Skip to main content

Paleoproductivity: Flux Proxies Versus Nutrient Proxies and Other Problems Concerning the Quaternary Productivity Record

  • Conference paper
Carbon Cycling in the Glacial Ocean: Constraints on the Ocean’s Role in Global Change

Part of the book series: NATO ASI Series ((ASII,volume 17))

Abstract

There are three fundamentally different proxies recording ocean productivity in sediments: those representing flux (that is, export production), those representing nutrient concentrations (e.g., nitrate or phosphate), and those representing aspects of the trophic structure of the pelagic environment. Flux proxies disagree due to different power-law relationships to the source term. The particular power-laws (expressed in terms of proxy exponents) change as a function of geography, and may change as a function of time. Modification of the accumulation rate by changing preservation on the sea floor (and within the sediment) is an important aspect of this problem.

Combining the use of flux proxies and nutrient proxies makes it possible to estimate the magnitude of physical processes such as mixing and upwelling, and the positive feedback from nutrient buildup in the thermocline. These effects are subsumed into a parameter [v] in the equation Flux = nutrients x [v]. A study of data from the western equatorial Pacific suggests that mixing, upwelling and subsurface nutrient buildup were greatly increased in glacial Stage 6. Diatom abundance does not go parallel to either the flux or the nutrient proxy. Paradoxically, it shows reverse fluctuations. Silicate starvation during glacials may be indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altenbach AV, Sarnthein M (1989) Productivity record in benthic foraminifera. In: Berger WH, Smetacek VS, Wefer G (eds) Productivity of the Ocean: Present and Past, John Wiley and Sons, Chichester, p 255–269.

    Google Scholar 

  • Arrhenius GOS (1952) Sediment cores from the east Pacific. Rep Swed Deep Sea Exped (1947–1948) 5:1–288.

    Google Scholar 

  • Arrhenius GOS (1988) Rate of production, dissolution and accumulation of biogenic solids in the ocean. Palaeogeogr Palaeoclimat Palaeoecol 67: 119–146.

    Article  Google Scholar 

  • Barnola JM, Raynaud D, Korotkevich YS, Lorius C (1987) Vostok ice cores provides 160,000 year record of atmospheric CO2. Nature 329:408–414.

    Article  Google Scholar 

  • Barron JA, Baldauf J (1989) Tertiary cooling steps and paleoproductivity as reflected by diatoms and biosiliceous sediments. In: Berger WH, Smetacek VS, Wefer G (eds) Productivity of the Ocean: Present and Past, John Wiley, Chichester, p 341–354

    Google Scholar 

  • Bender ML, Heggie DT, (1984) Fate of organic carbon reaching the seafloor: a progress report. Geochim Cosmochim Acta 48:977–986.

    Article  Google Scholar 

  • Bender M, Grande K, Johnson K, Marra J, Williams PJLeB, Sieburth J, Pilson M, Langdon C, Hitchcock G, Orchado J, Hunt C, Donaghay P, Heinemann K (1987) A comparison of four methods for determining planktonic community production. Limnol Oceanogr 32:1085–1098.

    Article  Google Scholar 

  • Bennekom AJ van, Berger GW (1984) Hydrography and silica budget of the Angola Basin. Neth J Sea Res 17(2–4):149–200.

    Article  Google Scholar 

  • Berger WH (1970) Biogenous deep-sea sediments: fractionation by deep-sea circulation. Bull Geol Soc Am 81:1385–1402.

    Article  Google Scholar 

  • Berger WH (1992) Pacific carbonate cycles revisited: arguments for and against productivity control. In: Ishizaki K, Saito T (eds) Centenary of Japanese Micropaleontology, Terra Scientific Publ Co, Tokyo, p 15–25

    Google Scholar 

  • Berger WH, and Diester-Haass L (1988) Paleoproductivity: the benthic/planktonic ratio in foraminifera as a productivity index. Mar Geol 81:15–25.

    Article  Google Scholar 

  • Berger WH, Herguera JC (1992) Reading the sedimentary record of the ocean’s productivity. In: Falkowski PF, Woodhead AD (eds) Primary Productivity and Biogeochemical Cycles in the Sea, Plenum Press, New York, p 455–486

    Google Scholar 

  • Berger WH, Spitzy A (1988) History of atmospheric CO2: constraints from the deep-sea record. Paleoceanography 3:401–411.

    Article  Google Scholar 

  • Berger WH, Wefer G (1990) Export production: seasonality and intermittency, and paleooceanographic implications. Global and Planetary Change 3(3):245–254.

    Article  Google Scholar 

  • Berger WH, Wefer G (1991) Productivity of the glacial ocean: discussion of the iron hypothesis. Limnol Oceanogr 36:1899–1918.

    Article  Google Scholar 

  • Berger WH, Wefer G (1992) Klimageschichte aus Tiefseesedimenten — Neues vom Ontong-Java Plateau. Naturwissenschaften 79:541–550.

    Article  Google Scholar 

  • Berger WH, Fischer K, Lai C, Wu G (1987) Ocean productivity and organic carbon flux. Part I. Overview and maps of primary production and export production. Univ Calif San Diego, SIO Reference 87–30.

    Google Scholar 

  • Berger WH, Smetacek VS, Wefer G (1989a) Productivity of the Ocean: Present and Past. Dahlem Konferenzen. John Wiley, Chichester.

    Google Scholar 

  • Berger WH, Smetacek VS, Wefer G (1989b) Ocean productivity and paleoproductivity — an overview. In: Berger WH, Smetacek VS, Wefer G (eds), Productivity of the Ocean: Present and Past, Dahlem Konferenzen. John Wiley, Chichester, p 1–34.

    Google Scholar 

  • Berger, WH, Bickert T, Schmidt H, Wefer G (1993) Quaternary oxygen isotope record of pelagic foraminifers: Site 806, Ontong Java Plateau. Proc ODP Sci Res 130:381–395.

    Google Scholar 

  • Berner W, Oeschger H, Stauffer B (1980). Information on the CO2 cycle from ice core studies. Radiocarbon 22:227–235.

    Google Scholar 

  • Bickert T, Berger WH, Burke S, Schmidt H, Wefer G (1993) Late Quaternary stable isotope record of benthic foraminifers: Sites 805 and 806, Ontong Java Plateau. Proc ODP Sci Res 130:411–420.

    Google Scholar 

  • Bleil U, Thiede J (1990) Geological history of the polar oceans: Arctic versus Antarctic. Kluwer, Dordrecht.

    Google Scholar 

  • Boyle EA, Keigwin LD (1987) North Atlantic thermohaline circulation during the past 20,000 years linked to high-latitude surface temperature. Nature 330:35–40.

    Article  Google Scholar 

  • Broecker WS (1982) Ocean chemistry during glacial time. Geochim Cosmochim Acta 46:1689–1705.

    Article  Google Scholar 

  • Broecker WS, Peng T-H (1989) The cause of the glacial to interglacial atmospheric CO2 change: A polar alkalinity hypothesis. Global Biogeochem Cycles 3:215–239.

    Article  Google Scholar 

  • Burke SK, Berger WH, Coulbourn WT, Vincent E (1993) Benthic foraminifera in box core ERDC 112, Ontong Java Plateau. J Foram Res 23:19–39.

    Article  Google Scholar 

  • Calvert SE (1964) Factors affecting distribution of laminated diatomaceous sediments in the Gulf of California. Am Assoc Petrol Geol Mem 3:311–330.

    Google Scholar 

  • Calvert SE (1983) Sedimentary geochemistry of silicon. In: Aston SR (ed) Silicon Geochemistry and Biogeochemistry, Academic Press, p 143–186.

    Google Scholar 

  • Charles CD, Fairbanks RG (1990) Glacial to interglacial changes in the isotopic gradients of Southern Ocean surface water. In: Bleil U, Thiede J (eds) Geological History of the Polar Oceans: Arctic versus Antarctic, Kluwer, Dordrecht, p 519–538.

    Google Scholar 

  • Chavez FP, Barber RT (1987) An estimate of new production in the equatorial Pacific. Deep-Sea Res 34:1229–1243.

    Article  Google Scholar 

  • Chester R (1990) Marine Geochemistry. Un win Hyman, London.

    Google Scholar 

  • Chisholm SW, Morel FM (1991) What controls phytoplankton production in nutrient-rich areas of the open sea? Limnol Oceanogr 36(8):1507–1970 (Special Issue).

    Article  Google Scholar 

  • CLIMAP Project Members (1981) Seasonal reconstruction of the Earth’s surface at the last glacial maximum. Geol Soc Am Map Chart Ser MC36, Boulder, Colorado.

    Google Scholar 

  • Delmas RJ, Ascencio JM, Legrand M (1980) Polar ice evidence that atmospheric CO2 20 000 yr BP was 50% of present. Nature 284:155–157.

    Article  Google Scholar 

  • Diester-Haass L, Schrader HJ, Thiede J (1973) Sedimentological and paleoclimatological investigation of two pelagic ooze cores off Cape Barbas, Northwest Africa. “Meteor” Forsch-Ergebnisse C16:19–66.

    Google Scholar 

  • Diester-Haass L (1985) Late Quaternary sedimentation on the eastern Walvis Ridge, SE Atlantic (HPC 532 and four piston cores). Mar Geol 65:145–189.

    Article  Google Scholar 

  • Duplessy JC, Shackleton NJ, Fairbanks RG, Labeyrie L, Oppo D, Kallel N (1988) Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography 3:343–360.

    Article  Google Scholar 

  • Emerson S, Hedges JI (1988) Processes controlling the organic carbon content of open ocean sediments. Palaeogeogr Palaeoclimat Palaeoecol 3:621–634.

    Google Scholar 

  • Eppley RW, Peterson BJ (1979) Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282:677–680.

    Article  Google Scholar 

  • Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the Earth’s orbit: pacemaker of the Ice Ages. Science 194:1121–1132.

    Article  Google Scholar 

  • Heath GR (1974) Dissolved silica and deep-sea sediments. In: Hay W (ed) Studies in Paleo-Oceanography, Soc Econ Paleont Mineral Spec Publ 20:77–93.

    Google Scholar 

  • Herguera, JC (1992) Deep-sea benthic foraminifera and biogenic opal: glacial to postglacial productivity changes in the western equatorial Pacific. Mar Micropaleont 19:79–98.

    Article  Google Scholar 

  • Herguera JC, Berger WH (1991) Paleoproductivity: glacial to postglacial change in the western equatorial Pacific, from benthic foraminifera. Geology 19:1173–1176.

    Article  Google Scholar 

  • Herzfeld, UC, Berger WH (1993) Ocean Productivity and Indicator Variables: Map Comparison for Atlantic and World Oceans. SIO Ref Ser 93–7, La Jolla, California.

    Google Scholar 

  • Imbrie J, Hays JD, Martinson DG, McIntyre, A, Mix AC, Morley JJ, Pisias NG, Prell WL, Shackleton NJ (1984) The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18O record. In: Berger AL, Imbrie J, Hays JD, Kukla J, Saltzman J (eds) Milankovitch and Climate (Part 1), Reidel, Hingham, Mass, p 269–305.

    Google Scholar 

  • Jansen JHF, Iperen JM van (1991) A 220,000-year climatic record for the east equatorial Atlantic Ocean and equatorial Africa: evidence from diatoms and opal phytoliths in the Zaire (Congo) deep-sea fan. Paleoceanography 6:573–592.

    Article  Google Scholar 

  • Keir RS, Berger WH (1983) Atmospheric CO2 content in the last 120,000 years: the phosphate-extraction model. J Geophys Res 88(C10):6027–6038

    Article  Google Scholar 

  • Keir RS (1990) Reconstructing the ocean carbon system variation during the last 150,000 years according to the Antarctic nutrient hypothesis. Paleoceanography 5:253–276.

    Article  Google Scholar 

  • Koblentz-Mishke OI, Volkovinsky VV, Kabanova JG (1970) Plankton primary production of the world ocean. In: Wooster W (ed) Scientific Exploration of the South Pacific, National Academy of Sciences, Washington, D.C.

    Google Scholar 

  • Kroopnick PM (1985) The distribution of 13C of CO2 in the world oceans. Deep-Sea Res 32:57–84.

    Article  Google Scholar 

  • Lange CB, Berger WH (1993) Diatom productivity and preservation in the western equatorial Pacific: the Quaternary record. Proc ODP Sci Res 130:509–523.

    Google Scholar 

  • Lange CB, Burke SK, Berger WH (1990) Biological Production off Southern California is linked to climatic change. Climatic Change 16:319–329.

    Article  Google Scholar 

  • Lapenis AG, Os’kina NS, Barash MS, Biyum NS, Vasileva YeV (1990) Late Quaternary variations in the productivity of the ocean’s biota. Okeanologiya 30:93 [In Russian].

    Google Scholar 

  • Leinen M, Sarnthein M (1989) Paleoclimatology and Paleometeorology: Modern and Past Patterns of Global Atmospheric Transport. Kluwer, Dordrecht.

    Google Scholar 

  • Leinen M, Cwienk D, Heath GR, Biscaye P, Kolla V, Thiede J, Dauphin JP (1986) Distribution of biogenic silica and quartz in recent deep-sea sediments. Geology 14:199–203.

    Article  Google Scholar 

  • Loubere P (1991) Deep-sea benthic foraminiferal assemblage response to a surface ocean productivity gradient: a test. Paleoceanography 6:193–204.

    Article  Google Scholar 

  • Lyle M (1988) Climatically forced organic carbon burial in equatorial Atlantic and Pacific oceans. Nature 335:529–532.

    Article  Google Scholar 

  • Lyle M, Murray DW, Finney BP, Dymond J, Robbins JM, Brooksforce K (1988) The record of late Pleistocene biogenic sedimentation in the eastern tropical Pacific Ocean. Paleoceanography 3:39–59.

    Article  Google Scholar 

  • Mikkelsen N (1978) Preservation of diatoms in glacial to Holocene deep-sea sediments of the equatorial Pacific. Geology 6:553–555.

    Article  Google Scholar 

  • Mikkelsen N (1984) Diatoms in the Zaire deep-sea fan and Pleistocene paleoclimatic trends in the Angola Basin and west equatorial Africa. Neth J Sea Res 17(2–4): 280–292.

    Article  Google Scholar 

  • Milliman JD, Takahashi K (in press) Carbonate and opal production and accumulation in the ocean. In: Hay W, Meybeck M, Usselman T (eds) Global Surficial Geofluxes: Modern to Glacial, National Research Council, Washington, DC.

    Google Scholar 

  • Mix AC (1989a) Pleistocene paleoproductivity: evidence from organic carbon and foramini-feral species. In: Berger WH, Smetacek VS, Wefer G (eds) Productivity in the ocean: Present and Past, John Wiley, Chichester, p 313–340.

    Google Scholar 

  • Mix AC (1989b) Influence of productivity variations on long term atmospheric CO2. Nature, 337:541–544.

    Article  Google Scholar 

  • Mortlock RA, Charles CD, Froelich PN, Zibello MA, Saltzman J, Hays JD, Burckle LH (1991) Evidence for lower productivity in the Antarctic Ocean during the last glaciation. Nature 351:220–223.

    Article  Google Scholar 

  • Müller PJ, Schneider R (1993) An automated leaching method for the determination of opal in sediments and particulate matter. Deep-Sea Res 40(3):425–444.

    Article  Google Scholar 

  • Müller PJ, Suess E (1979) Productivity, sedimentation rate, and sedimentary organic matter in the oceans -I. Organic carbon preservation. Deep-Sea Res 26A:1347–1362.

    Article  Google Scholar 

  • Opdyke BN, Walker JCG, 1992. Return of the coral reef hypothesis: Basin to shelf partitioning of CaCO3 and its effect on atmospheric CO2. Geology 20:733–736.

    Article  Google Scholar 

  • Pedersen TF (1983) Increased productivity in the eastern equatorial Pacific during the last glacial maximum (19,000 to 14,000 yr B.P.). Geology 11:16–19.

    Article  Google Scholar 

  • Pisias NG, Prell WL (1985) Changes in calcium carbonate accumulation in the equatorial Pacific during the late Cenozoic: evidence from HPC Site 572. In: Sundquist ET, Broecker WS (eds) The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, AGU Geophys Monogr 32:443–454.

    Chapter  Google Scholar 

  • Platt T, Harrison G (1985) Biogenic fluxes of carbon and oxygen in the ocean. Nature 318:55–58.

    Article  Google Scholar 

  • Pokras EM (1987) Diatom record of late Quaternary climatic change in the eastern equatorial Atlantic and tropical Africa. Paleoceanography 2:273–286.

    Article  Google Scholar 

  • Prell WL, Curry WB (1981) Faunal and isotopic indices of monsoonal upwelling: Western Arabian Sea. Oceanol Acta 4:91–98.

    Google Scholar 

  • Rea DK, Chambers LW, Chuey JM, Janecek TR, Leinen M, Pisias NG (1986) A 420,000-year record of cyclicity in oceanic and atmospheric processes from the eastern equatorial Pacific, Paleoceanography 1:577–586.

    Article  Google Scholar 

  • Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of sea-water. In: Hill MN (ed) The Sea, vol.2, Wiley Interscience, New York, p26–77.

    Google Scholar 

  • Reid JL (1965) Intermediate Waters of the Pacific. Johns Hopkins, Baltimore, Md.

    Google Scholar 

  • Reid JL, Brinton E, Fleminger A, Venrick EL, McGowan JA (1978) Ocean circulation and marine life. In: Charnock H, Deacon G (eds) Advances in Oceanography, Plenum, New York, p 65–130.

    Google Scholar 

  • Romankevich EA (1984) Geochemistry of Organic Matter in the Ocean. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Sancetta C (1989) Processes controlling the accumulation of diatoms in sediments: a model derived from British Columbian Fjords. Paleoceanography 4:235–251.

    Article  Google Scholar 

  • Sancetta C (1992) Primary production in the glacial North Atlantic and North Pacific oceans. Nature 360:249–251.

    Article  Google Scholar 

  • Sarnthein M, Thiede J, Pflaumann U, Erlenkeuser H, Fütterer D, Koopmann B, Lange H, Seibold E (1982). Atmospheric and oceanic circulation patterns off Northwest Africa during the past 25 million years. In: Rad U von, Hinz K, Sarnthein M, Seibold E (eds) Geology of the Northwest African Continental Margin, Springer, Berlin Heidelberg New York, pp 584–604.

    Google Scholar 

  • Sarnthein M, Winn K, Zahn R (1987) Paleoproductivity of oceanic upwelling and the effect on atmospheric CO2 and climatic change during deglaciation times. In: Berger WH, Labeyrie LD (eds) Abrupt Climatic Change — Evidence and Implications, Reidel, Dordrecht, p 311–337.

    Google Scholar 

  • Sarnthein M, Winn K, Duplessy J-C, Fontugne MR (1988) Global carbon variations of surface ocean productivity in low and mid latitudes: Influence on CO2 reservoirs of the deep ocean and atmosphere during the last 21,000 years. Paleoceanography 3:361–399.

    Article  Google Scholar 

  • Semtner A, and Chervin R (1991) A thermohaline conveyor belt in the world ocean. WOCE Notes 3:12–15.

    Google Scholar 

  • Schiffelbein P (1984) Stable isotope systematics in Pleistocene deep-sea sediment records. PhD-thesis, Univ Calif, San Diego, La Jolla, California.

    Google Scholar 

  • Schiffelbein P, Dorman L (1986) Spectral effects of time-depth nonlinearities in deep sea sediment records: a deconvolution technique for realigning time and depth scales. J Geophys Res 91(B3):3821–3835.

    Article  Google Scholar 

  • Schmidt H, Berger WH, Bickert T, Wefer G (1993) Quaternary carbon isotope record of pelagic foraminifera: Site 806, Ontong Java Plateau. Proc ODP Sci Res 130:397–409.

    Google Scholar 

  • Schneider R (1991) Spätquartäre Produktivitätsänderungen im östlichen Angola-Becken: Reaktionen auf Variationen im Passat-Monsun-Windsystem und in der Advektion des Benguela Küstenstromes. Berichte Fachbereich Geowissenschaften Univ Bremen 21, Bremen.

    Google Scholar 

  • Schrader H (1992) Comparison of Quaternary coastal upwelling proxies off central Peru. Mar Micropaleont 19:29–47.

    Article  Google Scholar 

  • Schrader H, Sorknes R (1991) Peruvian coastal upwelling: Late Quaternary productivity changes revealed by diatoms. Mar Geol 97:233.

    Article  Google Scholar 

  • Schrader H, Swanberg IL, Burckle LH (1992) Diatoms in recent North Atlantic sediments I: Abundance patterns and what they mean. Hydrobiologia (in press).

    Google Scholar 

  • Schuette G, Schrader H (1979) Diatom taphocoenoses in the coastal upwelling area off western South America. Nova Hedwigia 64:359–378.

    Google Scholar 

  • Shackleton NJ, Hall MA, Line J, Shuxi C (1983) Carbon isotope data in Core V19–30 confirm reduced carbon dioxide concentration in the ice age atmosphere. Nature 306:319–322.

    Article  Google Scholar 

  • Spero HJ, and DeNiro MJ (1987) The influence of symbiont photosynthesis on the δ18O and δ13C values of planktonic foraminiferal shell calcite. Symbiosis, 4: 213–228.

    Google Scholar 

  • Stabell B (1986) Variations of diatom flux in the eastern equatorial Atlantic during the last 400,000 years (“Meteor” cores 13519 and 13521). Mar Geol 72:305–323.

    Article  Google Scholar 

  • Stein R (1991) Accumulation of Organic Carbon in Marine Sediments. Lecture Notes in Earth Sciences 34, Springer, Berlin.

    Google Scholar 

  • Suess E (1980) Particulate organic carbon flux in the oceans: surface productivity and oxygen utilization. Nature 288:260–263.

    Article  Google Scholar 

  • Suess E, Thiede J (1983) Coastal upwelling — Its sediment record. Part A: Responses of the sedimentary regime to present coastal upwelling. Plenum Press, New York and London.

    Google Scholar 

  • Summerhayes CP, Prell WL, Emeis KC (1992) Upwelling systems: evolution since the early Miocene. Geol Soc London Spec Publ 64.

    Google Scholar 

  • Sundquist ET, Broecker, WS (1985) The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. AGU Geophys Monogr 32.

    Google Scholar 

  • Sverdrup HU, Johnson MW, Fleming RH (1942) The Oceans — Their Physics, Chemistry and General Biology. Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Thiede J, Suess E (1983) Coastal upwelling its sediment record. Part B: Sedimentary records of ancient coastal upwelling. Plenum Press, New York and London.

    Google Scholar 

  • Wefer G, Berger WH (1991) Isotope paleontology: growth and composition of extant calcareous species. Mar Geol 100:207–248.

    Article  Google Scholar 

  • Wu G, Berger WH (1991) Pleistocene δ18O records from Ontong-Java Plateau: effects of winnowing and dissolution. Mar Geol 96:193.

    Article  Google Scholar 

  • Zahn R, Winn K, Sarnthein M, (1986) Benthic foraminiferal δ18C and accumulation rates of organic carbon: Uvigerina peregrina and Cibicidoides wuellerstorfi. Paleoceanography 1:27–42.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berger, W.H., Herguera, J.C., Lange, C.B., Schneider, R. (1994). Paleoproductivity: Flux Proxies Versus Nutrient Proxies and Other Problems Concerning the Quaternary Productivity Record. In: Zahn, R., Pedersen, T.F., Kaminski, M.A., Labeyrie, L. (eds) Carbon Cycling in the Glacial Ocean: Constraints on the Ocean’s Role in Global Change. NATO ASI Series, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78737-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78737-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78739-3

  • Online ISBN: 978-3-642-78737-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics