Skip to main content

Immune Responses During Measles Virus Infection

  • Chapter
Measles Virus

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 191))

Abstract

The immune responses elicited by measles virus (MV) in many ways define the epidemiology and the illnesses produced by infection. During a study of the 1886 epidemic of measles in the Faroe Islands, the young Danish physician Peter Panum identified not only the highly infectious nature of the virus, but also the 14 day incubation period before the onset of the rash, the severity of the disease in infants and the presence of lifelong immunity in the absence of reexposure in elderly residents (Panum 1938). In 1908 another observant physician, von Pirquet, reported the loss of skin test reactivity and the reactivation of tuberculosis after measles that occurred in the residents of a Viennese tuberculosis sanitarium (VON Pirquet 1908). In 1790 James Lucas, a surgeon from Leeds, described the first case of post-measles encephalomyelitis (Lucas 1790). Thus, by early in the twentieth century most of the features of the disease that we now seek to understand, using the knowledge and tools of modern immunology, had been established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aicardi J, Goutieres F et al. (1977) Acute measles encephalitis in children with immunosuppression. Pediatrics 59: 232–239

    PubMed  CAS  Google Scholar 

  • Albrecht P, Ennis FA et al. (1977) Persistence of maternal antibody in infants beyond 12 months: mechanism of measles vaccine failure. J Pediatr 91: 715–178

    PubMed  CAS  Google Scholar 

  • Annunziato D, Kaplan MH et al. (1982) Atypical measles syndrome: pathologic and serologic findings. Pediatrics 70: 203–209

    PubMed  CAS  Google Scholar 

  • Arneborn P, Biberfeld G (1983) T lymphocyte subpopulations in relation to immunosuppression in measles and varicella. Infect Immun 39: 29–37

    PubMed  CAS  Google Scholar 

  • Barrett PN, Koschel K et al. (1985) Effect of measles virus antibodies on a measles SSPE virus persistently infected C6 rat glioma cell line. J Gen Virol 66: 1411–1421

    PubMed  Google Scholar 

  • Bech V (1959) Studies on the development of complement fixing antibodies in measles patients. J Immunol 83: 267–275

    PubMed  CAS  Google Scholar 

  • Beckford AP, Kaschula ROC et al. (1985) Factors associated with fatal cases of measles: A retrospective autopsy study. S Afr Med J 68: 858–863

    PubMed  CAS  Google Scholar 

  • Bellanti JA, Sanga RL et al. (1969) Antibody responses in serum and nasal secretions of children immunized with inactivated and attenuated measles-virus vaccines. N Engl J Med 280: 628–633

    PubMed  CAS  Google Scholar 

  • Bellini WJ, McFarlin DE et al. (1981) Immune reactivity of purified hemagglutinin of measles virus. Infect Immun 32: 1051–1057

    PubMed  CAS  Google Scholar 

  • Black FL (1989) Measles active and passive immunity in a worldwide perspective. Prog Med Virol 36: 1–33

    PubMed  CAS  Google Scholar 

  • Brajczewska-Fischer W, Iwinska B et al. (1989) Interleukin 1 and 2 production by peripheral blood mononuclear cells in subacute sclerosing panencephalitis and exacerabation of multiple sclerosis. Acta Neurol Scand 80: 390–393

    PubMed  CAS  Google Scholar 

  • Brodsky AL (1972) Atypical measles: severe illness in recipients of killed measles virus vaccine upon exposure to natural infection. J Am Med Assoc 222: 1415–1416

    CAS  Google Scholar 

  • Buckland R, Giraudon P et al. (1989) Expression of measles virus nucleoprotein in Escherichia coli: use of deletion mutants to locate the antigenic sites. J Gen Virol 70: 435–441

    PubMed  CAS  Google Scholar 

  • Buser F (1967) Side reaction to measles vaccination suggesting the arthus phenomenon. N Engl J Med 277: 250–251

    PubMed  CAS  Google Scholar 

  • Carter CH, Conway TJ et al. (1962) Serologic response of children to inactivated measles vaccine. JAMA 179: 848–853

    PubMed  CAS  Google Scholar 

  • Carter MJ, Willcocks MM et al. (1982) Relationships between monoclonal antibody-binding sites on the measles virus haemagglutinin. J Gen Virol 63: 113–120

    PubMed  Google Scholar 

  • Cherry JD, Feigin RD et al. (1972) Atypical measles in children previously immunized with attenuated measles virus vaccines. Pediatrics 50: 712–717

    PubMed  CAS  Google Scholar 

  • Connolly JH, Allen IV et al. (1967) Measles virus antibody and antigen in subacute sclerosing panencephalitis. Lancet 1: 542–544

    PubMed  CAS  Google Scholar 

  • Coovadia HM, Wesley A et al. (1981) Measles, histocompatibility leukocyte antigen polymorphism, and natural selection in humans. J Infect Dis 144: 142–147

    PubMed  CAS  Google Scholar 

  • Crespi M, Struthers JK et al. (1988) Interferon status after measles virus infection. S Afr Med J 73: 711–712

    PubMed  CAS  Google Scholar 

  • Dhib-Jalbut S, Jacobson S et al. (1989) Impaired human leukocyte antigen-restricted measles virus-specific cytotoxic T-cell response in subacute sclerosing panencephalitis. Ann Neurol 25: 272–280

    PubMed  CAS  Google Scholar 

  • Donaldson SL, Kosco MH et al. (1986) Localization of antibody-forming cells in draining lymphoid organs during long-term maintenance of the antibody response. J Leukoc Biol 40: 147–157

    PubMed  CAS  Google Scholar 

  • Ehrnst AC (1975) Characterization of measles virus-specific cytotoxic antibodies by use of a chronically infected cell line. J Immunol 114: 1077–1082

    PubMed  CAS  Google Scholar 

  • Ehrnst A (1978) Separate pathways of C activation by measles virus cytotoxic antibodies: subclass analysis and capacity of F (ab) molecules to activate C via the alternative pathway. J Immunol 121:1206–1212

    PubMed  CAS  Google Scholar 

  • Enders JF, McCarthy K et al. (1959) Isolation of measles virus at autopsy in cases of giant cell pneumonia without rash. N Engl J Med 261: 875–881

    PubMed  CAS  Google Scholar 

  • Enders-Ruckle G (1967) Some characteristics of immunity following natural measles and various forms of immunization. Arch Gesamte Virusforsch 22: 23–34

    PubMed  CAS  Google Scholar 

  • Esiri MM, Oppenheimer DR et al. (1982) Distribution of measles antigen and immunoglobulin containing cells in the CNS in subacute sclerosing panencephalitis (SSPE) and atypical measles encephalitis. J Neurol Sci 53: 29–43

    PubMed  CAS  Google Scholar 

  • Esolen LM, Ward BJ et al. (1993) Infection of monocytes during measles. J Infect Dis 168: 47–52

    PubMed  CAS  Google Scholar 

  • Fireman P, Friday G et al. (1969) Effect of measles virus vaccine on immunologic responsiveness. Pediatrics 43: 264–272

    PubMed  CAS  Google Scholar 

  • Fujinami RS, Oldstone MBA (1979) Antiviral antibody reacting on the plasma membrane alters measles virus expression inside the cell. Nature 279: 529–530

    PubMed  CAS  Google Scholar 

  • Fulginiti VA, Arthur JH (1969) Altered reactivity to measles virus. J Pediatr 75: 609–616

    PubMed  CAS  Google Scholar 

  • Fulginiti VA, Arthur JH et al. (1968) Altered reactivity to measles virus local reactions following attenuated measles virus immunization in children who previously received a combination of inactivated and attenuated vaccines. Am J Dis Child 115: 67–72

    Google Scholar 

  • Furukawa S, Matsubara T et al. (1992) Kawasaki disease differs from anaphylactoid purpura and measles with regard to tumour necrosis factor-alpha and interleukin 6 in serum. Eur J Pediatr 151: 44–47

    PubMed  CAS  Google Scholar 

  • Garenne M, Leroy O et al. (1991) Child mortality after high-titre measles vaccines: prospective study in Senegal. Lancet 338: 903–907

    PubMed  CAS  Google Scholar 

  • Gendelman H, Wolinsky JS et al. (1984) Measles encephalitis: Lack of evidence of viral invasion of the central nervous system and quantitative study of the nature of demyelination. Ann Neurol 15: 353–360

    PubMed  CAS  Google Scholar 

  • Goretsky M (1990) Acute fatal leukoencephalopathy after interleukin-2 therapy. N Engl J Med 323: 1146–1147

    Google Scholar 

  • Graves M, Griffin DE et al. (1984) Development of antibody to measles virus polypeptides during complicated and uncomplicated measles virus infections. J Virol 49: 409–412

    PubMed  CAS  Google Scholar 

  • Gray D, Skarvall H (1988) B-cell memory is short-lived in the absence of antigen. Nature 336: 70–73

    PubMed  CAS  Google Scholar 

  • Greenstein JI, McFarland HF (1983) Response of human lymphocytes to measles virus after natural infection. Infect Immun 40: 198–204

    PubMed  CAS  Google Scholar 

  • Griffin DE, Ward BJ (1993) Differential CD4 T cell activation in measles. J Infect Dis 168: 275–281

    PubMed  CAS  Google Scholar 

  • Griffin DE, Cooper SJ et al. (1985) Changes in plasma IgE levels during complicated and uncomplicated measles virus infections. J Allergy Clin Immunol 76: 206–213

    PubMed  CAS  Google Scholar 

  • Griffin DE, Moench TR et al. (1986) Peripheral blood mononuclear cells during natural measles virus infection: cell surface phenotypes and evidence for activation. Clin Immunol Immunopathol 40: 305–312

    PubMed  CAS  Google Scholar 

  • Griffin DE, Johnson RT et al. (1987) In vitro studies of the role of monocytes in the immunosuppression associated with natural measles virus infections. Clin Immunol Immunopathol 45: 375–383

    PubMed  CAS  Google Scholar 

  • Griffin DE, Moench TR et al. (1986) Peripheral blood mononuclear cells during natural measles virus infection: cell surface phenotypes and evidence for activation. Clin Immunol Immunopathol 40: 305–312

    PubMed  CAS  Google Scholar 

  • Griffin DE, Ward BJ et al. (1989) Immune activation during measles. N Engl J Med 320: 1667–1672

    PubMed  CAS  Google Scholar 

  • Griffin DE, Ward BJ et al. (1990a) Immune activation during measles: Interferon-gamma and neopterin in plasma and cerebrospinal fluid in complicated and uncomplicated disease J Infect Dis 161: 449–453

    PubMed  CAS  Google Scholar 

  • Griffin DE, Ward BJ et al. (1990b) Natural killer cell activity during measles. Clin Exp Immunol 81: 218–224

    PubMed  CAS  Google Scholar 

  • Griffin DE, Ward BJ et al. (1992) Immune activation during measles: Beta-2-microglobulin in plasma and cerebrospinal fluid in complicated and uncomplicated disease. J Infect Dis 166: 1170–1173

    PubMed  CAS  Google Scholar 

  • Haddad FS, Risk WS et al. (1977) Subacute sclerosing panencephalitis in the Middle East: report of 99 cases. Ann Neurol 1: 211–217

    PubMed  CAS  Google Scholar 

  • Hall WW, Lamb RA et al. (1979) Measles and subacute sclerosing panencephalitis virus proteins: lack of antibodies to the M protein in patients with subacute sclerosing panencephalitis. Proc Natl Acad Sci USA 76: 2047–2051

    PubMed  CAS  Google Scholar 

  • Halsey NA, Boulos R et al. (1985) Response to measles vaccine in Haitian infants 6 to 12 months old. N Engl J Med 313: 544–549

    PubMed  CAS  Google Scholar 

  • Hirsch RL, Mokhtarian F et al. (1981) Measles virus vaccination of measles seropositive individuals suppresses lymphocyte proliferation and chemotactic factor production. Clin Immunol Immunopathol 21: 341–350

    PubMed  CAS  Google Scholar 

  • Hirsch RL, Griffin DE et al. (1984) Cellular immune responses during complicated and uncomplicated measles virus infections of man. Clin Immunol Immunopathol 31: 1–12

    PubMed  CAS  Google Scholar 

  • Hofman FM, Hinton DR et al. (1991) Lymphokines and immunoregulatory molecules in subacute sclerosing panencephalitis. Clin Immunol Immunopathol 58: 331–342

    PubMed  CAS  Google Scholar 

  • Ilonen J, Makela MJ et al. (1990) Cloning of human T cells specific for measles virus haemagglutinin and nucleocapsid. Clin Exp Immunol 81: 212–217

    PubMed  CAS  Google Scholar 

  • Jacobson S, Richert JR et al. (1984) Measles virus-specific T4+ human cytotoxic T cell clones are restricted by class II HLA antigens. J Immunol 133: 754–757

    PubMed  CAS  Google Scholar 

  • Jacobson S, Sekaly RP et al. (1989) HLA class II-restricted presentation of cytoplasmic measles virus antigens to cytotoxic T cells. J Virol 63: 1756–1762

    PubMed  CAS  Google Scholar 

  • Joffe MI, Rabson AR (1981) Defective helper factor (LMC) production in patients with acute measles infection. Clin Immunol Immunopathol 20: 215–223

    PubMed  CAS  Google Scholar 

  • Johnson RT, Griffin DE et al. (1984) Measles encephalomyelitis—clinical and immunologic studies. N Engl J Med 310: 137–141

    PubMed  CAS  Google Scholar 

  • Joseph BS, Oldstone BA (1975) Immunologic injury in measles virus infection II. Suppression of immune injury through antigenic modulation. J Exp Med 142: 864–876

    PubMed  CAS  Google Scholar 

  • Joseph BS, Lampert PW et al. (1975) Replication and persistence of measles virus in defined subpopulations of human leukocytes. J Virol 16: 1638–1649

    PubMed  CAS  Google Scholar 

  • Kaplan LJ, Daum RS et al. (1992) Severe measles in immunocompromised patients. JAMA 267: 1237–1241

    PubMed  CAS  Google Scholar 

  • King JC Jr, Lichnestein R et al. (1993) Measles, mumps, and rubella antibodies in vaccinated Baltimore children. Amer J Dis Child 147: 558–560

    PubMed  Google Scholar 

  • Krause PJ, Cherry JD et al. (1978) Revaccination of previous recipients of killed measles vaccine: clinical and immunologic studies. J Pediatr 93: 565–571

    PubMed  CAS  Google Scholar 

  • Kreth HW, ter Meulen V et al. (1979) Demonstration of HLA restricted killer cells in patients with acute measles. Med Microbiol Immunol 165: 203–214

    PubMed  CAS  Google Scholar 

  • Larner AC, Petricoin EF et al. (1993) IL-4 attenuates the transcriptional activation of both IFN-alpha and IFN-gamma-induced cellular gene expression in monocytes and monocytic cell lines. J Immunol 150:1944–1950

    PubMed  CAS  Google Scholar 

  • Leopardi R, Ilonen J et al. (1993) Effect of measles virus infection on MHC class II expression and antigen presentation in human monocytes. Cell Immunol 147: 388–396

    PubMed  CAS  Google Scholar 

  • Leopardi R, Vainionpaa R et al. (1992) Measles virus infection enhances IL-1 beta but reduces tumor necrosis factor-alpha expression in human monocytes. J Immunol 149: 2397–2401

    PubMed  CAS  Google Scholar 

  • Litvak AM, Sands IJ et al. (1943) Encephalitis complicating measles: report of fifty-six cases with followup studies in thirty-two. Am J Dis Child 65: 265–295

    Google Scholar 

  • Lucas CJ, Biddison WE et al. (1982) Killing of measles virus-infected cells by human cytotoxic T cells. Infect Immun 38: 226–232

    PubMed  CAS  Google Scholar 

  • Lucas J (1790) An account of uncommon symptoms succeeding the measles; with additional remarks on the infection of measles and smallpox. Lond Med J 11: 325–331

    Google Scholar 

  • Machamer CE, Hayes EC et al. (1980) Antibodies against the measles matrix polypeptide after clinical infection and vaccination. Infect Immun 27: 817–825

    PubMed  CAS  Google Scholar 

  • Malvoisin E, Wild F (1990) Contribution of measles virus fusion protein in protective immunity: anti-F monoclonal antibodies neutralize virus infectivity and protect mice against challenge. J Virol 64: 5160–5162

    PubMed  CAS  Google Scholar 

  • Mandalenaki-Asfi C, Liakopoulou P et al. (1976) Rosette-forming lymphocytes and measles vaccination. J Pediatr 88: 74–75

    PubMed  CAS  Google Scholar 

  • Markowitz LE, Chandler FW et al. (1988) Fatal measles pneumonia without rash in a child with AIDS. J Infect Dis 158: 480–483

    PubMed  CAS  Google Scholar 

  • Markowitz LE, Preblud SR et al. (1990) Duration of live measles vaccine-induced immunity. Pediatr Infect Dis J 9: 101–110

    PubMed  CAS  Google Scholar 

  • Martin DB, Weiner LB et al. (1979) Atypical measles in adolescents and young adults. Ann Intern Med 90:877–881

    PubMed  CAS  Google Scholar 

  • Martinez OM, Gibbons RS et al. (1990) IL-4 inhibits IL-2 receptor expression and IL-2 dependent proliferation of human T cells. J Immunol 144: 2211–2215

    PubMed  CAS  Google Scholar 

  • Mathiesen T, Hammarstrom L et al. (1990) Aberrant IgG subclass distribution to measles in healthy seropositive individuals, in patients with SSPE and in immunoglobulin-deficient patients. Clin Exp Immunol 80: 202–205

    PubMed  CAS  Google Scholar 

  • Mehta PD, Kulczycki J et al. (1992) Increased levels of beta-2-microglobulin, soluble interleukin-2 receptor, and soluble CD8 in patients with subacute sclerosing panencephalitis. Clin Immunol Immunopathol 65: 53–59

    PubMed  CAS  Google Scholar 

  • Merz DC, Scheid A et al. (1980) Importance of antibodies to the fusion glycoprotein of paramyxoviruses in the prevention of spread of infection. J Exp Med 151: 275–288

    PubMed  CAS  Google Scholar 

  • Miller DL (1964) Frequency of complications of measles. 1963 Br Med J 2: 75–78

    PubMed  CAS  Google Scholar 

  • Mitus A, Enders JF et al. (1959) Persistence of measles virus and depression of antibody formation in patients with giant-cell pneumonia after measles. N Engl J Med 261: 882–889

    PubMed  CAS  Google Scholar 

  • Moench TR, Griffin DE et al. (1988) Acute measles in patients with and without neurological involvement: distribution of measles virus antigen and RNA. J Infect Dis 158: 433–442

    PubMed  CAS  Google Scholar 

  • Morley D (1969) Severe measles in the tropics. Br Med J 1: 297–300

    PubMed  CAS  Google Scholar 

  • Mosmann TR, Coffman RL (1987) Two types of mouse helper T cell clone: implications for immune regulation. Immunol Today 8: 223–227

    Google Scholar 

  • Mustafa MM, Weitman SD et al. (1993) Subacute measles encephalitis in the young immuno-compromised host: report of two cases diagnosed by polymerase chain reaction and treated with ribavirin and review of the literature. Clin Infect Dis 16: 654–660

    PubMed  CAS  Google Scholar 

  • Nader PR, Horwitz MS et al. (1968) Atypical exanthem following exposure to natural rneasles: eleven cases in children previously inoculated with killed vaccine. J Pediatr 72: 22–28

    Google Scholar 

  • Nagano I, Nakamura S et al. (1991) Immunocytochemical analysis of the cellular infiltrate in brain lesions in subcute sclerosing panencephalitis. Neurology 41 : 1639–1642

    PubMed  CAS  Google Scholar 

  • Nelson JD, Sandusky G et al. (1966) Measles skin test and serologic response to intradermal measles antigen. JAMA 198: 185–186

    Google Scholar 

  • Norrby E, Enders-Ruckle G et al. (1975) Differences in the appearance of antibodies to structural components of measles virus after immunization with inactivated and live virus. J Infect Dis 132: 262

    PubMed  CAS  Google Scholar 

  • Norrby E, Gollmar Y (1972) Appearance and persistence of antibodies against different virus components after regular measles infections Infect. Immun 6: 240–247

    PubMed  CAS  Google Scholar 

  • Norrby E, Gollmar Y (1975) Identification of measles virus-specific hemolysis-inhibiting antibodies separate from hemagglutination-inhibiting antibodies. Infect Immun 11: 231–239

    PubMed  CAS  Google Scholar 

  • Norrby E, Orvell C et al. (1981) Antibodies against measles virus polypeptides in different disease conditions. Infect Immun 34: 718–724

    PubMed  CAS  Google Scholar 

  • Panum P (1938) Observations made during the epidemic of measles on the Faroe Islands in the year 1846. Med Class 3: 829–886

    Google Scholar 

  • Patrick BA, Mehta PD et al. (1990) Measles virus-specific immunoglobulin D antibody in cerebrospinal fluid and serum from patients with subacute sclerosing panencephalitis and multiple sclerosis. J Neuroimmunol 26: 69–74

    PubMed  CAS  Google Scholar 

  • Rammohan KW, McFarland HF et al. (1983) Antibody-mediated modification of encephalitis induced by hamster neurotropic measles virus. J Infect Dis 147: 546–550

    PubMed  CAS  Google Scholar 

  • Rauh LW, Schmidt R (1965) Measles immunization with killed virus vaccine. Am J Dis Child 109: 232–237

    PubMed  CAS  Google Scholar 

  • Rose JW, Bellini WJ et al. (1984) Human cellular immune response to measles virus polypeptides. J Virol 49: 988–991

    PubMed  CAS  Google Scholar 

  • Rota JS, Hummel KB et al. (1992) Genetic variability of the glycoprotein genes of current wild-type measles isolates. Virology 188: 135–142

    PubMed  CAS  Google Scholar 

  • Ruckle G, Rogers KD (1957) Studies with measles virus. II. Isolation of virus and immunologic studies in persons who have had the natural disease. J Immunol 78: 341–355

    PubMed  CAS  Google Scholar 

  • Salonen R, Ilonen J et al. (1988) Measles virusn vitro: antigen expression and virus production preferentially in monocytes. Clin Exp Immunol 71: 224–228

    PubMed  CAS  Google Scholar 

  • Schluederberg A (1965) Immune globulins in human viral infections. Nature 205: 1232–1233

    Google Scholar 

  • Schneider-Schaulies S, Liebert UG et al. (1992) Antibody-dependent transcriptional regulation of measles virus in persistently infected neural cells. J Virol 66: 5534–5541

    PubMed  CAS  Google Scholar 

  • Scott TFM, Bonanno DE (1967) Reactions to live-measles-virus vaccine in children previously inoculated with killed-virus vaccine. N Engl J Med 277: 248–250

    PubMed  CAS  Google Scholar 

  • Sheshberadaran H, Norrby E (1986) Characterization of epitopes on the measles virus hemagglutinin. Virology 152: 58–65

    PubMed  CAS  Google Scholar 

  • Shiozawa S, Yoshikawa N et al. (1988) A sensitive radioimmunoassay for circulating alpha-interferon in the plasma of healthy children and patients with measles virus infection. Clin Exp Immunol 73: 366–369

    PubMed  CAS  Google Scholar 

  • Siber GR, Werner BG et al. (1993) Interference of immune globulin with measles and rubella immunization. J Pediatr 122: 204–211

    PubMed  CAS  Google Scholar 

  • Sotrel A, Rosen S et al. (1983) Subacute sclerosing panencephalitis: an immune complex disease? Neurology 33: 885–890

    PubMed  CAS  Google Scholar 

  • Stephenson JR, ter Meulen V (1979) Antigenic relationships between measles and canine distemper viruses: comparison of immune response in animals and humans to individual virus-specific polypeptides. Proc Natl Acad Sci USA 76: 6601–6605

    PubMed  CAS  Google Scholar 

  • Sullivan JL, Barry DW et al. (1975) Measles infection of human mononuclear cells. I. Acute infection of peripheral blood lymphocytes and monocytes. J Exp Med 142: 773–784

    PubMed  CAS  Google Scholar 

  • Tamashiro VG, Perez HH et al. (1987) Prospective study of the magnitude and duration of changes in tuberculin reactivity during complicated and uncomplicated measles. Pediatr Infect Dis J 6: 451–454

    PubMed  CAS  Google Scholar 

  • Taylor MJ, Godfrey E et al. (1991) Identification of several different lineages of measles virus. J Gen Virol 72: 83–88

    PubMed  CAS  Google Scholar 

  • ter Meulen V, Loffler S et al. (1981) Antigenic characterization of measles and SSPE virus haemagglutinin by monoclonal antibodies. J Gen Virol 67: 357–364

    Google Scholar 

  • Tew JG, Kosco MH et al. (1990) Follicular dendritic cells as accessory cells. Immunol Rev 117: 185–211

    PubMed  CAS  Google Scholar 

  • Tourtellotte WW, Ma BI et al. (1981) Quantification of de novo central nervous system IgG measles antibody synthesis in SSPE. Ann Neurol 9: 551–556

    PubMed  CAS  Google Scholar 

  • Trudgett A, Gould EA et al. (1981) Antigenic difference in the hemagglutinin of measles and related viruses. Virology 109: 180–182

    PubMed  CAS  Google Scholar 

  • van Binnendijk R, Poelen MCM et al. (1989) Measles virus-specific human T cell clones. Characterization of specificity and function of CD4 helper/cytotoxic and CD8+ cytotoxic T cell clones. J Immunol 142: 2847–2854

    PubMed  Google Scholar 

  • van Binnendijk RS, Poelen MCM et al. (1990) The predominance of CD8+ T cells after infection with measles virus suggests a role for CD8+ class I MHC-restricted cytotoxic T lymphocytes (CTL) in recovery from measles. J Immunol 144: 2394–2399

    PubMed  Google Scholar 

  • van Binnendijk RS, van Baalen CA et al. (1992) Measles virus transmembrane fusion protein systhesized de novo or presented in immunostimulating complexes is endogenously processed for HLA class I- and class II- restricted cytotoxic T cell recognition. J Exp Med 176: 119–128

    PubMed  Google Scholar 

  • van Binnendijk RS, Versteeg-van Oosten JPM et al. (1993) Human HLA class I- and HLA class II-restricted cloned cytotoxic T lymphocytes identify a cluster of epitopes on the measles virus fusion protein. J Virol 67: 2276–2284

    PubMed  Google Scholar 

  • Vandvik B, Norrby E (1973) Oligocional lgG antibody response in the central nervous system to different measles virus antigens in subacute sclerosing panencephalitis. Proc Natl Acad Sci USA 70: 1060–1063

    PubMed  CAS  Google Scholar 

  • Von Pirquet C (1908) Verhalten der kutanen Tuberkulinreaktion wahrend der Masern. Dtsch Med Wochenschr 34: 1297–1300

    Google Scholar 

  • Ward BJ, Griffin DE (1993) Changes in cytokine production after measles virus vaccination: predominant production of IL-4 suggests induction of a Th2 response. Clin Immunol lmmunopathol 67: 171–177

    CAS  Google Scholar 

  • Ward BJ, Johnson RT et al. (1990) Spontaneous proliferation of peripheral mononuclear cells in natural measles virus infection: identification of dividing cells and correlation with mitogen responsiveness. Clin Immunol Immunopathol 55: 315–326

    PubMed  CAS  Google Scholar 

  • Ward BJ, Johnson RT et al. (1991) Cytokine production in vitro and the Iymphoproliferative defect of natural measles virus infection. Clin Immunol lmmunopathol 61: 236–248

    CAS  Google Scholar 

  • Weil ML, Leiva WA et al. (1975) Release of bound immunoglobulin from SSPE brain by acid elution. J Immunol 115: 1603–1606

    PubMed  CAS  Google Scholar 

  • Wiesmuller K-H, Handtmann D et al. (1992) Heterogeneity of linear B cell epitopes of the measles virus fusion protein reacting with late convalescent sera. J Gen Virol 73: 2211–2216

    PubMed  Google Scholar 

  • Wild TF, Malvoisin E et al. (1991) Measles virus: both the haemagglutinin and fusion glycoproteins are required for fusion. J Gen Virol 72: 439–442

    PubMed  CAS  Google Scholar 

  • Wu VH, McFarland H et al. (1993) Measles virus-specific cellular immunity in patients with vaccine failure. J Clin Microbiol 31: 118–122

    PubMed  CAS  Google Scholar 

  • Zweiman B, Pappagianis D et al. (1971) Effect of measles immunization on tuberculin hypersensitivity and in vitro lymphocyte reactivity. Int Arch Allergy Appl Immunol 40: 834–841

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Griffin, D.E. (1995). Immune Responses During Measles Virus Infection. In: ter Meulen, V., Billeter, M.A. (eds) Measles Virus. Current Topics in Microbiology and Immunology, vol 191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78621-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78621-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78623-5

  • Online ISBN: 978-3-642-78621-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics