Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 192))

Abstract

The genus Bordetella contains four pathogens of the upper respiratory tract. Bordetella pertussis and B. parapertussis colonize exclusively humans, causing whooping cough and a mild pertussis-like disease, respectively; B. bronchiseptica can be isolated from most mammalian species, causes kennel cough in dogs and atrophic rhinitis in pigs and is only rarely isolated from humans; B. avium causes turkey coryza and many other diseases in birds. The closest relatives of the genus Bordetella are Alcaligenes and Pseudomonas species, bacteria that are widespread in the environment (MÜLLER and HILDEBRANDT 1993 ; DE LEY et al. 1986) (Fig. 1). This suggests that the ancestors of Bordetella species were bacteria living in the external environment that evolved to infect homeothermic animals. During evolution, the first to diverge was B. avium which is the most distant in the evolutionary scale; then from the mainstream line of B. bronchiseptica, a single clone became specialized to infect exclusively humans and gave rise to B. parapertussis and B. pertussis (Fig. 1) (ARICÖ and RAPPUOLI 1987; ARICÖ et al. 1987; GROSS et al. 1989a; MUSSER et al. 1986). The latter two species are still a very homogeneous clonal population, while B. bronchiseptica and B. avium are heterogeneous populations of many subclones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akerley BJ, Miller JF (1993) Flagellin gene transcription in Bordetella bronchiseptica is regulated by the BvgAS virulence control system. J Bacteriol 175: 3468–3479

    PubMed  CAS  Google Scholar 

  • Allen BL, Gerlach GF, Clegg S (1991) Nucleotide sequence and functions of mrk determinants necessary for expression of type 3 fimbriae of Klebsiella pneumoniae. J Bacteriol 173: 916–920

    PubMed  CAS  Google Scholar 

  • Arico B, Rappuoli R (1987) Bordetella parapertussis and bronchiseptica contain transcriptionally silent pertussis toxin genes. J Bacteriol 169: 2847–2853

    PubMed  CAS  Google Scholar 

  • Aricö B, Gross R, Smida J, Rappuoli R (1987) Evolutionary relationship in the genus Bordetella. Mol Microbiol 1: 301–308

    Article  PubMed  Google Scholar 

  • Aricó B, Miller JF, Roy C, Stibitz S, Monack D, Falkow S, Gross R, Rappuoli R (1989) Sequences required for expression of Bordetella pertussis virulence factors share homology with prokaryotic signal transduction proteins. Proc Natl Acad Sci USA 86: 6671–6675

    Article  PubMed  Google Scholar 

  • Arico B, Scarlato V, Monack DM, Falkow S, Rappuoli R (1991) Structural and genetic analysis of the bvg locus in Bordetella species. Mol Microbiol 5: 2481–2491

    Article  PubMed  CAS  Google Scholar 

  • Aricö B, Nuti S, Scarlato V, Rappuoli R (1993) Adhesion of Bordetella pertussis to eukaryotic cells requires a time-dependent export and maturation of Filamentous hemagglutinin. Proc Natl Acad USA 90: 9204–9208

    Article  Google Scholar 

  • Barry EM, Weiss AA, Ehrmann IE, Gray MC, Hewlett EL, Goodwin MS (1991) Bordetella pertussis adenylate cyclase toxin and hemolytic activities require a second gene, cyaC, for activation. J Bacteriol 173: 720–726

    PubMed  CAS  Google Scholar 

  • Beattie DT, Shahin R, Mekalanos JJ (1992) A vir-repressed gene of Bordetella pertussis is required for virulence. Infect Immun 60: 571–577

    PubMed  CAS  Google Scholar 

  • Blight MA, Holland IB (1990) Structure and function of haemolysin B, P-glycoprotein and other members of a novel family of membrane translocators. Mol Microbiol 4: 873–880

    Article  PubMed  CAS  Google Scholar 

  • Chang C, Kwok SF, Bleecker AB, Meyerowitz EM (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262: 539–544

    Article  PubMed  CAS  Google Scholar 

  • Charles IG, Dougan G, Pickard D, Chatfield S, Smith M, Novotny P, Morrissey P, Fairweather NF (1989) Molecular cloning and characterization of protective outer membrane protein P.69 from Bordetella pertussis. Proc Natl Acad Sci USA 86: 3554–3558

    Article  PubMed  CAS  Google Scholar 

  • Cookson BT, Tyler AN, Goldman WE (1989) Primary structure of the peptidogly can-derived tracheal cytotoxin of Bordetella pertussis. Biochemistry 28: 1744–1749

    Article  PubMed  CAS  Google Scholar 

  • Covacci A, Rappuoli B (1993) Pertussis toxin export requires accessory genes located downstream from the pertussis toxin operon. Mol Microbiol 8: 429–434

    Article  PubMed  CAS  Google Scholar 

  • Cuzzoni A, Pedroni P, Riboli B, Grandi G, de Ferra F (1990) Nucleotide sequence of the fim3 gene from Bordetella pertussis and homology to fim2 and fimX gene products. Nucleic Acids Res 18:1640

    Article  PubMed  CAS  Google Scholar 

  • De Ley J, Segers P, Kersers K, Mannheim W, Lievens A (1986) Intra- and intergenetic similarities of the Bordetella ribonucleic acid cistrons: proposal for a new family, Alcaligenaceae. Int J Syst Bacteriol 36: 405–414

    Article  Google Scholar 

  • Delisse-Gathoye, AM, Locht C, Jacob F, Raaschou-Nielsen M, Heron I, Ruelle JL, de Wilde M, Cabezon T (1990) Cloning, partial sequence, expression, and antigenic analysis of the filamentous hemagglutinin gene of Bordetella pertussis. Infect Immun 58: 2895–2905

    PubMed  CAS  Google Scholar 

  • Domenighini M, Relman D, Capiau C, Falkow S, Prugnola A, Scarlato V, Rappuoli R (1990) Genetic characterization of Bordetella pertussis filamentous Hemagglutinin: a protein processed from an unusually large precursor. Mol Microbiol 4: 787–800

    Article  PubMed  CAS  Google Scholar 

  • Finn TM, Shahin R, Mekalanos JJ (1991) Characterization of vir-activated TnphoA gene fusions in Bordetella pertussis. Infect Immun 59: 3273–3279

    PubMed  CAS  Google Scholar 

  • Glaser P, Sakamoto H, Bellalou J, Ullmann A, Danchin A (1988a) The caldmodulin-sensitive adenylate cyclase of Bordetella pertussis: cloning and expression in Escherichia coli. Mol Microbiol 2: 19–30

    Article  PubMed  CAS  Google Scholar 

  • Glaser P, Sakamoto H, Bellalou J, Ullmann A, Danchin A (1988b) Secretion of cyclolysin, the calmodulinsensitive adenylate cyclase-haemolysin bifunctional protein of Bordetella pertussis. EMBO J 7: 3997–4004

    PubMed  CAS  Google Scholar 

  • Goldman WE, Collier JL, Cookson BT, Marshall GR, Erwin KM (1990) Tracheal cytotoxin of Bordetella pertussis: biosynthesis, structure, and specificity. In: Manclark CR (ed) Proceedings of the 6th international symposium on pertussis. Department of Human Health and Human Services, Bethesda, Maryland, pp 5–12

    Google Scholar 

  • Gross R, Rappuoli R (1988) Positive regulation of pertussis toxin expression. Proc Natl Acad Sci USA 85: 3913–3917

    Article  PubMed  CAS  Google Scholar 

  • Gross R, Aricö B, Rappuoli R (1989a) Genetics of pertussis toxin. Mol Microbiol 3: 119–124

    Article  PubMed  CAS  Google Scholar 

  • Gross R, Aricö B, Rappuoli R (1989b) Families of bacterial signal-transducing proteins. Mol Microbiol 3: 1661–1667

    Article  PubMed  CAS  Google Scholar 

  • Guiso N, Rocancourt M, Szatanik M, Alonso JM (1989) Bordetella adenylate cyclase is a virulence associated factor and an immunoprotective antigen. Microb Pathog 7: 373–380

    Article  PubMed  CAS  Google Scholar 

  • Guiso N, Szatanik M, Rocancourt M (1991) Protective activity of Bordetella adenylate cyclase-hemolysin against bacterial colonization. Microb Pathog 11: 423–431

    Article  PubMed  CAS  Google Scholar 

  • Heiss LN, Lancaster JR Jr, Corbett, JA, Goldman WE (1994). Epithelial autotoxicity of nitric oxide: role in the respiratory cytopathology of pertussis. Proc Natl Acad Sci USA 91 (1): 267–270

    Article  PubMed  CAS  Google Scholar 

  • Heiss LN, Moser SA, Unanue ER, Goldman WE (1993b) lnterleukin-1 is linked to the respiratory epithelial cytopathology of pertussis. Infect Immun 61: 3123–3128

    CAS  Google Scholar 

  • Hewlett EL, Sauer KT, Myers GA, Cowell JL, Guerrant R (1983) Induction of a novel morphological response in Chinese Hamster Ovary Cells by pertussis toxin. Infect Immun 40: 1198–1203

    PubMed  CAS  Google Scholar 

  • Hewlett EL, Gray L, Allietta M, Ehrmann I, Gordon VM, Gray MC (1991) Adenylate cyclase toxin from Bordetella pertussis. Conformational change associated with toxin activity. J Biol Chem 266: 17503–17508

    PubMed  CAS  Google Scholar 

  • Hultgren SJ, Abraham S, Caparon M, Falk P, Stgeme JW, Normark S (1993) Pilus and nonpilus bacterial adhesins—assembly and function in cell recognition. Cell 73: 887–901

    Article  PubMed  CAS  Google Scholar 

  • Issartel JP, Koronakis V, Hughes C (1991) Activation of Escherichia coli prohaemolysin to the mature toxin by acyl carrier protein-dependent fatty acylation. Nature 351: 759–761

    Article  PubMed  CAS  Google Scholar 

  • Jones CH, Jacob-Dubuisson F, Dodson K, Kuehn M, Slonim L, Striker R, Hultgren SJ (1992) Adhesin presentation in bacteria requires molecular chaperones and ushers. Infect Immun 60: 4445–4451

    PubMed  CAS  Google Scholar 

  • Katada T, Ui M (1982) ADP ribosylation of the specific membrane protein of C6 cells by islet-activating protein associated with modification of adenylate cyclase activity. J Biol Chem 257: 7210–7-16

    PubMed  CAS  Google Scholar 

  • Khelef N, Sakamoto H, Guiso N (1992) Both adenylate cyclase and hemolytic activities are required by Bordetella pertussis to initiate infection. Microb Pathog 12: 227–235

    Article  PubMed  CAS  Google Scholar 

  • Kobisch M, Novotny P (1990) Identification of a 68-kilodalton outer membrane protein as the major protective antigen of Bordetella bronchiseptica by using specific-pathogen-free piglets. Infect Immun 58: 352–357

    PubMed  CAS  Google Scholar 

  • Koshland DE (1993) Two component pathway comes to eukaryotes. Science 262: 532

    Article  PubMed  Google Scholar 

  • Kuldau GA, De Vos G, Owen J, McCaffrey G, Zambryski P (1990) The virB operon of Agrobacterium tumefaciens pTiC58 encodes 11 open reading frames. Mol Gen Genet 221: 256–266

    Article  PubMed  CAS  Google Scholar 

  • Lacey BW (1960) Antigenic modulation of Bordetella pertussis. J Hyg 58: 57–93

    Article  CAS  Google Scholar 

  • Leininger E, Roberts M, Kenimer JG, Charles IG, Fairweather N, Novotny P, Brennan MJ (1991) Pertactin, an Arg-Gly-Asp-containing Bordetella pertussis surface protein that promotes adherence of mammalian cells. Proc Natl Acad Sci USA 88: 345–349

    Article  PubMed  CAS  Google Scholar 

  • Leininger E, Ewanowich CA, Bhargava A, Peppier MS, Kenimer JG, Brennan J (1992) Comparative roles of the arg-gly-asp sequence present in the Bordetella pertussis adhesins pertactin and filamentous hemagglutinin. Infect Immun 60 (6): 2380–2385

    PubMed  CAS  Google Scholar 

  • Li LJ, Dougan G, Novotny P, Charles IG (1991) P.70 pertactin, an outer-membrane protein from Bordetella parapertussis: cloning, nucleotide sequence and surface expression in Escherichia coli. Mol Microbiol 5: 409–417

    Article  PubMed  CAS  Google Scholar 

  • Li J, Fairweather NF, Novotny P, Dougan G, Charles IG (1992) Cloning, nucleotide sequence and heterologous expression of the protective outer-membrane protein P.68 pertactin from Bordetella bronchiseptica J Gen Microbiol 138: 1697–1705

    PubMed  CAS  Google Scholar 

  • Livey I, Duggleby CJ, Robinson A (1987) Cloning and nucleotide sequence analysis of the serotype 2 fimbrial subunit gene of Bordetella pertussis. Mol Microbiol 2: 203–209

    Article  Google Scholar 

  • Locht C, Keith JM (1986) Pertussis toxin gene: nucleotide sequence and genetic organization. Science 232: 1258–1264

    Article  PubMed  CAS  Google Scholar 

  • Locht C, Bertin P, Menozzi FD, Renauld G (1993) The filamentous hemagglutinin, a multifaceted adhesion produced by virulent Bordetella spp. Mol Microbiol 9: 653–660

    Article  PubMed  CAS  Google Scholar 

  • Mackman N, Nicaud JM, Gray L, Holland IB (1987) Secretion of haemolysin by Escherichia coli. In: Wu HC, Tai PC (eds) Protein secretion and export in bacteria. Springer Berlin Heidelberg New York, pp 159–181 (Current topics in microbiology and immunology, vol 125 )

    Google Scholar 

  • Makoff AJ, Oxer MD, Ballantine SD, Fairweather NF, Charles JG (1990) Protective surface antigen P69 of Bordetella pertussis: its characterization and very high level expression in Escherichia coli. Biotechnology 8: 1030–1033

    Article  PubMed  CAS  Google Scholar 

  • Marcinak JF, Ward M, Frank AL, Boyer KM, Froeschle JE, Hosbach PH (1993) Comparison of the safety and immunogenicity of acellular (BIKEN) and whole-cell pertussis vaccines in 15-to 20-month-old children. Am J Dis Child 147: 290–294

    PubMed  CAS  Google Scholar 

  • Mashako LM, Kapongo CN, Nsibu CN, Malamba M, Davachi F, Othepa MO (1992) Evaluation of vaccine coverage in children under two years of age in Kinshasa (Zaire). Arch Fr Pediatr 49: 717–720

    PubMed  CAS  Google Scholar 

  • Masure HR (1992) Modulation of adenylate cyclase toxin production as Bordetella pertussis enters human macrophages. Proc Natl Acad USA 89: 6521–6525

    Article  CAS  Google Scholar 

  • Melton AR, Weiss AA (1993) Characterization of environmental regulators of Bordetella pertussis. Infect Immun 61: 807–815

    PubMed  CAS  Google Scholar 

  • Menozzi FD, Gantiez C, Locht C (1991) Interaction of the Bordetella pertussis filamentous hemagglutinin with heparin. FEMS Microbiol Lett 62: 59–64

    Article  PubMed  CAS  Google Scholar 

  • Miller J, Mekalanos JF, Falkow S (1989a) Coordinate regulation and sensory transduction in the control of bacterial virulence. Science 243: 916–922

    Article  PubMed  CAS  Google Scholar 

  • Miller JF, Roy CR, Falkow S (1989b) Analysis of Bordetella pertussis virulence gene regulation by use of transcriptional fusions in Escherichia coli. J Bacteriol 171: 6345–6348

    PubMed  CAS  Google Scholar 

  • Ming Li Z, Brennan MJ, David JL, Carter PH, Cowell JL, Manclark CR (1988) Comparison of type 2 and type 6 fimbriae of Bordetella pertussis by using agglutinating monoclonal antibodies. Infect Immun 56: 3184–3188

    Google Scholar 

  • Monack D, Munoz JJ, Peacock MG, Black WJ, Falkow S (1989) Expression of pertussis toxin correlates with pathogenesis in Bordetella species (see comments). J Infect Dis 159: 205–210

    Article  PubMed  CAS  Google Scholar 

  • Mooi FR, ter Avest A, van der Heide HG (1990) Structure of the Bordetella pertussis gene coding for the serotype 3 fimbrial subunit. FEMS Microbiol Lett 54: 327–331

    Article  PubMed  CAS  Google Scholar 

  • Müller M, Hildebrandt A (1993) Nucleotide sequences of the 23S rRNA genes from Bordetella pertussis, B. parapertussis, B. bronchiseptica and B. avium, and their implications for phylogenetic analysis. Nucleic Acids Res 21: 3320

    Article  PubMed  Google Scholar 

  • Musser JM, Hewlett EL, Peppier MS, Seiander RK (1986). Genetic diversity and relationships in populations of Bordetella spp. J Bacteriol 166: 230–237

    PubMed  CAS  Google Scholar 

  • Nencioni L, Pizza MG, Volpini G, de Magistris MT, Giovannoni F, Rappuoli R (1991) Properties of the B oligomer of Pertussis toxin. Infect Immun 59: 4732–4734

    PubMed  CAS  Google Scholar 

  • Nicosia A, Perugini M, Franzini C, Casagli MC, Borri MG, Antoni G, Almoni M, Neri P, Ratti G, Rappuoli R (1986) Cloning and sequencing of the pertussis toxin genes: operon structure and gene duplication. Proc Natl Acad Sci USA 83: 4631–4635

    Article  PubMed  CAS  Google Scholar 

  • Novotny P, Chubb AP, Cownley K, Charles IG (1991) Biologic and protective properties of the 69-kDa outer membrane protein of Bordetella pertussis: a novel formulation for an acellular pertussis vaccine. J Infect Dis 164: 114–122

    Article  PubMed  CAS  Google Scholar 

  • Ondraczek R, Hobbie S, Braun V (1992) In vitro activation of the Serratia mercescens hemolysin through modification and complementation. J Bacteriol 174: 5086–5094

    PubMed  CAS  Google Scholar 

  • Ota IM, Varshavsky A (1993) A yeast protein similar to bacterial two-component regulators. Science 262: 566–569

    Article  PubMed  CAS  Google Scholar 

  • Pedroni P, Riboli B, de Ferra F, U GG, Toma S, Aricö B, Rappuoli R (1988) Cloning of a novel pilin-like gene from Bordetella pertussis: homology to the fim2 gene. Mol Microbiol 2: 539–543

    Article  PubMed  CAS  Google Scholar 

  • Pittman M (1979) Pertussis toxin: the casue of harmful effects and prolonged immunity of whooping cough: a hypothesis. Rev Infect Dis 1: 401–412

    Article  PubMed  CAS  Google Scholar 

  • Pittman M (1984) The concept of pertussis as a toxin-mediated disease. Pediatr Infect Dis 3: 467–486

    Article  PubMed  CAS  Google Scholar 

  • Pizza MG, Covacci A, Bartolom A, Perugini M, Nencioni L, de Magistris MT, Villa L, Nucci D, Manetti R, Bugnoli M, Giovannoni F, Olivieri R, Barbieri J, Sato H, Rappuoli R (1989) Mutants of pertussis toxin suitable for vaccine development. Science 246: 497–500

    CAS  Google Scholar 

  • Pizza MG, Bugnoli M, Manetti R, Rappuoli R (1990) The S1 subunit is important for pertussis toxin secretion. J Biol Chem 265: 17759–17763

    PubMed  CAS  Google Scholar 

  • Podda A, Carapella De Luca E, Titone L, Casadei A, Cascio A, Peppoloni S, Volpini G, Marsiii I, Nencioni L, Rappuoli R (1992) Acellular pertussis vaccine composed of genetically inactivated pertussis toxin: safety and immunogenicity in 12-24 and 2-4 month old children. J Pediatr 120 (5): 680–685

    Article  PubMed  CAS  Google Scholar 

  • Podda A, De Luca EC, Titone L, Casadei AM, Cascio A, Bartalini M, Volpini G, Peppoloni S, Marsiii I, Nencioni L, Rappuoli R (1993) Immunogenicity of an acellular pertussis vaccine composed of genetically inactivated pertussis toxin combined with filamentous hemagglutinin and pertactin in infants and children. J Pediatr 123: 81–84

    Article  PubMed  CAS  Google Scholar 

  • Poole K, Schiebel E, Braun V (1988) Molecular characterization of the hemolysin determinant of Serratia marcescens. J Bacteriol 170: 3177–3188

    PubMed  CAS  Google Scholar 

  • Porter JF, Parton R, Wardlaw AC (1991) Growth and survival of Bordetella bronchiseptica in natural waters and in buffered saline without added nutrients. Appl Environ 57 (4): 1202–1206

    CAS  Google Scholar 

  • Pugsley AP (1993) The complete general secretory pathway in gram-negative bacteria. Microbiol Rev 57: 50–108

    PubMed  CAS  Google Scholar 

  • Rappuoli R, Pizza M (1991) Structure and evolutionary aspects of ADP-ribosylating toxins. In: Alouf J, Freer J (eds) Sourcebook of bacterial protein toxins. Academic, London, pp 1–20

    Google Scholar 

  • Rappuoli R, Arico B, Scarlato V (1992a) Thermoregulation and reversible differentiation in Bordetella: a model for pathogenic bacteria. Mol Microbiol 6: 2209–2211

    Article  PubMed  CAS  Google Scholar 

  • Rappuoli R, Podda A, Pizza M, Covacci A, Bartoloni A, de Magistris MT, Nencioni L (1992b) Progress towards the development of new vaccines against whooping cough. Vaccine 10: 1027–1032

    Article  CAS  Google Scholar 

  • Relman D, Tuomanen E, Falkow S, Golenbock DT, Saukkonen K, Wright SD (1990) Recognition of a bacterial adhesin by an integrin: macrophage CR3 (alpha M-beta 2, CD11 b/CD18) binds filamentous hemagglutinin of Bordetella pertussis. Cell 61: 1375–1382

    Article  PubMed  CAS  Google Scholar 

  • Relman DA, Domenighini M, Tuomanen E, Rappuoli R, Falkow S (1989) Filamentous hemagglutinin of Bordetella pertussis: nucleotide sequence and crucial role in adherence. Proc Natl Acad Sci USA 86: 2637–2641

    Article  PubMed  CAS  Google Scholar 

  • Roberts M, Fairweather NF, Leininger E, Pickard D, Hewlett EL, Robinson A, Hayward C, Dougan G, Charles IG (1991) Construction and characterization of Bordetella pertussis mutants lacking the virregualted p.69 outer membrane. Mol Microbiol 5 (6): 1393–1404

    Article  PubMed  CAS  Google Scholar 

  • Rogel A, Hanski E (1992) Distinct steps in the penetration of adenylate cyclase toxin of Bordetella pertussis into sheep erythrocytes. Translocation of the toxin across the membrane. J Biol Chem 267: 22599–22605

    PubMed  CAS  Google Scholar 

  • Roy CR, Miller JF, Falkow S (1989) The bvgA gene of Bordetella pertussis encodes a transcriptional activator required for coordinate regualtion of several virulene genes. J Bacteriol 171: 6338–6344

    PubMed  CAS  Google Scholar 

  • Saukkonen K, Cabellos C, Burroughs M, Prasad S, Tuomanen E (1991) Integrin-mediated localization of Bordetella pertussis within macrophages: role in pulmonary colonization. J Exp Med 173: 1143–1149

    Article  PubMed  CAS  Google Scholar 

  • Saukkonen K, Burnette WN, Mar VL, Masure HR, Tuomanen El (1992) Pertussis toxin has eukaryoticlike carbohydrate recognition domains. Proc Natl Acad Sci USA 89:118–122

    Article  PubMed  CAS  Google Scholar 

  • Scarlato V, Aricö B, Prugnola A, Rappuoli R (1991) Sequential activation and environmental regulation of virulence genes in Bordetella pertussis. EMBO J 10: 3971–3975

    PubMed  CAS  Google Scholar 

  • Scarlato V, Aricö B, Rappuoli R (1993) DNA topology affects transcriptional regulation of the pertussis toxin gene of Bordetella pertussis in Escherichia coli and in vitro. J Bacteriol 175: 4764–4771

    PubMed  CAS  Google Scholar 

  • Schiebel E, Schwarz H, Braun V (1989) Subcellular location and unique secretion of the hemolysin of Serratia marscescens. J Biol Chem 264: 16311–16320

    PubMed  CAS  Google Scholar 

  • Schonherr R, Tsolis R, Focareta T, Braun V (1993) Amino acid replacements in the Serratia marscescens haemolysin ShIA define sites involved in activation and secretion. Mol Microbiol 9: 1229–1237

    Article  PubMed  CAS  Google Scholar 

  • Shahin RD, Brennan MJ, Li AM, Meade BD, Manclark CR (1990) Characterization of the protective capacity and immunogenicity of the 69-kD outer membrane protein of Bordetella pertussis. J Exp Med 171: 63–73

    Article  PubMed  CAS  Google Scholar 

  • Shyamala S, Sengupta SR, Ramakrishnan P (1992) Bordetella pertussis extract induces increase in the activities of glycolytic enzymes in mouse liver. Indian J Biochem Biophys 29: 445–447

    PubMed  CAS  Google Scholar 

  • Sommermeyer H, Resch K (1990) Pertussis toxin B-subunit-induced Ca2 (+)-fluxes in Jurkat human lymphoma cells: the action of long-term pre-treatment with cholera and pertussis holotoxins. Cell Signal 2: 115–128

    Article  PubMed  CAS  Google Scholar 

  • Stibitz S, Garletts TL (1992) Derivation of a physical map of the chromosome of Bordetella pertussis Tohama I. J Bacteriol 174: 7770–7777

    PubMed  CAS  Google Scholar 

  • Stibitz S, Yang MS (1991) Subcellular localization and immunological detection of proteins encoded by the vir locus of Bordetella pertussis. J Bacteriol 173: 4288–4296

    PubMed  CAS  Google Scholar 

  • Stibitz S, Aaronson W, Monack D, Falkow S (1989) Phase variation in Bordetella pertussis by frameshift mutation in a gene for a novel two-component system. Nature 338: 266–269

    Article  PubMed  CAS  Google Scholar 

  • Tamura M, Nogimori K, Murai S, Yajima M, Ito K, Katada T, Ui M, Ishii S (1982) Subunit structure of the islet-activating protein, pertussis toxin, in conformity with the A-B model. Biochemistry 21: 5516–5522

    Article  PubMed  CAS  Google Scholar 

  • Tuomanen E, Weiss A (1985) Characterization of two adhesins of Bordetella pertussis for human ciliated respiratory-epithelial cells. J Infect Dis 152: 118–125

    Article  PubMed  CAS  Google Scholar 

  • Tuomanen E, Weiss A, Rich R, Zak F, Zak O (1985) Filamentous hemagglutinin and pertussis toxin promote adherence of Bordetella pertussis to cilia. Dev Biol Stand 61: 197–204

    PubMed  CAS  Google Scholar 

  • Tuomanen E, Towbin H, Rosenfelder G, Braun D, Larson G, Hansson GC, Hill R (1988) Receptor analogs and monoclonal antibodies that inhibit adherence of Bordetella pertussis to human ciliated respiratory epithelial cells. J Exp Med 168: 267–277

    Article  PubMed  CAS  Google Scholar 

  • Tuomanen EI, Prasad SM, George JS, Hoepelman AIM, Ibsen P, Heron I, Starzyk RM (1993) Reversible opening of the blood brain barrier by anti-bacterial antibodies. Proc Natl Acad Sci USA 90: 7824–7828

    Article  PubMed  CAS  Google Scholar 

  • Uphoff TS, Welch RA (1990) Nucleotide sequencing of Proteus mirabilis calcium dependent hemolysin genes (hpmA and hpmB), reveals sequence similarity with Serratia merchences hemolysin genes (shIAand shIB). J Bacteriol 172: 1206–1216

    PubMed  CAS  Google Scholar 

  • Utsumi R, Katayama S, Ikeda M, Igaki S, Nakagawa H, Miwa A, Taniguchi M, Nöda M (1992) Cloning and sequence analysis of the evgAS genes involved in signal transduction of Escherichia coli K-12. Nucleic Acids Symp Ser 27: 149–150

    PubMed  CAS  Google Scholar 

  • Wandersman C (1992) Secretion across the bacterial outer membrane. TIG 8: 317–322

    PubMed  CAS  Google Scholar 

  • Weiss AA, Hewlett EL, Myers GA, Falkow S (1983) Tn5-induced mutations affecting virulence factors of Bordetella pertussis. Infect Immun 42: 33–41

    PubMed  CAS  Google Scholar 

  • Weiss AA, Hewlett EL, Myers GA, Falkow S (1984) Pertussis toxin and extracytoplasmic adenylate cyclase as virulence factors of Bordetella pertussis. J Infect Dis 150: 219–222

    Article  PubMed  CAS  Google Scholar 

  • Weiss AA, Johnson FD, Burns DL (1993) Molecular characterization of an operon required for pertussis toxin secretion. Proc Natl Acad Sci USA 90: 2970–2974

    Article  PubMed  CAS  Google Scholar 

  • Willems R, Paul A, van der Heide HG, ter Avest AR, Mooi FR (1990) Fimbrial phase variation in Bordetella pertussis: a novel mechanism for transcriptional regulation. EMBO J 9: 2803–2809

    PubMed  CAS  Google Scholar 

  • Willems RJ, van der Heide HG, Mooi FR (1992) Characterization of a Bordetella pertussis fimbrial gene cluster which is located directly downstream of the filamentous haemagglutinin gene. Mol Microbiol 6: 2661–2671

    Article  PubMed  CAS  Google Scholar 

  • Willems RJL, Geuijen C, Vanderheide HGJ, Matheson M, Robinson A, Versluis LF, Ebberink R, Theelen J, Mooi FR (1993) Isolation of a putative fimbrial adhesin from Bordetella pertussis and the identification of its gene. Mol Microbiol 9: 623–634

    Article  PubMed  CAS  Google Scholar 

  • Willems RJL, Geuijen C, Van Der Heide HGJ, Renauld G, Bertin P, van der Hakker WMR, Locht C, Mooi FR (1994) Mutational analysis of the Bordetella pertussis fim/fha gene cluster: identification of a gene with sequence similarities to haemolysin accessory genes involved in export of FHA. Mol Microbiol 11 (2): 337

    Article  PubMed  CAS  Google Scholar 

  • Zhang YL, Sekura RD (1991) Purification and characterization of the heat-labile toxin of Bordetella pertussis. Infect Immun 59: 3754–3759

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rappuoli, R. (1994). Pathogenicity Mechanisms of Bordetella . In: Dangl, J.L. (eds) Bacterial Pathogenesis of Plants and Animals. Current Topics in Microbiology and Immunology, vol 192. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78624-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78624-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78626-6

  • Online ISBN: 978-3-642-78624-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics