Skip to main content

The Physical Basis for Radiotherapy with Neutrons

  • Conference paper
Fast Neutrons and High-LET Particles in Cancer Therapy

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 150))

Abstract

Radiotherapy with neutrons requires a large quantity of physical information about neutrons and their interaction with matter. Primarily the absorbed dose at a reference point needs to be determined For treatment planning the dose distribution in a phantom must be measured and algorithms for the simulation of the dose distribution in a patient must be available. As neutrons interact with matter in a more complicated way as high-energy photons and electrons commonly used in radiotherapy, biological effects based on microdosimetric data are used for treatment planning. This paper presents a brief summary of the neutron sources used in radiotherapy. The dosimetry of the clinical neutron beams is described. Special aspects of the treatment planning with fast neutrons are discussed. For further radiobiological interpretation the fundamentals of microdosimetry are described. Finally recent and future developments in the field of physics for neutron therapy are mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Awschalom M, Rosenberg I, Ten Haken RK (1983) Scaling neutron absorbed dose distributions from one medium to another. Med Phys 10: 436–443

    Article  PubMed  CAS  Google Scholar 

  • Brahme A, Enmaa J, Lindbäck S, Montelius A, Wootton P (1983) Neutron beam characteristics from 50 MeV protons on beryllium using a continuously variable multi-leaf collimator. Radiother Oncol 1: 65–76

    Article  PubMed  CAS  Google Scholar 

  • Broerse JJ, Mijnheer BJ, Williams JR (1981) European protocol for neutron dosimetry for external beam therapy. Br J Radiol 54: 882–898

    Article  PubMed  CAS  Google Scholar 

  • Clarkson JR (1941) A note on depth doses in fields or irregular shape. Br J Radiol 14: 265–268

    Article  Google Scholar 

  • Denis JM, Meulders JP, Lannoye E, Longree Y, Reyckewaert G, Richard F, Vynckier S, Wambersie A (1996) The multi-leaf collimator for fast neutron therapy at Louvain-la-Neuve. Bull Cancer Radiother 83 Suppl 1: 160s - 169s

    Google Scholar 

  • Franke HD, Hess A, Schmidt R (1983) The DT neutron generator for tumour therapy in Hamburg-Eppendorf. Atomkernenergie Kerntechnik 43: 95–104

    CAS  Google Scholar 

  • Goitein M, Urie M, Munzenrider JE, Gentry R, Lyman JT, Chen GTY, Castro JR, Maor MH, Stafford PM, Sontag MR, Altschuler MD, Bloch P, Chu JCH, Richter MP (1987) Evaluation of treatment planning for particle beam radiotherapy. Report prepared for National Cancer Institute

    Google Scholar 

  • Hensley FW, Rassow J, Temme A (1985) Tissue equivalence in clinical neutron dosimetry: comparison of dose distribution in nine tissue substitutes for a d(14)Be neutron beam. Med Phys 12: 350–356

    Article  PubMed  CAS  Google Scholar 

  • Höver KH, Hartmann G, Lorenz WJ, Menzel HG, Schraube H, Wolber G (1975) Dosimetry at the neutron therapy facility at the German Cancer Research Center. In: Burger G, Ebert HG (eds) Proceedings of the 2nd Symposium on Neutron Dosimetry in Biology and Medicine. Eur 5273 d-e-f, pp 445–452

    Google Scholar 

  • Höver KH, Hesse BM, Rhein B, Lorenz WJ (1990) Verification of neutron dose distribution obtained by irregular shaped fields and moving beam therapy, In: Marin P, Mandrillon P (eds): Proc. 2nd European Particle Accelerator Conference, vol 2, pp 26–28

    Google Scholar 

  • IAEA (1987) Report 277: Absorbed dose determination in photon and electron beams. IAEA, Vienna

    Google Scholar 

  • ICRU (1983) Microdosimetry. ICRU report 36, International Commission on Radiation Units and Measurements, Bethesda, Md

    Google Scholar 

  • ICRU (1989) Clinical neutron dosimetry, part I: determination of absorbed dose in a patient treated by external beams of fast neutrons. ICRU report 45, International Commission on Radiation Units and Measurements, Bethesda, Md

    Google Scholar 

  • ICRU (1994) Prescribing, recording and reporting photon beam therapy. ICRU report 50, International Commission on Radiation Units and Measurements, Bethesda, Md

    Google Scholar 

  • Jacobs FW, Van Kleffens HJ (1986) The “ring” method: a semi-empirical method to calculate dose distributions of irregularly shaped photon beams. Radiother Oncol 7: 363–369

    Article  PubMed  CAS  Google Scholar 

  • Loncol T, Vynckier S, Wambersie A (1996) Thermoluminescence in proton and fast neutron beams: Radiat Prot Dosim 66: 299–304

    CAS  Google Scholar 

  • Maughan RL, Yudelev M, Warmelink C, Forman JD, Maruyama Y, Porter AT, Powers WE, Blosser EB, Blosser G, Blosser HG (1994) Facility for fast neutron therapy at the Harper hospital. In: Amaldi U, Larsson B, (eds) Hadontherapy in oncology. Elsevier, Amsterdam, pp 377–385

    Google Scholar 

  • Maughan RL, Blosser GF, Blosser EB, Yudelev M, Forman JD, Blosser HG, Powers WE (1996) A multi-rod collimator for neutron therapy. Int, J Radiat Oncol Biol Phys 34: 411–420

    Article  CAS  Google Scholar 

  • Mijnheer BJ, Broerse JJ (1979) Dose distribution of clinical fast neutron beams. In: Barend-sen GW, Broerse JJ, Breur K (eds) High-LET radiations in clinical radiotherapy. Perga-mon, Oxford, pp 109–115

    Google Scholar 

  • Mijnheer BJ, Wootton P, Williams JR, Eenmaa J, Parnell CJ (1987) Uniformity in neutron dosimetry. Med Phys 14: 1020–1026

    Article  PubMed  CAS  Google Scholar 

  • Pihet P, Meulders JP, Octave-Prignot M, Vynckier S, Wambersie A (1982) Gamma contribution to the total absorbed dose in the d(50)-Be and p(65)-Be therapeutic neutron beams at “CYCLONE”. J Eur Radiother 3: 121–130

    Google Scholar 

  • Pihet P, Menzel HG, Meulders JP, Wambersie A (1984) Microdosimetric characteristics of high energy neutron beams and assessment of quantities relevant for radiation protection. Radiat Prot Dosim 9: 241–244

    CAS  Google Scholar 

  • Pihet P, Menzel HG, Schmidt R, Beauduin M, Wambersie A (1990) Biological weighting function for RBE specification of neutron therapy beams. Intercomparison of 9 European centres. Radiat Prot Dosim 31: 437–442

    CAS  Google Scholar 

  • Rassow J, Vynckier S, Hehn G (1984) Treatment planning in neutron therapy. J Eur Radiother 5: 206–222

    Google Scholar 

  • Rassow J, Haverkamp U, Hess A, Höver KH, Jahn U, Kronholz H, Meissner P, Regel K, Schmidt R (1992) Review on the physical and technical status of fast neutron therapy in Germany. Radiat Prot Dosim 44: 447–451

    CAS  Google Scholar 

  • Richard F, Meulders JP, Vynckier S, Octave-Prignot M, Possoz A, Wambersie A (1981) Present status of the treatment planning for d(50)-Be neutron beams and mixed schedules at “CYCLONE”. Strahlentherapie 77 Suppl: 178–184

    CAS  Google Scholar 

  • Schmidt R, Hess A (1982) Spectroscopic intercomparison at the German neutron therapy centres. Int J Radiat Oncol Biol Phys 8: 1511–1515

    Article  PubMed  CAS  Google Scholar 

  • Schmidt R, Hess A, (1988) Component evaluation of event size spectra for a clinical 14-MeV neutron beam. Med Phys 15: 343–347

    Article  PubMed  CAS  Google Scholar 

  • Schmidt R, Thom E (1990) Neutron dose planning with the MEVAPLAN system. Strahlenther Onkol 166: 301–305

    PubMed  CAS  Google Scholar 

  • Schmidt R, Schiemann T, Höhne KH, Hübener KH (1992) Three-dimensional treatment planning for fast neutrons. In: Breit A (ed) Advanced radiation therapy tumeur response monitoring and treatment planning. Springer, Berlin Heidelberg New York, pp 643–648

    Google Scholar 

  • Schmidt R, Schiemann T, Schlegel W, Höhne KH, Hübener KH (1994) Consideration of time-dose-patterns in 3D treatment planning, an approach toward 4D treatment planning. Strahlenther Onkol 170: 292–301

    PubMed  CAS  Google Scholar 

  • Schraube H, Morhardt A, Grünauer F (1975) Neutron and gamma radiation field of a deuterium gas target at a compact cyclotron. In: Burger G, Ebert HG (eds) Proceedings of the 2nd Symposium on Neutron Dosimetry in Biology and Medicine, pp EUR 5273 d-e-f, 979–999

    Google Scholar 

  • Vynçkier S, Octave-Prignot M, Richard F, Wambersie A (1981) Corrections for oblique incidence and wedges in a therapeutic d(50)+Be neutron beam. In: Schraube H, Burger G (eds) Proceedings of the 4th Symposium on Neutron Dosimetry, CEC, EUR 7448, vol 2, pp 129–140

    Google Scholar 

  • Vynckier S, Pihet P, Octave-Prignot M, Meulders JP, Wambersie A (1982) Comparison of neutron therapy beams produced by 50 MeV deuterons and 65 MeV protons on beryllium. Acta Radiol Oncol 21: 281–287

    Article  PubMed  CAS  Google Scholar 

  • Vynckier S, Pihet P, Flemal JM, Meulders JP, Wambersie A (1983) Improvement of a p (65)+Be neutron beam for therapy at Cyclone, Louvain-la-Neuve. Phys Med Biol 28: 685–691

    Article  PubMed  CAS  Google Scholar 

  • Vynckier S, Mijnheer BJ, Rassow J (1985) Scaling relative neutron depth-dose distributions from one phantom material to another: a comparison of experimental and theoretical results. Phys Med Biol 30: 55–66

    Article  PubMed  CAS  Google Scholar 

  • Vynckier S, Pihet P, Marquebreucq S, Wambersie A (1987) The gamma component in clinical neutron beams of different energy. J Radiol 60: 314

    Google Scholar 

  • Vynckier S, Bonnett DE, Jones DTL (1991) Code of practice for clinical proton dosimetry. Radiother Oncol 20: 53–63

    Article  PubMed  CAS  Google Scholar 

  • Vynckier S, Patoul de N, Denis JM, Wambersie A (1993) Dosimetry of p(65)+Be neutron beams, produced by means of a multileaf collimator at Louvain-la-Neuve. Extended abstract book of the Workshop of the EORTC Heavy Particle Therapy Group and the European Clinical Heavy Particle Dosimetry Group ECHED, March 11–13, Brussels

    Google Scholar 

  • Vynckier S, Bonnett DE, Jones DTL (1994) A supplement to the code of practice for clinical proton dosimetry. Radiother Oncol 32: 174–179

    Article  PubMed  CAS  Google Scholar 

  • Watermann FM, Kuchnir FT, Skaggs LS, Henrdy GO, Tom JL (1978) Dosimetric properties of neutron beams from D-D reaction in the energy range 6.8 to 11.1 MeV. Phys Med Biol 23: 397–404

    Article  Google Scholar 

  • Wrede DE (1972) Central axis tissue-air ratios as a function of area/perimeter at depth and their applicability of irregularly shaped fields. Phys Med Biol 17: 548–554

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Vynckier, S., Schmidt, R. (1998). The Physical Basis for Radiotherapy with Neutrons. In: Engenhart-Cabillic, R., Wambersie, A. (eds) Fast Neutrons and High-LET Particles in Cancer Therapy. Recent Results in Cancer Research, vol 150. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78774-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78774-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78776-8

  • Online ISBN: 978-3-642-78774-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics