Skip to main content

Chronobiology of Circulating Blood Cells and Platelets

  • Chapter
Biologic Rhythms in Clinical and Laboratory Medicine

Abstract

The great variability in the number of circulating formed elements in the peripheral blood has been noted since techniques for counting these structures became available during the second half of the last century. It was soon recognized that some of these variations do not occur at random, but are the expression of regularly recurring rhythmic events (Japha 1900; Sabin et al. 1927). With improvements in the accuracy and precision of hematologic methods of investigation, it became apparent that some of these periodic variations, especially in the circadian range, are highly reproducible and predictable in their timing and, in some instances, are large enough to be of clinical interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abenhaim L, Romain Y, Kuchel O (1981) Platelet phenolsulfo-transferase and catecholamines: physiological or pathological variations in humans. Canadian J Physiol Pharmacol 59: 300–306

    CAS  Google Scholar 

  • Abo T, Kawate T, Itoh K, Kumagai K (1981) Studies on the bio-periodicity of the immune response. I. Circadian rhythms of human T, B, and K cell traffic in the peripheral blood. J Immunol 126:1360–1363

    PubMed  CAS  Google Scholar 

  • Arora RC, Kregel L, Meltzer HY (1984) Circadian rhythm in the serotonin uptake in the blood platelets of normal controls. Biol Psychiatry 19:1579–1584

    PubMed  CAS  Google Scholar 

  • Auzeby A, Bogdan A, Krosi Z, Touitou Y (1988) Time-dependence of urinary neopterin, a marker of cellular immune activity. Clin Chem 34:1866–1867

    PubMed  CAS  Google Scholar 

  • Baron M, Barkai A, Kowalik S, Fieve RR, Quitkin F, Gruen R (1988) Diurnal and circannual variation in platelet 3H-Imi-pramine binding: comparative data on normal and affectively ill subjects. Neuropsychobiology 19: 9–11

    PubMed  CAS  Google Scholar 

  • Bartlett P, Haus E, Tuason T, Sackett-Lundeen L, Lakatua D (1984) Circadian rhythm in number of erythroid and granulocytic colony forming units in culture (ECFU-C and GCFU-C) in bone marrow of BDF1 male mice. In: Haus E, Kabat H (eds) Chronobiology 1982–1983. Karger, New York, pp 160–164

    Google Scholar 

  • Bartter FC, Delea CS, Halberg F (1962) A map of blood and urinary changes related to circadian variations in adrenal cortical function in normal subjects. Ann NY Acad Sci 98: 969–983

    PubMed  CAS  Google Scholar 

  • Berger J (1980 a) Circannual rhythms in the blood picture of laboratory rats. Folia Haematol (Leipzig) 107: 54–60

    CAS  Google Scholar 

  • Berger J (1980 b) Seasonal influences on circadian rhythms in the blood picture of laboratory mice. Z Versuchstierk 22: 122–134

    CAS  Google Scholar 

  • Bertouch JV, Roberts-Thompson P, Bradley J (1983) Diurnal variation of lymphocyte subsets identified by monoclonal antibodies. Br Med J 286:1171–1172

    CAS  Google Scholar 

  • Bourin P, Mansour I, Lévi F, Villette JM, Roué R, Fiet J, Rouger P, Doinel C (1989) Perturbations précoces des rhythmes cir-cadiens des lymphocytes T et B au cours de l’infection par le virus de l’immunodeficience humaine (VIH). CR Acad Sci (Paris) 308: 431–436

    CAS  Google Scholar 

  • Brandt L, Forssman O, Mitelman F, Odeberg H, Olofsson T, Olsson I., Svensson B (1975) Cell production and cell function in human cyclic neutropenia. Scand J Haematol 15: 228–240

    PubMed  CAS  Google Scholar 

  • Bratescu A, Teodorescu M (1981) Circannual variations in the B cell/T cell ratio in normal human peripheral blood. J Allergy Clin Immunol 68: 273–280

    PubMed  CAS  Google Scholar 

  • Brown HE, Dougherty TF (1956) The diurnal variation of blood leukocytes in normal and adrenalectomized mice. Endocrinology 58:365–375

    PubMed  CAS  Google Scholar 

  • Canon C, Lévi F, Reinberg A, Mathé G (1985) Circulating calla-positive lymphocytes exhibit circadian rhythms in man. Leukemia Res 9:1539–1546

    CAS  Google Scholar 

  • Canon C, Lévi F, Touitou Y, Sulon J, Demey-Ponsart E, Reinberg A, Mathé G (1986) Variations circadienne et saisonniere du rapport inducteur: suppresseur (OKT4 +:OKT8 +) dans le sang veineux de l’homme adulte sain. CR Acad Sci Paris 302: 519–524

    CAS  Google Scholar 

  • Chikkappa G, Borner G, Burlington H, Chanana AD, Cronkite EP, Ohl S, Pavelec M, Robertson JS (1976) Periodic oscillation of blood leukocytes, platelets and reticulocytes in a patient with chronic myelocytic leukemia. Blood 47:1023–1030

    PubMed  CAS  Google Scholar 

  • Conchonnet Ph, Decousus H, Boissier C, Perpoint B, Raynaud J, Mismetti P, Tardy B, Queneau P (1990) Morning hypercoagulability in man. Annu Rev Chronopharmacol 7:165–168

    CAS  Google Scholar 

  • Dale DC, Ailing DW, Wolff SM (1973) Application of time series analysis to serial blood neutrophil counts in normal individuals and patients receiving cyclophosphamide. Br J Haematol 24: 57–64

    PubMed  CAS  Google Scholar 

  • Dale DC, Hammond WP IV (1988) Cyclic neutropenia: a clinical review. Blood Rev 2:178–185

    PubMed  CAS  Google Scholar 

  • Damle NK, Gupta S (1982) Autologous mixed lymphocyte reaction in man. III. Regulation of autologous MLR by theophylline -resistant and -sensitive human T-lymphocyte sub-populations. Scand J Immunol 15: 493—199

    Google Scholar 

  • Derer L (1960) Rhythm and proliferation with special reference to the 6-day rhythms of blood leukocyte count. Neoplasma (Brasil) 7:117–133

    CAS  Google Scholar 

  • Egise D, Desmedt D, Schouteus A, Mendelewicz J (1983) Circannual variations in the density of tritiated imipramine binding sites on blood platelets in man. Neuropsychobiology 10:101–102

    Google Scholar 

  • Felder M, Dore CJ, Knight SC, Ansell BM (1985) In vitro stimulation of lymphocytes from patients with rheumatoid arthritis. Clin Immunol Immunopath 37: 253–261

    CAS  Google Scholar 

  • Gamaleya NF, Shisko ED, Cherny AP (1988) Preservation of circadian rhythms by human leukocytes in vitro. Byull Eksper Biol Med 106: 598–600

    Google Scholar 

  • Gatti RA, Robinson WA, Deinard AS, Nesbit M, McCullough JJ, Ballow M, Good RA (1973) Cyclic leukocytosis in chronic myelogenous leukemia: new perspectives on pathogenesis and therapy. Blood 41: 771–782

    PubMed  CAS  Google Scholar 

  • Gatti G, Cavallo R, Sartori ML, Marinone C, Angeli A (1986) Cortisol at physiological concentrations and prostaglandin E2 are additive inhibitors of human natural killer cell activity. Immunopharmacology 11:119–128

    PubMed  CAS  Google Scholar 

  • Gatti G, Cavallo R, Sartori ML, Carignola R, Masera R, Del-ponte D, Salvadori A, Angeli A (1988) Circadian variations of interferon-induced enhancement of human natural killer (NK) cell activity. Cancer Detec Prev 12: 431–438

    PubMed  CAS  Google Scholar 

  • Gorin NC, Donay L, Laporte JP, Lopez M, Mary JY, Najman A, Salmon C, Aegerter P, Stachowiak J, David J, Pene F, Kantor G, Deloux J, Duhamel E, Van der Akker J, Gerota J, Parlier Y, Duhamel G (1986) Autologous bone marrow transplantation using marrow incubated with ASTA Z 7557 in adult acute leukemia. Blood 67:1367–1376

    PubMed  CAS  Google Scholar 

  • Greenberg PL, Bax I, Lévin J, Andrews TM (1976) Alteration of colony-stimulating factor output, endotoxemia, and granulopoiesis in cyclic neutropenia. Am J Haematol 1: 375–385

    CAS  Google Scholar 

  • Guerry D IV, Dale DC, Omine M, Perry S, Wolff SM (1973) Periodic hematopoiesis in human cyclic neutropenia. J Clin Invest 52: 3220–3230

    PubMed  Google Scholar 

  • Guiguet M, Klein B, Valleron AJ (1978) Diurnal variation and the analysis of percent labelled mitoses curves. In: Valleron AJ, Macdonald PD (eds), Biomathmetics and cell kinetics. Biomedical, Elsevier/North Holland, pp 191–198

    Google Scholar 

  • Haen E (1987) The peripheral lymphocyte as clinical model for receptor disturbances. Bull Europ Physiopath Respir 22: 539–541

    Google Scholar 

  • Haen E, Langenmayer I, Pangerl A, Liebl B, Remien J (1988) Circannual variation in the expression of β2-adrenoceptors on human peripheral mononuclear leukocytes (MNLs). Klin Wschr 66: 579–582

    PubMed  CAS  Google Scholar 

  • Halberg F (1959) Physiologic 24-hour periodicity: general and procedural considerations with reference to the adrenal cycle. Z Vitamin-, Hormon- and Fermentforsch 10: 225–296

    CAS  Google Scholar 

  • Halberg F, Visscher MB (1950) Regular diurnal physiological variation in eosinophil levels in five stocks of mice. Proc Soc Exp Biol Med 75: 846–847

    PubMed  CAS  Google Scholar 

  • Halberg F, Visscher MB, Bittner JJ (1953) Eosinophil rhythm in mice: range of occurence; effects of illumination, feeding and adrenalectomy. Am J Physiol 174:109–122

    PubMed  CAS  Google Scholar 

  • Halberg F, Barnum CP, Silber R, Bittner JJ (1958) 24-hour rhythms at several levels of integration in mice on different lighting regimens. Proc Soc Exp Biol Med 97: 897–900

    PubMed  CAS  Google Scholar 

  • Halberg F, Sothern RB, Roitman B, Halberg E, Benson E, Halberg F, Mayersbach von H, Haus E, Scheving LE, Kana-brocki EL, Bartter FC, Delea C, Simpson HW, Tavadia HB, Fleming KA, Hume P, Wilson C (1977) Agreement of circadian characteristics for total leukocyte counts in different geographic locations. Proc XII Int Conf Int Soc of Chronobiology, II Pointe, Italy, pp 3–17

    Google Scholar 

  • Hammond WP, Price TH, Souza LM, Dale DC (1989) Treatment of cyclic neutropenia with granulocyte colony-stimulating factor. N Engl J Med 320:1306–1311

    PubMed  Google Scholar 

  • Haus E (1959) Endokrines System and Blut. In: Heilmeyer L, Hittmair A (eds) Handbuch der gesamten Hämatologie 2. Urban und Schwarzenberg, Munich, pp 181–286

    Google Scholar 

  • Haus E, Halberg F (1978) Cronofarmacologia della neoplasia con speciale riferimento alia leucemia. In: Bertelli A (ed) Farmacologia clinica e terapia. Edizioni, Turin, pp 29–85

    Google Scholar 

  • Haus E, Halberg F, Scheving LE, Pauly JE, Cardoso S, Kuhl JFW, Sothern RB, Shiotsuka RN, Hwang DS (1972) Increased tolerance of leukemic mice to arabinosyl cytosine with schedule adjusted to circadian system. Science 177: 80–82

    PubMed  CAS  Google Scholar 

  • Haus E, Halberg F, Kuhl JFW, Lakatua DJ (1974) Chronophar-macology in animals. Chronobiologia 1 (Suppl 1): 122–156

    PubMed  Google Scholar 

  • Haus E, Lakatua D, Swoyer J, Sackett-Lundeen L (1983) Chronobiology in hematology and immunology. Am J Anat 168: 467–517

    PubMed  CAS  Google Scholar 

  • Haus E, Lakatua DJ, Sackett-Lundeen L, Swoyer J (1984) Chronobiology in laboratory medicine. In: Reitveld WT (ed) Clinical aspects of chronobiology. Bakker, Baarn, pp 13–82

    Google Scholar 

  • Haus E, Sackett LL, Haus M, Babb WK, Bixby EK (1981) Cardiovascular and temperature adaptation to phase shift by intercontinental flights - longitudinal observations. Adv Biosci 30: 375–390

    Google Scholar 

  • Haus E, Nicolau GY, Lakatua D, Sackett-Lundeen L (1988) Reference values for chronopharmacology. Annu Rev Chronopharmacol 4: 333–424

    CAS  Google Scholar 

  • Haus E, Cusulos M, Sackett-Lundeen L, Swoyer J (1990) Circadian variations in blood coagulation parameters, alpha-anti-trypsin antigen and platelet aggregation and retention in clinically healthy subjects. Chronobiol Intern 7: 203–216

    CAS  Google Scholar 

  • Haus M, Sackett-Lundeen L, Lakatua D, Haus E (1984) Circannual variation of 3H-thymidine uptake in DNA of lymphatic organs irrespective of relative length of light and dark span. J Minn Acad Sci 49:19

    Google Scholar 

  • Herberman RB, Callewaert DH (eds) (1985) Mechanism of cytotoxicity by NK cells. Academic Press, Orlando

    Google Scholar 

  • Homo-Delarche F (1984) Glucocorticoid receptors and steroid sensitivity in normal and neoplastic human lymphoid tissue: a review. Cancer Res 44: 431–437

    PubMed  CAS  Google Scholar 

  • Hrushesky WJM, Roemeling v R, Sothern RB (1989) Circadian chronotherapy: from animal experiments to human cancer chemotherapy. In: Lemmer B (ed) Chronopharmacology. Dekker, New York, pp 439–473

    Google Scholar 

  • Huber C, Batchelor JR, Fuchs D, Hauser A, Lang A, Nieder-wieser D, Reitnegger G, Swetly P, Troppmair J, Wachter H (1984) Immune response associated production of neopterin. Release from macrophages primarily under control of inter-feron-gamma. J Exp Med 160: 310–316

    PubMed  CAS  Google Scholar 

  • Indiveri F, Pierri I, Rogna S, Poggi A, Mantaldo P, Romano R, Pende A, Morgano A, Barabino A, Ferrone S (1985) Circadian variations of autologous mixed lymphocyte reactions and endogenous Cortisol. J Immunol Meth 82:17–24

    CAS  Google Scholar 

  • Iubal A, Aktein E, Barak I, Meytes D, Many A (1983) Cyclic leukocytosis and long survival in chronic myeloid leukemia. Acta Haematol 69: 353–357

    Google Scholar 

  • Japha A (1900) Die Leukozyten beim gesunden und kranken Saugling. Jahrbuch Kinderheilk 52: 242–270

    Google Scholar 

  • Kachergene NB, Koshel IV, Nartsissov RP (1972) Circadian rhythm of dehydrogenase activity in blood cells during acute leukemia in childhood. Pediatriia 51: 81–85

    PubMed  CAS  Google Scholar 

  • Kennedy BJ (1970) Cyclic leukocyte oscillations in chronic myelogenous leukemia during hydroxy-urea therapy. Blood 35: 751–760

    PubMed  CAS  Google Scholar 

  • Klein B, Valleron A J (1977) A compartmental model for the study of diurnal rhythms in cell proliferation. J Theor Biol 64: 27–42

    PubMed  CAS  Google Scholar 

  • Kobus E, Wasilewska E, Bargiel Z (1979) Urinary excretion of catecholamines (CA) and vanilmandelic acid (VMA) during a normal menstrual cycle. Bull Acad Pol Sci 27: 71–74

    CAS  Google Scholar 

  • Krance RA, Spruce WE, Forman SJ, Rosen RB, Hecht T, Hammond WP, Blume KG (1982) Human cyclic neutropenia transferred by allogeneic bone marrow grafting. Blood 60: 1263–1266

    PubMed  CAS  Google Scholar 

  • Kroll MH, Schafer Al (1989) Biochemical mechanisms of platelet activation. Blood 74:1181–1195

    PubMed  CAS  Google Scholar 

  • Kusnetsova SS, Parvdina GM, Yezhova VM (1977) Seasonal variations of some parameters of peripheral blood and hae-matogenetic organs in mice. Zh Obsliteh Biol 38:133–140

    Google Scholar 

  • Laerum OD, Aardal NP (1981) Chronobiological aspects of bone marrow and blood cells. In: Mayersbach von H, Scheving LE, Pauly JE (eds) Biological rhythms in structure and function. Liss, New York, 59C, 87–97

    Google Scholar 

  • Laerum OD, Smaaland R, Sletvold O (1989) Rhythms in blood and bone marrow: potential therapeutic implications. In: Lemmer B (ed) Chronopharmacology. Dekker, New York, pp 371–393

    Google Scholar 

  • Lasky LC, Ascensao J, McCullough J, Zanjani ED (1983) Steroid modulation of naturally occurring diurnal variation in circulating pluriopotential haematopoietic stem cells (CFU-GEMM). Br J Haematol 55: 615–622

    PubMed  CAS  Google Scholar 

  • Lévi F, Halberg F (1982) Circaseptan (about 7-day) bioperio-dicity - spontaneous and reactive - and the search for pacemakers. La Ricerca Clin Lab 12: 323–370

    Google Scholar 

  • Lévi F, Canon C, Blum JP, Reinberg A, Mathé G (1983) Large amplitude circadian rhythm in helper: suppressor ratio of peripheral blood lymphocytes. Lancet II: 462–463

    Google Scholar 

  • Lévi F, Canon C, Blum JP, Mechkouri M, Reinberg A, Mathé G (1985) Circadian and/or circahemidian rhythms in nine lymphocyte-related variables from peripheral blood of healthy subjects. J Immunol 134: 217–222

    PubMed  Google Scholar 

  • Lévi F, Benavides J, Touitou Y, Quarteronet D, Canton T, Uzan A, Auzeby A, Gueremy C, Sulon J, Le Fur G, Reinberg A (1987) Circadian rhythm in the membrane of circulating human blood cells: microviscosity and number of benzodiazepine binding sites, a search for regulation by plasma ions, nucleosides, proteins, or hormones. Chronobiol Int 4:235–243

    PubMed  Google Scholar 

  • Lévi F, Canon C, Touitou Y, Reinberg A, Mathé G (1988 a) Seasonal modulation of the circadian time structure of circulating T and natural killer lymphocyte subsets from healthy subjects. J Clin Invest 81: 407–413

    PubMed  Google Scholar 

  • Lévi F, Canon C, Touitou Y, Sulon J, Mechkouri M, Ponsart ED, Touboul JP, Vannetzel JM, Mowzowicz I, Reinberg A, Mathé G (1988 b) Circadian rhythms in circulating T lymphocyte subtypes and plasma testosterone, total and free Cortisol in five healthy men. Clin Exp Immunol 71: 329–335

    PubMed  Google Scholar 

  • Lewis ML (1974) Cyclic thrombocytopenia: a thrombopoietin deficiency. J Clin Pathol 27: 242–246

    PubMed  CAS  Google Scholar 

  • Loughran TP Jr, Hammond WP IV (1986) Adult-onset cyclic neutropenia is a benign neoplasm associated with clonal proliferation of large granular lymphocytes. J Exp Med 164: 2089–2094

    PubMed  CAS  Google Scholar 

  • Loughran TP Jr, Clark EA, Price TH, Hammond WP (1986) Adult onset cyclic neutropenia is associated with increased large granular lymphocytes. Blood 68:1082–1087

    PubMed  Google Scholar 

  • Malek J, Suk K, Brestak M (1962) Daily rhythm of leukocytes, blood pressure, pulse rate and temperature during pregnancy. Ann NY Acad Sci 98:1018–1091

    PubMed  CAS  Google Scholar 

  • Many A, Schwartz RS (1971) Periodicity during recovery of the immune response after cyclophosphamide treatment. Blood 37:692–695

    PubMed  CAS  Google Scholar 

  • Marler JR, Price TR, Clark GL, Muller JE, Robertson T, Mohr JP, Hier DB, Wolf PA, Caplan LR, Foulkes MR (1989) Morning increase in onset of ischemic stroke. Stroke 20: 473–476

    PubMed  CAS  Google Scholar 

  • Marshall J (1977) Diurnal variation in the occurrence of strokes. Stroke 8: 230–231

    PubMed  CAS  Google Scholar 

  • Martini E, Gorin NC (1988) Lymphocytic populations of the peripheral blood. Applications to the immunological monitoring of autografts of bone marrow. Rev Prat 38:1997–2004

    PubMed  CAS  Google Scholar 

  • Martini E, Gorin NC, Gastal C, Doinel C, Roquin H, Najman A, Salmon C (1988 a) Disappearance of CD4 lymphocyte circadian cycles in autologous bone marrow transplantation. Biomed Pharmacother 42: 357–359

    PubMed  CAS  Google Scholar 

  • Martini E, Muller JY, Doinel C, Gastal C, Roquin H, Douay L, Salmon C (1988b) Disappearance of CD4 lymphocyte circadian cycles in HIV infected patients: early even during asymptomatic infection. AIDS 2:133–134

    PubMed  CAS  Google Scholar 

  • Martini E, Muller JY, Gastal C, Doinel C, Meyohas MC, Roquin H, Frottier J, Salmon C (1988 c) Early anomalies of CD4 and CD20 lymphocyte cycles in human immunodeficiency virus. Presse Med 17: 2167–2168

    PubMed  CAS  Google Scholar 

  • Martini E, Roquin H, Gastal C, Doinel C (1988 d) Reduction of circulating lymphocytes after giving blood. Effects of establishment of reference values for CD4 and CD8 lymphocytes. Ann Biol Clin (Paris) 46: 327–328

    CAS  Google Scholar 

  • Mauer AM (1965) Diurnal variations of proliferative activity in the human bone marrow. Blood 26:1–7

    PubMed  CAS  Google Scholar 

  • Maughan WZ, Bishop CR, Pryor TA, Athens JW (1973) The question of cycling of the blood neutrophil concentrations and pitfalls in the statistical analysis of sampled data. Blood 41: 85–91

    PubMed  CAS  Google Scholar 

  • Mehta BC, Agarwal MB (1980) Cyclic oscillations in leukocyte count in chronic myeloid leukemia. Acta Haematol 63:68–70

    PubMed  CAS  Google Scholar 

  • Mehta J, Malloy M, Lawson D, Lopez L (1989) Circadian variation in platelet alpha2-adrenoceptor affinity in normal subjects. Am J Cardiol 63:1002–1005

    PubMed  CAS  Google Scholar 

  • Metcalf D (1989) The roles of stem cell self-renewal and autocrine growth factor production in the biology of myeloid leukemia. Cancer Res 49:2305–2311

    PubMed  CAS  Google Scholar 

  • Migliaccio AR, Migliaccio G, Dale DC, Hammond WP (1990) Hematopoietic progenitors in cyclic neutropenia: effect of granulocyte colony-stimulating factor in vitro. Blood 75: 1951–1959

    PubMed  CAS  Google Scholar 

  • Miyawaki T, Taga K, Nagaoki T, Seki H, Suzuki Y, Taniguchi N (1984)Circadian changes of T lymphocyte subsets in human peripheral blood. Clin Exp Immunol 55: 618–622

    PubMed  CAS  Google Scholar 

  • Moldofsky H, Lue FA, Eisen J, Keyston E, Gorczynski RM (1986) The relationship of interleukin-1 and immune functions to sleep in humans. Psychosom Med 48: 309–318

    PubMed  CAS  Google Scholar 

  • Moldofsky H, Lue FA, Davidson JR, Gorczynski R (1989) Effects of sleep deprivation on human immune functions. FASEB J 3:1972–1977

    PubMed  CAS  Google Scholar 

  • Morley AA (1966) A neutrophil cycle in healthy individuals. Lancet II: 1220–1222

    Google Scholar 

  • Morley AA (1969) A platelet cycle in normal individuals. Aust Ann Med 18:127–129

    PubMed  CAS  Google Scholar 

  • Morley AA (1973) Letter to editor. Blood 41: 329

    Google Scholar 

  • Morley AA, Baikie AG, Galton DAG (1967) Cyclic leukocytosis as evidence for retention of normal homeostatic control in chronic granulocytic leukemia. Lancet II: 1320–1323

    Google Scholar 

  • Morley A, King-Smith EA, Stohlman F Jr (1970) The oscillatory nature of hemopoiesis. In: Stohlman F Jr (ed) Symposium on hemopoietic cellular proliferation. Grune and Strat-ton, New York, pp 3–14

    Google Scholar 

  • Morra L, Ponassi A, Bruzzi P, Parodi GB, Caristo G, Sacchetti C (1981 a) Influence of the spleen on the blood distribution of the colony forming cells (CFU-C) in man. Acta Haematol 66: 81–85

    Google Scholar 

  • Mora L, Ponassi A, Parodi GB, Caristo G, Bruzzi P, Sacchetti C (1981b) Mobilization of colony forming cells (CFU-C) into the peripheral blood of man by hydrocortisone. Biomedicine 35: 87–90

    Google Scholar 

  • Morra L, Ponassi A, Caristo G, Bruzzi P, Bonelli A, Zunino R, Parodi GB, Sacchetti C (1984) Comparison between diurnal changes and changes induced by hydrocortisone and epinephrine in circulating myeloid progenitor cells (CFU-GM) in man. Biomed Pharmacother 38:167–170

    PubMed  CAS  Google Scholar 

  • Muller JE, Ludmer PL, Willich N, Tofler GH, Aylmer G, Klangos I, Stone PE (1987) Circadian variation in the frequency of sudden cardiac death. Circulation 75:131–138

    PubMed  CAS  Google Scholar 

  • Muller JE, Stone PH, Turi SG, Rutherford JD, Czeisler CA, Parker C, Poole WK, Passamani E, Roberts R, Robertson T, Sobel BE, Willerson JT, Braunwald E (MILIS Study Group) (1985)Circadian variation in the frequency of onset of acute myocardial infarction. N Engl J Med 313:1315–1322

    PubMed  CAS  Google Scholar 

  • Nelson WL, Tong YL, Lee JK, Halberg F (1979) Methods for cosinor rhythmometry. Chronobiologia 6: 305–323

    PubMed  CAS  Google Scholar 

  • Paigen B, Ward E, Reilly A, Houten L, Gurtoo H, Minowada J, Steenland K, Havens MB, Sartori P (1981) Seasonal variation of aryl hydrocarbon hydroxylase activity in human lymphocytes. Cancer Res 41:2757–2761

    PubMed  CAS  Google Scholar 

  • Pangerl A, Remien J, Haen E (1986) The number of β-adrenoceptor sites on intact human lymphocytes depends on time of day, on season and on sex. Annu Rev Chronopharmacol 3: 331–334

    CAS  Google Scholar 

  • Petralito A, Mangiafico RA, Gibiino S, Cuffari MA, Miano MF, Fiore CE (1982) Daily modifications of plasma fibrinogen, platelets aggregation, Howell’s time, PTT, TT and antithrom-bin III in normal subjects and in patients with vascular disease. Chronobiologia 9:195–201

    PubMed  CAS  Google Scholar 

  • Rabkin SW, Mathéwson FAL, Tate RB (1980) Chronobiology of cardiac sudden death in men. JAMA 244:1357–1358

    PubMed  CAS  Google Scholar 

  • Raine CS, Traugott V, Stone SH (1978) Suppression of chronic allergic encephalomyelitis: relevance to multiple sclerosis. Science 201:445–448

    PubMed  CAS  Google Scholar 

  • Ramot B, Brok-Simoni F, Chweidan E, Ashkenazi YE (1976) Blood leukocyte enzymes. III. Diurnal rhythm of activity in isolated lymphocytes of normal subjects and chronic lymphatic leukemia patients. Br J Haematol 34:79–85

    PubMed  CAS  Google Scholar 

  • Rausch JL, Shoch NS, Burch EA, Donald AG (1982) Platelet serotonin uptake in depressed patients: circadian effect. Biol Chem 17:121–123

    CAS  Google Scholar 

  • Reinberg A, Smolensky M (1983) Biological rhythms and medicine. Cellular, metabolic, physiopathologic and pharmacologic aspects. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Reinberg A, Gervais P, Halberg F, Gaultier M, Roynette N, Abulker CH, Dupont J (1973) Mortalite des adultes: rythmes circadiens et circannuels dans un hopital parisien et en France. Nouv Presse Med 2: 289–294

    PubMed  CAS  Google Scholar 

  • Reinberg A, Schuller E, Delasnerie N, Clench J, Helary M (1977) Rhythmes circadiens et circannuels des leucoytes, pro-teines totales, immunoglobulines A, G et M. Etude chez 9 adultes jeunes et sains. Nouv Presse Med 6: 3819–3823

    PubMed  CAS  Google Scholar 

  • Reinberg A, Schuller E, Clench J, Smolensky MH (1980) Circadian and circannual rhythms of leukocytes, proteins and immunoglobulins. In: Smolensky MH (ed) Recent advances in the chronobiology of allergy and immunology. Pergamon, New York, pp 251–259

    Google Scholar 

  • Richtsmeier WS (1985) Interferon. Present and future prospects. CRC Crit Rev Clin Lab Sci 20: 57–93

    Google Scholar 

  • Ritchie AWS, Oswald I, Micklem HS, Boyd JE, Elton RA, Jaz-winska E, James K (1983) Circadian variation of lymphocyte subpopulations: a study with monoclonal antibodies. Br Med J 286:1773–1775

    CAS  Google Scholar 

  • Richter A, Kadar D, Liszka-Hagmajer E, Kalow W (1978) Seasonal variaton of aryl hydrocarbon hydroxylase inducibility in human lymphocytes in culture. Res Commun Chem Pathol Pharmacol 19: 453–475

    PubMed  CAS  Google Scholar 

  • Rivard GE, Infante-Rivard C, Hoyoux C, Champagne J (1985) Maintenance chemotherapy for childhood acute lymphoblastic leukaemia: better in the evening. Lancet II: 1264–1266

    Google Scholar 

  • Rocker L, Feddersen HM, Hoffmeister H, Junge B (1980) Jahreszeitliche Veränderungen diagnostisch wichtiger Blut-bestandteile. Klin Wochenschr 58: 769–778

    PubMed  CAS  Google Scholar 

  • Roitman B, Sothern RB, Halberg F, Mayersbach von H, Scheving LE, Haus E, Bartter FC, Delea C, Simpson H, Tavadia H, Fleming K, Hume P, Wilson C, Halberg E (1975) Circadian acrophases for total blood leukocytes counted on different continents. Chronobiologia 2 (Suppl 1): 58

    Google Scholar 

  • Ross DD, Pollak A, Akman SA, Bachur NR (1980) Diurnal variation of circulating human myeloid progenitor cells. Exp Hematol 8: 950–960

    Google Scholar 

  • Sabin FR, Cunningham RS, Doan CA, Kindwale JA (1927) The normal rhythm of white blood cells. Bull Johns Hopkins Hosp 37:14–67

    Google Scholar 

  • Scheving LE (1981) Circadian rhythms in cell proliferation: their importance when investigating the basic mechanism of normal versus abnormal growth. In: Mayersbach von H, Scheving LE, Pauly JE (eds) Biologogic rhythms in structure and function. Prog Clin Biol Res 59C: 39–79

    Google Scholar 

  • Scheving LE, Pauly JE (1973) Cellular mechanisms involving biorhythms with emphasis on those rhythms associated with the S and M stages of cell cycle. Int J Chronobiol 1: 269–286

    PubMed  CAS  Google Scholar 

  • Scheving LE, Burns ER, Pauly JE, Halberg F (1980) Circadian bioperiodic response of mice bearing advanced L1210 leukemia to combination therapy with adriamycin and cyclophosphamide. Cancer Res 40:1511–1515

    PubMed  CAS  Google Scholar 

  • Scheving LE, Tsai TH, Feuers RJ, Scheving LA (1989) Cellular mechanisms involved in the action of anticancer drugs. In: Lemmer B (ed) Chronopharmacology. Dekker, New York, pp 317–369

    Google Scholar 

  • Schulthess von GV, Mazer NA (1982) Cyclic neutropenia (CN): a clue to the control of granulopoiesis. Blood 59: 27–37

    Google Scholar 

  • Shadduck RK, Winkelstein A, Nunna NG (1972) Cyclic leukemia cell production in CML. Cancer 29: 399–401

    PubMed  CAS  Google Scholar 

  • Sharp GWG (1960) Reversal of diurnal leukocyte variations in man. J Endocrinol 21:107–114

    Google Scholar 

  • Shifrine M, Taylor N, Rosenblatt LS, Wilson F (1980) Seasonal variation in cell mediated immunity of clinically normal dogs. Exp Hematol 8: 318–326

    PubMed  CAS  Google Scholar 

  • Shifrine M, Garsd A, Rosenblatt LS (1982 a) Seasonal variation in immunity of humans. J Interdiscipl Cycle Res 13:157–165

    Google Scholar 

  • Shifrine M, Rosenblatt LS, Taylor N, Hetherington NW, Matthews VJ, Wilson FD (1982 b) Seasonal variations in lectin-induced lymphocyte transformation in Beagle dogs. J Interdiscipl Cycle Res 13:151–156

    Google Scholar 

  • Signore A, Cugini P, Letizia C, Lucia P, Murano G, Pozzilli P (1985) Study of the diurnal variation of human lymphocyte subsets. J Clin Lab Immunol 17: 25–28

    PubMed  CAS  Google Scholar 

  • Sjostrand T (1962) Blood volume. In: Dow P (ed) Handbook of physiology, Sect 2. Circulation, vol 1. Am Physiol Soc, Washington DC, p 51

    Google Scholar 

  • Slozina NM, Golovachev GD (1986) The frequency of sister chromatin exchanges in human lymphocytes determined at different time within 24 hours. Citologia 28:127–129

    CAS  Google Scholar 

  • Smaaland R, Sletvold O, Bjerknes R, Lote K, Laerum OD (1987) Circadian variations in cell cycle distribution in human bone marrow. Chronobiologia 14: 239

    Google Scholar 

  • Swoyer JK, Sackett LL, Haus E, Lakatua DJ, Taddeini L (1975) Circadian lymphocytic rhythms in clinically healthy subjects and in patients with hematologic malignancies. Internat Congr on Rhythmic Functions in Biological Systems. Eger-man, Vienna, pp 62–63

    Google Scholar 

  • Swoyer J, Haus E, Sackett-Lundeen L (1987) Circadian reference values for hematologic parameters in several strains of mice. Prog Clin Biol Res 227: 281–296

    Google Scholar 

  • Swoyer J, Irvine P, Sackett-Lundeen L, Conlin L, Lakatua DJ, Haus E (1989) Circadian hematologic time structure in the elderly. Chronobiol Int 6:131–137

    PubMed  CAS  Google Scholar 

  • Swoyer J, Rhame F, Hrushesky W, Sackett-Lundeen L, Sothern R, Gale H, Haus E (1990) Circadian rhythm alterations in HIV infected patients. In: Hayes D, Pauly J, Reiter R (eds) Chronobiology: its role in clinical medicine, general biology, and agriculture. Wiley, New York, 341 A: 437–449

    Google Scholar 

  • Szabo I, Kovats TG, Halberg F (1977) Circadian rhythm in phagocytic index of CBA mice, replicated in two studies. Chronobiologia 4:155

    Google Scholar 

  • Tavadia HB, Fleming KA, Hume PD, Simpson HW (1975) Circadian rhythmicity of human plasma Cortisol and PHA-induced lymphocyte transformation. Clin Exp Immunol 22:190–193

    PubMed  CAS  Google Scholar 

  • Tofler GH, Brezinski D, Schafer AI, Czeisler CA, Rutherford JD, Willich SN, Gleason RE, Williams GH, Muller JE (1987) Concurrent morning increase in platelet aggregability and the risk of myocardial infarction and sudden cardiac death. N Engl J Med 316:1514–1518

    PubMed  CAS  Google Scholar 

  • Touitou Y, Touitou C, Bogdan A, Beck H, Reinberg A (1978) Serum magnesium circadian rhythm in human adults with respect to age, sex, and mental status. Clin Chim Acta 83: 35–41

    Google Scholar 

  • Touitou Y, Touitou C, Bogdan A, Chasselut J, Beck H, Reinberg A (1979) Circadian rhythms in blood variables in elderly subjects. In: Reinberg A, Halberg F (eds) Chronopharmacology: advances in the biosciences, vol 19. Pergamon, New York, pp 283–290

    Google Scholar 

  • Touitou Y, Touitou C, Bogdan A, Reinberg A, Auzeby A, Beck H, Guillet P (1986) Differences between young and elderly subjects in seasonal and circadian variations of total plasma proteins and blood volume as reflected by hemoglobin, hematocrit and erythrocyte counts. Clin Chem 32: 801–804

    PubMed  CAS  Google Scholar 

  • Umemura T, Hirata J, Kaneko S, Nishimura J, Motomura S, Ko-zuru M, Ibayashi H (1986) Periodical appearance of erythro-poietin-independent erythropoiesis in chronic myelogenous leukemia with cyclic oscillation. Acta Haematol 76:230–234

    PubMed  CAS  Google Scholar 

  • Verma DS, Fisher R, Spitzer G, Zander AR, McCredie KB, Dicke KA (1980) Diurnal changes in circulating myeloid progenitor cells in man. Am J Hematol 9:185–192

    PubMed  CAS  Google Scholar 

  • Verma DS, Spitzer G, Zander AR, Dicke KA, McCredie KB (1982) Cyclic neutropenia and T lymphocyte suppression of granulopoiesis: abrogation of the neutropenic cycles by lithium carbonate. Leukemia Res 6(4): 567–576

    CAS  Google Scholar 

  • Vodopick H, Rupp EM, Edwards CL, Goswitz FA, Beauchamp J J (1972) Spontaneous cyclic leukocytosis and thrombocytosis in chronic granulocytic leukaemia. N Engl J Med 286: 284–290

    PubMed  CAS  Google Scholar 

  • Weigle WO (1975) Cyclical production of antibody as a regulatory mechanism in the immune response. Adv Immunol 21: 87–111

    PubMed  CAS  Google Scholar 

  • Wheldon TE, Kirk J, Finlay HM (1974) Cyclic granulopoiesis in chronic granulocytic leukemia: a simulation study Blood 43: 379–385

    CAS  Google Scholar 

  • Whitaker PM, Warsh JJ, Stancer HC, Persad E, Vint CK (1984) Seasonal variations in platelet 3H-imipramine binding: comparable values in control and depressed populations. Psychiatry Res 11:127–131

    PubMed  CAS  Google Scholar 

  • Williams RM, Krause LJ, Dubey DP, Yunis EJ, Halberg F (1979) Circadian bioperiodicity in natural killer cell activity of human blood. Chronobiologia 6:172

    Google Scholar 

  • Wirz-Justice A, Richter R (1979) Seasonality in biochemical determinations: a source of variance and a clue to the temporal incidence of affective illness. Psychiatry Res 1:53–60

    PubMed  CAS  Google Scholar 

  • Wright DG, LaRussa VF, Salvado AJ, Knight RD (1989) Abnormal responses of myeloid progenitor cells to granulocyte-macrophage colony-stimulating factor in human cyclic neutropenia. J Clin Invest 83:1414–1418

    PubMed  CAS  Google Scholar 

  • Yoshimura H (1958) Seasonal variations in human plasma volume. Jpn J Physiol 8:165–179

    PubMed  CAS  Google Scholar 

  • Zinneman HH, Thompson M, Halberg F, Kaplan M, Haus E (1972) Circadian rhythms in urinary Bence-Jones protein excretion. Clin Res 20: 798

    Google Scholar 

  • Zinneman HH, Halberg F, Haus E, Kaplan M (1974) Circadian rhythms in urinary light chains, serum iron and other variables of multiple myeloma patients. Int J Chronobiol 2: 3–16

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haus, E. (1992). Chronobiology of Circulating Blood Cells and Platelets. In: Touitou, Y., Haus, E. (eds) Biologic Rhythms in Clinical and Laboratory Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78734-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78734-8_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78736-2

  • Online ISBN: 978-3-642-78734-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics