceanog 3 (1), pp. 1–19.

    Article  Google Scholar 

  • Chou M.D., 1986. Atmospheric solar heating rate in the water vapor bands. J. Climate Appl. Meteor., 25, pp. 1532–1542.

    Article  Google Scholar 

  • Chou M.D., 1990. Parameterizations for the absorption of solar radiation by O2 and CO2 with application to climate studies. J. Climate, 3, pp. 209–217.

    Article  Google Scholar 

  • Chou S.H., Curran R.J.. and G. Ohring, 1981. The effects of surface evaporation parameterization on climate sensitivity to solar constant variations. J. Atmos. Sci., 38, pp. 931–938.

    Article  Google Scholar 

  • Clough S.A., Kneizys F.X., Davies R., Gamache R., and R.H. Tipping, 1980. Theoretical line shape for H20 vapor: application to the continuum. In: Atmospheric Water Vapor, A. Deepak, T.D. Wilkerson and L.H. Ruhnke (eds), pp. 25–46, Academic Press, NY.

    Google Scholar 

  • Deblonde G., and W.R. Peltier, 1990. A model of late Pleistocene ice sheet growth with realistic geography and simplified cryodynamics and geodynamics. Climate Dynamics, 5 n°, pp. 103–110.

    Google Scholar 

  • Deblonde G., and W.R. Peltier, 1991a. Simulations of continental ice sheet growth over the last glacial-inter glacial cycle: experiments with a one level seasonal energy balance model including realistic geography. Journal of Geophysical Research, 96, pp. 9189–9215.

    Article  Google Scholar 

  • Deblonde G., and W.R. Peltier, 1991b. A one-dimensional model of continental ice volume fluctuations through the Pleistocene: implications for the origin of the Mid- Pleistocene climate transition. Journal of Climate, 4 (3), pp. 318–344.

    Article  Google Scholar 

  • Duplessy J.CI., Labeyrie L., and P.L. Blanc, 1988. Norwegian sea deep water variations over the last climatic cycle: Paleo-oceanographical implications. In: Long and Short Term Variability of Climate, pp. 83–116, Earth Sci. Ser., edited by H. Wanner and U. Siegenthaler, Springer-Verlag, New York.

    Google Scholar 

  • Ellingson R.G., and Y. Fouquart, 1991. The intercomparison of radiation codes in climate models: an overview. J. Geophys. Res., 96 (D5), pp. 8925–8927.

    Article  Google Scholar 

  • Fichefet Th., Tricot C., Berger A., Gallee H., and I. Marsiat, 1989. Climate studies with a coupled atmosphere-upper ocean-ice sheets model. Philosophical Transactions of the Royal Society of London, A329, pp. 249–261.

    Google Scholar 

  • Fouquart Y., 1986. Radiative transfer in climate modeling.In: Proceedings of the NATO- ASI on Physically-based modeling and simulation of climate and climatic change, M. Schlesinger (ed.), pp. 223–283, Erice, 11-23 May 1986, D. Reidel Publ. Company, Dordrecht, Holland.

    Google Scholar 

  • Fouquart Y., and B. Bonnel, 1980. Computations of solar heating of the Earth’s atmosphere: a new parameterization. Beitr. Phys. Atmosph., 53, pp. 35–62.

    Google Scholar 

  • Gallee H., van Ypersele J.P., Fichefet Th., Tricot C., and A. Berger, 1991. Simulation of the last glacial cycle by a coupled sectorially averaged climate - ice-sheet model. I. The Climate Model. J. Geophys. Res.196, pp. 13, 139–13, 161.

    Google Scholar 

  • Gallée H., van Ypersele J.P., Fichefet Th., Marsiat I., Tricot C., and A. Berger, 1992. Simulation of the last glacial cycle by a coupled, sectorially averaged climate - ice- sheet model. II. Response to insolation and CO2 variation. J. Geophys. Res., 97 n° D14, pp. 15,713–15,740.

    Google Scholar 

  • Gallée H., Berger A., and N.J. Shackleton, 1993. Simulation of the climate of the last 200 kyr with the LLN 2D-model. In: Ice in the Climate System, R. Peltier (ed.), proceedings of the NATO Advanced Research Workshop, Aussois, France, September 7-11, 1992. (in press).

    Google Scholar 

  • Ghil M., and H. Le Treut, 1981. A climate model with cryodynamics and geodynamics. J. Geophys. Res., 86, pp. 5262–5270.

    Article  Google Scholar 

  • Godson W.L., 1953. The evaluation of infra-red fradiative fluxes due to atmospheric water vapour. Quart. J.R. Met. Soc., 79, pp. 367–379.

    Article  Google Scholar 

  • Harvey L.D.D., 1988. On the role of high latitude ice, snow, and vegetation feedbacks in the climatic response to external forcing change. Clim. Change, 13, pp. 191–224.

    Article  Google Scholar 

  • Hays J.D., Imbrie J., and N.J. Shackleton, 1976. Variations in the earth’s orbit: pacemaker of the ice ages. Sciences, 194, pp. 1121–1132.

    Article  Google Scholar 

  • Hecht A., 1985. Paleoclimatology. A retrospective of the past 20 years. In: Paleoclimate Analysis and Modelling, A. Hecht (ed.), pp. 1–26, Wiley, New York.

    Google Scholar 

  • Hovine S. and Th. Fichefet, 1993. A model study of the glacial oceanic circulation. In: Long Term Climatic Variations - Data Modelling, R. Peltier (ed.), proceedings of the NATO Advanced Study Institute, Siena (Italy), September 27 - October 11, 1993. (in press).

    Google Scholar 

  • Hughes T.J., 1987. Ice dynamics and deglaciation models when ice sheets collapsed. In: North America and Adjacent Oceans During the Last Deglaciation, W.F. Ruddiman and H.E. Wright Jr. (eds), pp. 183–220, The Geology of North America, v.K-3 Geol. Soc. Am., Boulder, CO.

    Google Scholar 

  • Hughes T.J., Denton G.H., Anderson B.G., Schilling D.H., Fasthook J.L., and C.S. Lingle, 1981. The last great ice sheets: a global view. In: The Last Great Ice Sheets, Hughes T.J., Denton G.H., Anderson B.G., Schilling D.H., Fasthook J.L., and C.S. Lingle (eds), pp. 275–317, Wiley Interscience Publ.

    Google Scholar 

  • Huybrechts Ph., 1990. The Antarctic ice sheet during the last glacial-interglacial cycle: a 3-D model experiment. Ann. of Glaciol., 14, pp. 115–119.

    Google Scholar 

  • Hyde W.T., and W.R. Peltier, 1985. Sensitivity experiments with a model of the Ice Age: the response to harmonic forcing. Journal of Atmospheric Sciences, 42 n° 20, pp. 2170–2188.

    Google Scholar 

  • Imbrie J., and J.Z. Imbrie, 1980. Modeling the climatic response to orbital variations. Science, 207, 943–953.

    Article  Google Scholar 

  • Imbrie J., Hays J.D., Martinson D.G., McIntyre A., Mix A.C., Morley J.J., Pisias N.G., Prell W.L., and N.J. Shackleton, 1984. The orbital theory of Pleistocene climate: support from a revised chronology of the marine 180 record. In: Milankovitch and Climate, A. Berger et al. (eds), pp. 269–305, D. Reidel, Dordrecht, Holland.

    Google Scholar 

  • Johnson R.B., and.E.E. Branstetter, 1974. Integration of Planck’s equation by the Laguerre-Gauss quadrature method. J. Opt. Soc. Am., 64 (11), pp. 1445–1449.

    Article  Google Scholar 

  • Joseph J.H., Wiscombe W.J., and J.A. Weinman, 1976. The delta-Eddington approximation for radiative flux transfer. J. Atmos. Sci., 33, pp. 2452–2459.

    Article  Google Scholar 

  • Kutzbach J.E., 1985. Modelling of paleoclimates. Adv. Geophys 25A, pp. 159–196.

    Article  Google Scholar 

  • Labeyrie L.D., Duplessy J.CI., and P.L. Blanc, 1987. Variations in mode of formation and temperature of oceanic deep waters over the past 125,000 years. Nature, 327, pp. 477–482.

    Article  Google Scholar 

  • Le Treut H., Portes J., Jouzel J., and M. Ghil, 1988. Isotopic modeling of climatic oscillations: implications for a comparative study of marine and ice core records. J. Geophys. Res., 93, pp. 9365–9383.

    Article  Google Scholar 

  • London J., 1957. A study of the atmospheric heat balance. Final Report, contract AF, 19(122)-165, Dept. Meteor. Oceanogr., New York University, 99 pp.

    Google Scholar 

  • Manabe S., and R.F. Strickler, 1964. Thermal equilibrium of the atmosphere with a convective adjustment. J. Atmos. Sci., 21, pp. 361–385.

    Article  Google Scholar 

  • Manabe S., and R.T. Wetherald, 1967. Thermal equilibrium with a given distribution of relative humidity. J. Atmos. Sci., 24, pp. 241–259.

    Article  Google Scholar 

  • Mangerud J., 1991. The last glacial history of Scandinavia between the last inter- glacial and the last glacial maximum. In: Klimageschichtliche Probleme der Letzten 130,000 Jahre, B. Frenzel (ed.), pp. 307–300, Akademie der Wissenschaften und der Literatur, Mainz, G. Fisher Verlag, Stuttgart, New York.

    Google Scholar 

  • Marsiat I., and A. Berger, 1990. On the relationship between ice volume and sea level over the last glacial cycle. Climate Dynamics, 4, pp. 81–84.

    Article  Google Scholar 

  • Martinson D.G., Pisias N.G., Hays J.D., Imbrie J., Moore T.C., and N.J. Shackleton, 1987. Age dating and the orbital theory of the ice ages: development of a high- resolution 0 to 300,000-year stratigraphy. Quat.Res., 27, pp. 1–27.

    Article  Google Scholar 

  • McClatchey R.A., Fenn R.W., Selby J.E.A., Volz F.E., and J.S. Garing, 1972. Optical properties of the atmospheres. Rep. AFCRL - 72 - 0497. Environmental Research Paper 411, Air Force Cambridge Res. Lab., Mass., 3rd ed., 108p.

    Google Scholar 

  • Morcrette J.J., 1984. Sur la paramétrisation du rayonnement dans les modèles de la cir¬culation générale de l’atmosphère. Thèse de Doctorat d’Etat, Université des Sciences et des Techniques de Lille, 630, 373 pp.

    Google Scholar 

  • Müller H., 1989. Palynologische Untersuchung eemzeitlicher Ablagerungen einer 15 km westlich Sylt niedergebrachten Kernbohrung. Probleme der Küstenforschung im südlichen Nordseegebiet, 17, pp. 119–124.

    Google Scholar 

  • Nicolis C., 1984. Self-oscilations, external forcings, and climate predictability. In: Milankovitch and Climate, A. Berger, J. Imbrie, J. Hays, G. Kukla and B. Saltzman (eds), pp. 637–652, D. Reidel, Dordrecht, Holland.

    Google Scholar 

  • North G.R., and T.J. Crowley, 1985. Application of a seasonal climate model to Cenozoic glaciation. J. Geol. Soc. (London), 142, pp. 475–482.

    Article  Google Scholar 

  • Oerlemans J., 1982. Glacial cycles and ice-sheet modelling. Clim. Change, 4, pp. 353–374.

    Google Scholar 

  • Oort A.H., 1983. Global atmospheric circulation statistics 1958-1973. NOAA professional paper 14, 180 pp.

    Google Scholar 

  • Pollard D., 1982. A simple ice sheet model yields realistic 100 kyr glacial cycles. Nature, 296, pp. 334–338.

    Article  Google Scholar 

  • Prell W.L. and J.E. Kutzbach, 1987. Monsoon variability over the past 150,000 years. J. Geophys. Res., 92, pp. 8411–8425.

    Article  Google Scholar 

  • Ramanathan V., 1981. The role of ocean-atmosphere interactions in the CO2 climate problem. J. Atmos. Sci., 38, pp. 918–930.

    Article  Google Scholar 

  • Ramanathan V., and J.A.Jr. Coakley, 1978. Climate modeling through radiative convective models. Rev. Geophys. Space Phys., 16, pp. 465–489.

    Article  Google Scholar 

  • Ramanathan V., and R.E. Dickinson, 1979. The role of stratospheric ozone in the zonal and seasonal radiative energy balance of the Earth troposphere system. J. Atmos. Sci., 36, pp. 1084–1104.

    Google Scholar 

  • Reeh N., Oerter H., Letréguilly A., Miller H., and H.W. Hubberten, 1991. A new detailled ice-age oxygen-18 record from the ice-sheet margin in central West Greenland, Palaeogeogr., ralaeoclimatol., Palaeoecol., (Global Planet.Change Sect.), 90, pp. 373–383.

    Article  Google Scholar 

  • Rind D., Peteet D. and G. Kukla, 1989. Can Milankovitch orbital variations initiate the growth of ice sheets in a general circulation model ? J. of Geophys. Res., 94, D10, pp. 12,851–12,871.

    Article  Google Scholar 

  • Roberts R.E., Selby J.E.A., and L.M. Biberman, 1976. Infrared continuum absorption by atmospheric water vapour in the 8-12 im window. Appl. Opt., 15 (19), pp. 2085–2090.

    Article  Google Scholar 

  • Ruddiman W.F., and A. McIntyre, 1981. Oceanic mechanisms for amplification of the 23,00-year ice-volume cycle. Science, 212, pp. 617–627.

    Article  Google Scholar 

  • Saltzman B., 1985. Paleoclimate modeling. In: Paleoclimate Analysis and Modeling, A.D. Hecht (ed.), pp. 341–396, Wiley-Interscience, New York.

    Google Scholar 

  • Saltzman B., and A. Sutera, 1987. The mid-Quaternary climatic transition as the free response of a three-variable dynamical model. J. Atmos. Sci., 44, pp. 236–241.

    Article  Google Scholar 

  • Schlesinger M., 1989. Model projections of the climatic changes induced by increased atmospheric CO2. In: Climate and Geo-Sciences, A. Berger, S. Schneider and J.CI. Duplessy (eds), pp. 375–416, NATO ASI, Series C vol. 285, Kluwer Academic Publishers, Dordrecht, Holland.

    Google Scholar 

  • Schneider S.H., and S.L. Thompson, 1979. Ice ages and orbital variations: some simple theory and modelling. Quat. Res., 12, pp. 188–203.

    Article  Google Scholar 

  • Sellers W.D., 1973. A new global climate model. J. Appl. Meteorol., 12, pp. 241–253.

    Article  Google Scholar 

  • Sellers W.D., 1983. A quasi-three-dimensional climate model. J. Clim. Appl. Meteor., 22, pp. 1557–1574.

    Article  Google Scholar 

  • Shackleton N.J., Le J., Mix A., and M.A. Hall, 1992., Carbon isotope records from Pacific surface waters and atmospheric carbon dioxide. Quat.Sci.Rev., 11, pp. 387–400.

    Google Scholar 

  • Shibata K., and T. Aoki, 1989. An infrared radiative scheme for the numerical models of weather and climate. J. Geophys. Res., 94(12), pp. 14,923–14,943.

    Article  Google Scholar 

  • Smith W.L., 1966. Note on the relationship between total precipitable water and surface dew point. J. Appl. Meteor., 5, pp. 726–727.

    Article  Google Scholar 

  • Smits I., Fichefet Th., Tricot C., and J.P. van Ypersele, 1993. A model study of the time evolution of climate at the secular time scale. Atmosfera, (in press).

    Google Scholar 

  • Souchez R., Lemmens M., Lorrain R., Tison J.-L., Jouzel J., and D. Sugden, 1990. Influence of hydroxil-bearing minerals on the composition of ice from the basal zone of an ice sheet. Nature, 345, pp. 244–246.

    Article  Google Scholar 

  • Tanré D., Geleyn J.F., and J. Slingo, 1984. First results of the introduction of an advanced aerosol-radiation interaction in the ECMWF low resolution global model. In: Aerosols and their climatic effects, H.E. Gerber and A. Deepak (eds), pp. 133–177, A. Deepak Publ., Hampton, USA. ¡item Thomson D.J., 1990. Quadratic- inverse spectrum estimates: applications to palaeoclimatology. Phil. Trans. R. Soc. London, A, 332, pp. 539–597.

    Google Scholar 

  • Tricot C., 1992. Sur la contribution des gaz à effet de serre dans les changements climatiques à long terme. Thèse de doctorat, Faculté des Sciences, Université Catholique de Louvain, Louvain-la-Neuve. Unpublished manuscript.

    Google Scholar 

  • Tricot C., and A. Berger, 1988. Sensitivity of present-day climate to astronomical forcing. In: Long and Short Term Variability of Climate, pp. 132–152.

    Google Scholar 

  • Warren S.G., Hahn C.J., London J., Chervin R.M., and R.J. Jenne, 1986. Global distribution of total cloud cover ànd cloud type amounts over land. DOE/ER/60085-41, NCAR Technical Notes, NCAR/TN-273/STR, Boulder, CO, 29 pp. + 200 maps.

    Google Scholar 

  • Warren S.G., Hahn C.J., London J., Chervin R.M., and R.J. Jenne, 1988. Global distri¬bution of total cloud cover and cloud type amounts over the ocean. DOE/ER-O4O6, NCAR Technical Notes, NCAR/TN-317+STR, Boulder, CO, 42 pp. + 170 maps.

    Google Scholar 

  • Washington W.M., and D.L. Williamson, 1977. A description of the NCAR GCM’s in General Circulation Models of the atmosphere. In: Methods in Computational Physics, J. Chang (ed.), 17, pp. 111–172, Academic Press.

    Google Scholar 

  • Wigley T.M.L., 1976. Spectral analysis and the astronomical theory of climatic change. Nature, 264, pp. 629–631.

    Article  Google Scholar 

  • World Meteorological Organization, 1986. A preliminary cloudless standard atmosphere for radiation computation. Rep. WCP-112, WMO, World Climate Res. Programme, 53 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berger, A., Tricot, C., Gallée, H., Fichefet, T., Loutre, M.F. (1994). The Last Two Glacial-Interglacial Cycles Simulated by the LLN Model. In: Duplessy, JC., Spyridakis, MT. (eds) Long-Term Climatic Variations. NATO ASI Series, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79066-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79066-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79068-3

  • Online ISBN: 978-3-642-79066-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics