Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 113))

Abstract

High-altitude vegetation is often treated as a special type of tundra, but this is an inadequate simplification. The major common features of real tundra and “alpine vegetation” are the absence of trees, the short stature of plants, and the low annual mean temperature. Most other components of the alpine environment may differ substantially from arctic tundra environments (Table 1; Bilhngs 1973, 1979a). The term “alpine” is used here exclusively for the vegetation above the natural subalpine tree line. Often this boundary is unsharp and is fragmented over several hundred meters of altitude. Where an upper tree line is missing, as in many arid mountain regions, the approximate level of the tree hne in the nearest more humid mountains is taken as a rough guidehne. At the polar end of the alpine vegetation, there is no clear distinction between the arctic-alpine and the arctic-lowland flora. Depending on region, most arctic-alpine vegetation north of 65° to 70°N is possibly better included in the term arctic (similar climate and species composition).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armand AD (1992) Sharp and gradual mountain timberlines as a result of species interaction. In: Hansen AJ, di Castri F (eds) Landscape boundaries. Springer, Berlin Heidelberg New York, pp 360–378

    Chapter  Google Scholar 

  • Bahn M, Körner Ch (1987) Vegetation und Phänologie der hochalpinen Gipfelflur des Glungezer in Tirol. Ber Naturwiss Med Ver Innsbruck 74:61–80

    Google Scholar 

  • Billings WD (1973) Arctic and alpine vegetations: similarities, difl’erences, and susceptibility to disturbance. Bioscience 23:697–704

    Article  Google Scholar 

  • Billings WD (1974) Adaptations and origins of alpine plants. Arct Alp Res 6:129–142

    Article  Google Scholar 

  • Billings WD (1978) Alpine phytogeography across the Great Basin. In: Intermountain bio geography, a symposium. Great Basin Nat Mem 2:105–117

    Google Scholar 

  • Billings WD (1979a) Alpine ecosystems of western North America. In: Johnson DA (ed) Special management needs of alpine ecosystems. Society for Range Management, Denver pp 6–21

    Google Scholar 

  • Billings WD (1979b) High mountain ecosystems. In: Webber P J (ed) High altitude geoecology. American Association for the Advancement of Science, West view Press Boulder, pp 97–125

    Google Scholar 

  • Billings WD (1988) Alpine vegetation. In: Barbour MG, Billings WD (eds) North American terrestrial vegetation. Cambridge University Press, New York, pp 391–420

    Google Scholar 

  • Bortenschlager S (1993) Das höchst gelegene Moor der Ostalpen “Moor am Rofenberg” 2760m. Festschrift Zoller, Diss Bot 196:329–334

    Google Scholar 

  • Braun-Blanquet J (1923) Über die Genesis der Alpenflora. Verh Naturforsch Ges Basel 35: 243–261

    Google Scholar 

  • Breckle SW (1974) Notes on alpine and nival flora of the Hindu Kush, east Afghanistan. Bot Not 127: 278–284

    Google Scholar 

  • Cernusca A (1976) Energie- und Wasserhaushalt eines alpinen Zwergstrauchbestande während einer Föhnperiode. Arch Meteorol Geophys Bioklimatol Ser B 24: 219–241

    Article  Google Scholar 

  • Costin AB, Gray M, Totterdell CJ, Wimbush D J (1979) Kosciusko alpine flora. CSIRO and Collins, Melbourne

    Google Scholar 

  • Diemer M (1992) Population dynamics and spatial arrangement of Ranunculus glacialis L., an alpine perennial herb, in permanent plots. Vegetatio 103: 159–166

    Google Scholar 

  • Egerton JJG, Wilson SD (1993) Plant competition over winter in alpine shrubland and grassland, Snowy Mountains, Australia. Arct Alp Res 25: 124–129

    Article  Google Scholar 

  • Halloy SRP (1983) High mountain climatology and edaphology in relation to the composition and adaptations of biotic communities (with special reference to the Cumbres Calchaquies, Tucuman, Argentina). Diss Univ Nacional de Tucuman, Argentina. University Microfilms Int. (Ann Arbor) Cat no 8502967

    Google Scholar 

  • Halloy S (1989) Altitudinal limits of life in subtropical mountains: what do we know? Pac Sci 43: 170–184

    Google Scholar 

  • Halloy S (1990) A morphological classification of plants, with special reference to the New Zealand alpine flora. J Veg Sci 1: 191–304

    Article  Google Scholar 

  • Halloy S (1991) Islands of life at 6000 m altitude: the environment of the highest autotrophic communities on earth (Socompa Volcano, Andes). Arct Alp Res 23: 247–262

    Article  Google Scholar 

  • Hartman EL, Rottman ML (1987) Alpine vascular flora of the Ruby Range, West Elk Mountains, Colorado. Great Basin Nat 47:152–160

    Google Scholar 

  • Hedberg O (1964) Features of afroalpine plant ecology. Acta Phytogeogr Suec 49: 8–89

    Google Scholar 

  • Hermes K (1955) Die Lage der oberen Waldgrenze in den Gebirgen der Erde und ihr Abstand zur Schneegrenze. Kölner Geographische Arbeiten 5, Köln

    Google Scholar 

  • Ives JD, Hansen-Bristow KJ (1983) Stability and instability of natural and modified upper timberline landscapes in the Colorado Rocky Mountains, USA. Mountain Res Dev 3: 149–155

    Article  Google Scholar 

  • Järvinen A (1984) Patterns and performance in a Ranunculus glacialis population in a mountain area in Finnish Lapland. Ann Bot Fenn 21: 179–187

    Google Scholar 

  • Johnson PL, Billings WD (1962) The alpine vegetation of the Beartooth Plateau in relation to cryopedogenic processes and patterns. Ecol Monogr 32: 105–135

    Article  Google Scholar 

  • Körner Ch (1980) Zur anthropogenen Belastbarkeit der alpinen Vegetation. Verh Ges Ökol (Göttingen) 8: 451–461

    Google Scholar 

  • Körner Ch (1984) Auswirkungen von Mineraldünger auf alpine Zwergsträucher. Verh Ges Ökol (Göttingen) 12: 123–136

    Google Scholar 

  • Körner Ch (1989) Der Flächenanteil unterschiedlicher Vegetationseinheiten in den Hohen Tauern: eine quantitative Analyse großmaßstäblicher Vegetationskartierungen in den Ostalpen. In: Cernusca A (ed) Struktur und Funktion von Graslandökosystemen im Nationalpark Hohe Tauern. Veröffentl Österr MaB-Programm 13:33–47, Wagner, Innsbruck

    Google Scholar 

  • Köner Ch (1992) Response of alpine vegetation to global climate change. CATENA Suppl 22:85–96

    Google Scholar 

  • Körner Ch (1994a) Biomass fractionation in plants-a reconsideration of definitions based on plant functions. In: Roy J, Gamier E (eds) A whole plant perspective on carbon-nitrogen interactions SPB Acad Publishing, The Hague, pp 213–225

    Google Scholar 

  • Körner Ch (1994b) Impact of atmospheric changes on high mountain vegetation. In: Benniston M (ed) Mountain environments in changing climates. Routledge, London-New York, pp 155–166

    Chapter  Google Scholar 

  • Körner Ch, Larcher W (1988) Plant life in cold climates. In: Long SF, Woodward FI (eds) Plants and temperature. Symp Soc Exp Biol 42:25–57. The Company of Biol, Cambridge

    Google Scholar 

  • Körner Ch, Pelaez Menendez-Riedl S (1989) The significance of developmental aspects in plant growth analysis. In: Lambers H, Cambridge ML, Konings H, Pons TL (eds) Causes and consequences of variation in growth rate and productivity of higher plants. SPB Acad Publ, The Hague, pp 141–157

    Google Scholar 

  • Körner Ch, Renhardt U (1987) Dry matter partitioning and root length/leaf area ratios in herbaceous perennial plants with diverse altitudinal distribution. Oecologia 74:411–418

    Article  Google Scholar 

  • Körner Ch, Woodward FI (1987) The dynamics of leaf extension in plants with diverse altitudinal ranges. II. Field studies in Poa species between 600 and 3200 m altitude. Oecologia 72:279–283

    Article  Google Scholar 

  • Körner Ch, Diemer M, Schäppi B, Zimmermann L (1995) The response of alpine vegetation to elevated CO2. In: Koch G, Mooney HA (eds) “Terrestrial ecosystem response to elevated CO2.” Physiological Ecology Series. Academic Press (in press)

    Google Scholar 

  • Larcher W (1980) Klimastress im Gebirge – Adaptationstraining und Selektionsfilter für Pflanzen. Rheinisch-Westf Akad Wiss Vortr N 291:49–88

    Google Scholar 

  • Larcher W, Wagner J (1983) Ökologischer Zeigerwert und physiologische Konstitution von Sempervivum montanum. Verh Ges Ökol (Göttingen) 11:253–264

    Google Scholar 

  • Lavin M (1983) Floristic of the upper Walker River, California and Nevada. Great Basin Nat 43:93–130

    Google Scholar 

  • Loope LL (1969) Subalpine and alpine vegetation of northeastern Nevada. PhD thesis, Duke University, Durham, NC

    Google Scholar 

  • Matveyeva NV (1988) The horizontal structure of tundra communities. In: Werger MJA, van der Aart PJM, During HJ (eds) Plant form and vegetation structure. SPB Academic Pubhshing, The Hague, pp 59–65

    Google Scholar 

  • Merxmiiller H (1954) Untersuchungen zur Sippengliederung und Arealbildung in den Alpen. Verein z Schutz d Alpenpflanzen und-tiere 19, München

    Google Scholar 

  • Messerli B (1983) Stability and instability of mountain ecosystems: introduction to a workshop sponsored by the United Nations University. Mountain Res Dev 3:81–94

    Article  Google Scholar 

  • Miehe G (1989) Vegetation patterns on Mount Everest as influenced by monsoon and föhn. Vegetatio 79:21–32

    Article  Google Scholar 

  • Moore TC (1965) Origin and disjunction of the alpine tundra flora on San Francisco Mountain, Arizona. Ecology 46:860–864

    Article  Google Scholar 

  • Murray DF (1992) Vascular plant diversity in Alaskan arctic tundra. North West Environ J 8:29–52

    Google Scholar 

  • Nilsson O (1986) Nordisk fjällflora, Bonniers, Göteborg

    Google Scholar 

  • Ozenda P (1988) Die Vegetation der Alpen im europäischen Gebirgsraum. Gustav Fischer, Stuttgart

    Google Scholar 

  • Ozenda P (1993) Etage alpin et Toundra de montagne: parenté ou convergence? Fragm Florist Geobot Suppl 2:457–471

    Google Scholar 

  • Pisek A, Larcher W, Vegis A, Napp-Zinn K (1973) The normal temperature range. In: Precht H, Christophersen J, Hensel H, Larcher W (eds) Temperature and life. Springer, Berlin Heidelberg New York, pp 102–194

    Google Scholar 

  • Polunin O, Stainton A (1984) Flowers of the Himalaya. Oxford University Press, Oxford

    Google Scholar 

  • Pyankov VI, Mokronosov AT (1993) General trends in changes of the earth’s vegetation related to global warming. Russian J Plant Physiol 40:515–531

    CAS  Google Scholar 

  • Rikh M (1917) Die den 80° n erreichenden oder überschreitenden Gefässpflanzen. Vierteljahresschr Naturforsch Ges Zürich 62:169–193

    Google Scholar 

  • Rominger JM, Paulik LA (1983) A floristic inventory of the plant communities of the San Francisco Peaks Research Natural Area. USDA Forest Service, General Technical Report RM-96, Fort Collins

    Google Scholar 

  • Slatyer RO, Noble IR (1992) Dynamics of montane treehnes. In: Hansen AJ, di Castri F (eds) Landscape boundaries. Springer, Berhn Heidelberg New York, pp 346–359

    Chapter  Google Scholar 

  • Spence JR, Shaw RJ (1981) A checklist of the alpine vascular flora of the Teton Range, Wyoming, with notes on biology and habitat preferences. Great Basin Nat 41:232–242

    Google Scholar 

  • Squeo A, Rada F, Azocar A, Goldstein G (1991) Freezing tolerance and avoidance in high tropical Andean plants: is it equally represented in species with different plant height? Oecologia 86:378–382

    Article  Google Scholar 

  • Troll C (1973) The upper timberlines in different climatic zones. Arct Alp Res 5:A3-A18

    Google Scholar 

  • Vareschi V (1970) Flora de los Paramos de Venezuela. Universidad de los Andes, Merida, Venezuela

    Google Scholar 

  • Walter H, Breckle SW (1986) (eds) Ökologie der Erde. Band 3: Spezielle Ökologie der gemässigten und arktischen Zonen Euro-Nordasiens. UTB Gustav Fischer, Stuttgart

    Google Scholar 

  • Wardle P (1971) An explanation of alpine timberline. NZ J Bot 9:371–402

    Article  Google Scholar 

  • Wardle P (1974) Alpine timberlines. In: Ives JD, Barry RG (eds) Arctic and alpine environments. Methuen, London, pp 372–402

    Google Scholar 

  • Wohlgemuth T (1993) Der Verbreitungsatlas der Farn-und Blütenpflanzen der Schweiz (Welten und Sutter 1982) auf EDV: die Artenzahlen und ihre Abhängigkeit von verschiedenen Faktoren. Bot Helv 103:55–71

    Google Scholar 

  • Woodward FI (1993) The lowland-to-upland transition-modelling plant responses to environmental change. Ecol Appl 3:404–408

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Körner, C. (1995). Alpine Plant Diversity: A Global Survey and Functional Interpretations. In: Chapin, F.S., Körner, C. (eds) Arctic and Alpine Biodiversity: Patterns, Causes and Ecosystem Consequences. Ecological Studies, vol 113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78966-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78966-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78968-7

  • Online ISBN: 978-3-642-78966-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics