Skip to main content

Molecular Adaptations in Resistance to Penicillins and Other β-Lactam Antibiotics

  • Chapter
Advances in Comparative and Environmental Physiology

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 20))

Abstract

The chance discovery by Fleming in 1928 of a metabolite produced by Penicillium notatum which exhibited bacteriolytic properties was followed by the heroic efforts of the Oxford group of Chain and Florey to isolate and identify the active molecule. This led to the introduction of benzylpenicillin in clinical trials about 50 years ago, probably one of the major breakthroughs in modern chemotherapy. Although some pathogenic bacteria were rapidly recognized as resistant to the new wonder drug, it was believed that a nearly ideal solution had been found to the problem of bacteria-mediated infectious diseases. Indeed, penicillin was extremely efficient and nearly completely innocuous to eukaryotic cells, which allowed the utilization of relatively high doses with little or no unwanted secondary effects. However, in the early 1950s, resistant strains started to appear in generally sensitive species such as Staphylococcus aureus and this phenomenon initiated a constant struggle between chemists, biochemists and microbiologists, on the one side, and bacteria, on the other. The former continuously isolated new molecules from natural sources and synthesized additional compounds, while the latter kept devising new strategies to escape the lethal action of an ever expanding arsenal of drugs which exhibited one common chemical characteristic: the presence of the four-membered β-lactam ring shown in Fig. 1 (together with some members of the β-lactam family).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham EP, Chain E (1940) An enzyme from bacteria able to destroy penicillin. Nature 146: 837

    CAS  Google Scholar 

  • Al Obeid S, Gutmann L, Williamson R (1990) Correlation of penicillin-induced lysis of Enterococcusfaecium with saturation of essential penicillin-binding proteins and release of lipoteichoic acid. Antimicrob Agents Chemother 34: 1901–1907

    Google Scholar 

  • Ambler RP, Coulson AF, Frère JM, Ghuysen JM, Jaurin B, Joris B, Levesque R, Tiraby G, Waley SG (1991) A standard numbering scheme for the class A beta-lactamases. Biochem J 276: 269–272

    PubMed  CAS  Google Scholar 

  • Barthélémy M, Peduzzi J, Yaghlane HB, Labia R (1988) Single amino acid substituion between SHV-1 ß-lactamase and cefotaxime-hydrolysing SHV-2 enzyme. FEBS Lett 231: 217–220

    PubMed  Google Scholar 

  • Begg KJ, Takasuga A, Edwards DH, Dewar SJ, Spratt BG, Adachi H, Ohta T, Matsuzawa H, Donachie WD (1990) The balance between different peptidoglycan precursors determines whether Escherichia coli will elongate or divide. J Bacteriol 172: 6697–6703

    PubMed  CAS  Google Scholar 

  • Boyce JM, Opal SM, Potter-Bynoe G, La Forge RG, Zorvos MJ, Furtado G, Victor G, Medeiros AA (1992) Emergence and transmission of ampicillin-resistant enterococci. Antimicrob Agents Chemother 36: 1032–1039

    PubMed  CAS  Google Scholar 

  • Berger-Bächi B, Strassle A, Gustason JE, Kayser FH (1992) Mapping and characterization of multiple chromosomal factors involved in methicillin-resistance in Staphylococcus aureus. Antimicrob Agents Chemother 36: 1367–1373

    PubMed  Google Scholar 

  • Boyce JM, Opal SM, Potter-Bynoe G, La Forge RG, Zorvos MJ, Furtado G, Victor G, Medeiros AA (1992) Emergence and transmission of ampicillin-resistant enterococci. Antimicrob Agents Chemother 36: 1032–1039

    PubMed  CAS  Google Scholar 

  • Brannigan JA, Tirodimos IA, Zhang QY, Dowson CG, Spratt BG (1990) Insertion of an extra amino acid is the main cause of the low affinity of penicillin-binding protein 2 in penicillin-resistant strains of Neisseria gonorrhoeae. Mol Microbiol 4: 913–919

    PubMed  CAS  Google Scholar 

  • Brenner DG, Knowles JR (1984) Penicillanic acid sulfone: nature of irreversible inactivation of RTEM ß-lactamase from E. coli Biochemistry 23: 5833–5839

    CAS  Google Scholar 

  • Bugg TDH, Dutka-Malen S, Arthur M, Courvalin P, Walsh CT (1991a) Identification of vancomycin resistance protein VanA as D-alanine ligase of altered substrate specificity. Biochemistry 30: 2017–2021

    PubMed  CAS  Google Scholar 

  • Bugg TDH, Wright GD, Dutka-Malen S, Arthur M, Courvalin P, Walsh CT (1991b) Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosyntheis of depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry 30: 10408–10415

    PubMed  CAS  Google Scholar 

  • Bush K (1989a) Characterization of ß-lactamases. Antimicrob Agents Chemother 33: 259–263

    PubMed  CAS  Google Scholar 

  • Bush K (1989b) Excitement in the beta-lactamase area. J Antimicrob 24: 831–836

    CAS  Google Scholar 

  • Courvalin P (1990) Resistance of enterococci to glycopeptides. Antimicorb Agents Chemother 34: 2291–2296

    CAS  Google Scholar 

  • Couture F, Lachapelle J, Levesque RC (1992) Phylogeny of LCR-1 and OXA-5 with class A and class D ß-lactamases. Mol Microbiol 6: 1693–1705

    PubMed  CAS  Google Scholar 

  • Cowan SW, Schirmer T, Rummel G, Ghosh R, Pauptit RA, Jansonius JN, Rosenbusch JP (1992) Crystal structures explain functional properties of two E. coli porins. Nature 358: 727–733

    PubMed  CAS  Google Scholar 

  • Degelaen J, Feeney J, Roberts GC, Burgen AS, Frère JM, Ghuysen JM (1979) NMR evidence for the structure of the complex between penicillin and the DD-carboxypeptidase of Streptomyces R61. FEBS Lett 98: 53–56

    PubMed  CAS  Google Scholar 

  • de Jonge BL, Chang YS, Gage D, Tomasz A (1992) Peptidoglycan comparison of a highly methicillin-resistant Staphylococcus aureus strain. The role of penicillin-binding protein 2A. J Biol Chem 267: 11248–11254

    PubMed  Google Scholar 

  • Delaire M, Labia R, Samama JP, Masson JM (1992) Site-directed mutagenesis at the active site of Escherichia coli TEM-1 ß-lactamase. Suicide inhibitor-resistant mutants reveal the role of arginine 244 and methionine 69 in catalysis. J Biol Chem 267: 20600–20606

    PubMed  CAS  Google Scholar 

  • de Lencastre H, Sa Figueiredo AM, Urban C, Rahal J, Tomasz A (1991) Multiple mechanism of methicillin resistance and improved methods for detection in clinical isolates of Staphylococcus aureus. Antimicrob Agents Chemother 35: 632–639

    PubMed  Google Scholar 

  • del Mar Lleo M, Canepari P, Cornaglia G, Fontana R, Satta G (1987) Bacteriostatic and bactericidal activities of ß-lactams against Streptococcus (Enterococcus) faecium are associated with saturation of different penicillin-binding proteins. Antimicrob Agents Chemother 31: 1618–1626

    PubMed  CAS  Google Scholar 

  • Dowson CG, Hutchison A, Woodford N, Johnson AP, George RC, Spratt BG (1990) Penicillin-resistant viridans streptococci have obtained altered penicillin-binding protein genes from penicillin-resistant strains of Streptococcus pneumoniae. Proc Natl Acad Sci USA 87: 5858–5862

    PubMed  CAS  Google Scholar 

  • Dowson CG, Hutchison A, Brannigan JA, George RC, Hansman D, Linares J, Tomasz A, Smith JM, Spratt BG (1989) Horizontal transfer of penicillin-binding protein genes in penicillin-resistant clinical isolates of Streptococcus pneumoniae. Proc Natl Acad Sci USA 86: 8842–8846

    PubMed  CAS  Google Scholar 

  • Dowson CG, Hutchison A, Woodford N, Johnson AP, George RC, Spratt BG (1990) Penicillin-resistant viridans streptococci have obtained altered penicillin-binding protein genes from penicillin-resistant strains of Streptococcus pneumoniae. Proc Natl Acad Sci USA 87: 5858–5862

    PubMed  CAS  Google Scholar 

  • El Kharroubi A, Jacques P, Piras G, Van Beeumen J, Coyette J, Ghuysen JM (1991) The Enterococcus hirae R40 penicillin-binding protein 5 and the methicillin-resistant Staphylococcus aureus penicillin-binding protein 2’ are similar. Biochem J 280: 463–469

    PubMed  Google Scholar 

  • Faruki H, Sparling RF (1986) Genetics of resistance in non-ß-lactamase producing gonococcus with relatively high-level penicillin resistance. Antimicrob Agents Chemother 30: 856–860

    PubMed  CAS  Google Scholar 

  • Fisher J, Charnas RL, Knowles JR (1978) Kinetic studies on the inactivation of Escherichia coli RTEM beta-lactamase by clavulanic acid. Biochemistry 17: 2180–2184

    PubMed  CAS  Google Scholar 

  • Fontana R, Cerini R, Longoni P, Grossato A, Canepari P (1983) Identification of a streptococcal penicillin-binding protein that reacts very slowly with penicillin. J Bacteriol 155: 1343–1350

    PubMed  CAS  Google Scholar 

  • Fontana R, Grossato A, Rossi L, Cheng YR, Satta G (1985) Transition from resistance to hypersusceptibility to ß-lactam antibiotics associated with loss of a low-affinity penicillin-binding protein in a S. faecium mutant highly resistant to penicillin. Antimicrob Agents Chemother 28: 678–683

    PubMed  CAS  Google Scholar 

  • Franceschini N, Galleni M, Frère JM, Oratore A, Amicosante G (1993) A class A ß-lactamase from Pseudomonas stutzeri highly active against monobactams and cefotaxime. Biochem J 292: 697–700

    PubMed  CAS  Google Scholar 

  • Frère JM (1989) Quantitative relationship between sensitivity to beta-lactam antibiotics and beta-lactamase production in Gram-negative bacteria. I. Steady-state treatment. Biochem Pharmacol 38: 1415–1426

    PubMed  Google Scholar 

  • Frère JM, Joris B (1985) Penicillin-sensitive enzymes in peptidoglycan biosynthesis. CRC Crit Rev Microbiol 11: 299–396

    Google Scholar 

  • Frère JM, Ghuysen JM, Iwatsubo M (1975) Kinetics of interaction between the exocellular DD-carboxypeptidase-transpeptidase from Streptomyces R61 and ß-lactam antibiotics. A choice of models. Eur J Biochem 57: 343–351

    Google Scholar 

  • Frère JM, Duez C, Ghuysen JM, Vandekerckhove J (1976) Occurrence of a serine residue in the penicillin-binding site of the exocellular DD-carboxypeptidase-transpeptidase from Streptomyces R61. FEBS Lett 70: 257–260

    PubMed  Google Scholar 

  • Frère JM, Nguyen-Distèche M, Coyette J, Joris B (1992) Mode of action: interaction with the penicillin-binding proteins. In: Page MI (ed) The chemistry of beta-lactams. Chapman and Hall, Glasgow, pp 148–195

    Google Scholar 

  • Galleni M, Frère JM (1988) A survey of the kinetic parameters of class C ß-lactamases. I. Penicillins. Biochem J 255: 119–122

    Google Scholar 

  • Gallen M, Amicosante G, Frère JM (1988) A survey of the kinetic parameters of class C ß-lactamases. II. Cephalosporins and other ß-lactam compounds. Biochem J 255: 123–129

    Google Scholar 

  • Garcia-Bustos J, Tomasz A (1990) A biological price of antibiotic resistance: major changes in the peptidoglycan structure of penicillin-resistant pneumococci. Proc Natl Acad Sci USA 87: 5415–5419

    PubMed  CAS  Google Scholar 

  • Ghuysen JM (1968) Use of bacteriolytic enzymes in determination of wall structure and their role in cell metabolism. Bacteriol Rev 32: 425–464

    PubMed  CAS  Google Scholar 

  • Ghuysen JM (1991) Serine beta-lactamases and penicillin-binding proteins. Annu Rev Microbiol 45: 37–67

    PubMed  CAS  Google Scholar 

  • Hackbarth CJ, Chambers HF (1989) Methicillin resistant staphylococci: detection methods and treatment of infections. Antimicrob Agents Chemother 33: 995–999

    PubMed  CAS  Google Scholar 

  • Hancock REW, Siehnel R, Martin N (1990) Outer membrane proteins of Pseudomonas. Mol Microbiol 4: 1069–1075

    PubMed  CAS  Google Scholar 

  • Hechler U, Van Den Weghe M, Martin HH, Frère JM (1989) Overproduced ß-lactamase and the outer membrane barrier as resistance factors in Serratia marcescens highly resistant to ß-lactamase stable ß-lactam antibiotics. J Gen Microbiol 135: 1275–1290

    PubMed  CAS  Google Scholar 

  • Hedge PJ, Spratt B (1985a) Amino acid substitutions that reduce the affinity of penicillin-binding protein 3 of E. coli for cephalexin. Eur J Biochem 151: 111–121

    PubMed  CAS  Google Scholar 

  • Hedge PJ, Spratt BG (1985b) Resistance to beta-lactam antibiotics by re-modelling the active site of an E. coli penicillin-binding protein. Nature 318: 478–480

    PubMed  CAS  Google Scholar 

  • Herzberg O (1991) Refined crystal structure of ß-lactamase from Staphylococcus aureus PC1 at 2.0 A resolution. J Mol Biol 217: 701–719

    PubMed  CAS  Google Scholar 

  • Jacob-Dubuisson F, Lamotte-Brasseur J, Dideberg O, Joris B, Frère JM (1991) Arginine 220 is a critical residue for the catalytic mechanism of the Streptomyces albus G ß-lactamase. Protein Eng 4: 811–819

    PubMed  CAS  Google Scholar 

  • Jacoby GA, Medeiros AA (1991) More extended-spectrum ß-lactamases. Antimicrob Agents Chemother 35: 1697–1704

    PubMed  CAS  Google Scholar 

  • Jamin M, Adam M, Damblon C, Christiaens L, Frère JM (1991) Accumulation of acyl-enzyme in DD-peptidase-catalysed reactions with analogues of peptide substrates. Biochem J 280: 499–506

    PubMed  CAS  Google Scholar 

  • Jamin M, Hakenbeck R, Frère JM (1993) Penicillin Binding Protein 2x as a major contributor to intrinsic ß-lactam resistance in Streptococcus pneumoniae. FEBS Letters 331: 101–104

    PubMed  CAS  Google Scholar 

  • Jarlier V, Nikaido H (1990) Permeability barrier to hydrophilic solutes in Mycobacterium chelonei. J Bacteriol 172: 1418–1423

    PubMed  CAS  Google Scholar 

  • Joris B, Ghuysen JM, Dive G, Renard A, Dideberg O, Charlier P, Frère JM, Kelly J, Boyington J, Moews P, Knox J (1988) The active-site-serine penicillin-recognizing enzymes as members of the Streptomyces R61 DD-peptidase family. Biochem J 250: 313–324

    PubMed  CAS  Google Scholar 

  • Joris B, Ledent P, Dideberg O, Fonzé E, Lamotte-Brasseur J, Kelly JA, Ghuysen JM, Frère JM (1991) Comparison of the sequences of class-A beta-lactamases and of the secondary structure elements of penicillin-recognizing proteins. Antimicrob Agents Chemother 35: 2294–2301

    PubMed  CAS  Google Scholar 

  • Kelly JA, Dideberg O, Charlier P, Wery J, Libert M, Moews P, Knox J, Duez C, Fraipont C, Joris B, Dusart J, Frère JM, Ghuysen JM (1986) On the origin of bacterial resistance to penicillin: comparison of a ß-lactamase and a penicillin target. Science 231: 1429–1431

    PubMed  CAS  Google Scholar 

  • Laible G, Spratt BG, Hakenbeck R (1991) Interspecies recombinational events during the evolution of altered PBP2x genes in penicillin-resistant clinical isolates of Streptococcus pneumoniae. Mol Microbiol 5: 1993–2002

    PubMed  CAS  Google Scholar 

  • Labia R, Morand A, Tiwari K, Sirot J, Sirot D, Petit A (1988) Interactions of new plasmid- mediated ß-lactamase with third-generation cephalosporins. Rev Infect Dis 10: 885–891

    PubMed  CAS  Google Scholar 

  • Laible G, Spratt BG, Hakenbeck R (1991) Interspecies recombinational events during the evolution of altered PBP2x genes in penicillin-resistant clinical isolates of Streptococcus pneumoniae. Mol Microbiol 5: 1993–2002

    PubMed  CAS  Google Scholar 

  • Ledent P, Raquet X, Joris B, Van Beeumen J, Frère JM (1993) A comparative study of class D ß-lactamases. Biochem J 292: 555–562

    PubMed  CAS  Google Scholar 

  • Lindberg F, Lindquist S, Normark S (1988) Genetic basis of induction and overproduction of chromosomal class I ß-lactamase in nonfastidious Gram-negative bacilli. Rev Infect Dis 10: 782–785

    PubMed  CAS  Google Scholar 

  • Malhotra KT, Nicholas RA (1992) Substitution of lysine 213 with arginine in penicillin-binding protein 5 of Escherichia coli abolishes D-alanine-carboxypeptidase activity without affecting penicillin binding. J Biol Chem 267: 11386–11391

    PubMed  CAS  Google Scholar 

  • Matagne A, Misselyn-Bauduin AM, Joris B, Erpicum T, Granier B, Frère JM (1990) The diversity of the catalytic properties of class A ß-lactamases. Biochem J 265: 131–146

    PubMed  CAS  Google Scholar 

  • Matagne A, Joris B, Van Beeumen J, Frère JM (1991) Ragged N-termini and other variants of class A ß-lactamases analysed by chromatofocusing. Biochem J 273: 503–510

    PubMed  CAS  Google Scholar 

  • Matagne A, Lamotte-Brasseur J, Frère JM (1993) Interactions between active-site serine ß-lactamases and so-called ß-lactamase-stable antibiotics. Eur J Biochem 217: 61–67

    PubMed  CAS  Google Scholar 

  • Matthews P, Tomasz A (1990) Insertional inactivation of the mec gene in a transposon mutant of a methicillin-resistant clinical isolate of Staphylococcus aureus. Antimicrob Agents Chemother 34: 1777–1779

    PubMed  CAS  Google Scholar 

  • Messer J, Reynolds PE (1992) Modified peptidoglycan precursors produced by glycopeptideresistant enterococci. FEMS Microbiol. Lett 94: 195–200

    Google Scholar 

  • Minnikin DE (1982) Lipids: complex lipids, their chemistry, biosynthesis and roles. In: Ratledge C, Standford J (eds) The biology of mycobacteria. Academic Press, London, pp 95–184

    Google Scholar 

  • Mirelman D (1979) The biosynthesis and assembly of cell wall peptidoglycan. In: Inouye M (ed) Bacterial outer membranes. Wiley, New York, pp 115–166

    Google Scholar 

  • Moellering J (1990) The enterococci: an enigma and a continuing therapeutic challenge. Eur J Clin Microbiol Infect Dis 9: 73–74

    PubMed  Google Scholar 

  • Munoz R, Dowson CG, Daniels M, Coffey TJ, Martin C, Hakenbeck R, Spratt BG (1992) Genetics of resistance to third generation cephalosporins in clinical isolates of Streptococcus pneumoniae. Mol Microbiol 6: 2461–2465

    PubMed  CAS  Google Scholar 

  • Nakagawa J, Tamaki S, Tomioka S, Matsuhashi M (1984) Functional biosynthesis of cell wall peptidoglycan by polymorphic bifunctional polypeptides. J Biol Chem 259: 13937–13946

    PubMed  CAS  Google Scholar 

  • Nikaido H (1989) Outer membrane barrier as a mechanism of antimicrobial resistance. Antimicrob Agents Chemother 33: 1831–1836

    PubMed  CAS  Google Scholar 

  • Nikaido H (1992) Porins and specific channels of bacterial outer membranes. Mol Microbiol 6: 435–442

    PubMed  CAS  Google Scholar 

  • Nikaido H, Normark S (1987) Sensitivity of Escherichia coli to various ß-lactams is determined by the interplay of outer membrane permeability and degradation by periplasmic ßlactamase: a quantitative predictive treatment. Mol Microbiol 1: 29–36

    PubMed  CAS  Google Scholar 

  • Oefner C, Darcy A, Daly JJ, Gubernator K, Charnas RL, Heinze I, Hubschwerlen C, Winkler FK (1990) Refined crystal structure of beta-lactamase from Citrobacter freundii indicates a mechanism for beta-lactam hydrolysis. Nature 343: 284–288

    PubMed  CAS  Google Scholar 

  • Payne DJ, Amyes SGB (1991) Transferable resistance to extended-spectrum ß-lactams: a major threat or a minor inconvenience? J Antimicrob Chemother 27: 255–261

    PubMed  CAS  Google Scholar 

  • Pratt RF (1992) ß-Lactamase: inhibition. In: Page MI (ed) The chemistry of ß-lactams. Chapman and Hall, Glasgow, pp 229–271

    Google Scholar 

  • Pratt RF, Govardhan CP (1984) ß-Lactamase-catalyzed hydrolysis of acyclic depsipeptides and acyl transfer to specific amino aicd acceptors. Proc Natl Acad Sci USA 81: 1302–1306

    PubMed  CAS  Google Scholar 

  • Rasmussen BA, Gluzman Y, Tally FP (1990) Cloning and sequencing of class A ß-lactamase gene (CCRA) from Bacteroides fragilis TAL3636. Antimicrob Agents Chemother 34: 1590–1592

    PubMed  CAS  Google Scholar 

  • Reynolds PE (1989) Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur J Clin Microbiol Infect Dis 8: 943–950

    PubMed  CAS  Google Scholar 

  • Samraoui B, Sutton B, Todd R, Artymiuk P, Waley SG, Phillips D (1986) Tertiary structure similarity between a class A ß-lactamase and a penicillin-sensitive D-alanyl-carboxypeptidase-transpeptidase. Nature 320: 378–380

    PubMed  CAS  Google Scholar 

  • Schockman GD, Barrett JF (1983) Structure, function and assembly of cell walls of Gram-positive bacteria. Annu Rev Microbiol 37: 501–527

    Google Scholar 

  • Sirot D, Sirot J, Labia R, Morand A, Courvalin P, Darfeuille-Michaud A, Perroux R, Cluzel R (1987) Transferable resistance to third-generation cephalosporins in clinical isolates of Klebsiella pneumoniae: identification of CTX-1, a novel ß-lactamase. J Antimicrob Chemother 20: 323–334

    PubMed  CAS  Google Scholar 

  • Sougakoff W, Goussard S, Gerbaud G, Courvalin P (1988) Plasmid-mediated resistance to third-generation cephalosporins caused by TEM-type penicillinase genes. Rev Infect Dis 10: 879–884

    PubMed  CAS  Google Scholar 

  • Sowek JA, Singer SB, Ohringer S, Malley MF, Dougherty TJ, Gougoutas JZ, Bush K (1991) Substitution of lysine at position 104 or 240 of TEM-1 pTZ18R ß-lactamase enhances the effect of serine-164 substitution on hydrolysis or affinity for cephalosporins and the monobactam aztreonam. Biochemistry 30: 3179–3188

    PubMed  CAS  Google Scholar 

  • Spratt BG (1975) Distinct penicillin-binding proteins involved in the division, elongation and shape of Escherichia coli K12. Proc Natl Acad Sci USA 72: 2999–3003

    PubMed  CAS  Google Scholar 

  • Spratt BG (1983) Penicillin-binding proteins and the future of beta-lactam antibiotics. J Gen Microbiol 129: 1247–1260

    PubMed  CAS  Google Scholar 

  • Spratt BG (1988) Hybrid penicillin-binding proteins in penicillin-resistant strains of Neisseria gonorrhoeae. Nature (Lond) 332: 173–176

    CAS  Google Scholar 

  • Spratt BG, Zhang QY, Jones DM, Hutchison A, Brannigan JA, Dowson CG (1989) Recruitment of a penicillin-binding protein gene from Neisseria flavescens during the emergence of penicillin resistance in Neisseria meningitidis. Proc Natl Acad Sci USA 86: 8988–8992

    PubMed  CAS  Google Scholar 

  • Spratt BG (1983) Penicillin-binding proteins and the future of beta-lactam antibiotics. J Gen Microbiol 129: 1247–1260

    PubMed  CAS  Google Scholar 

  • Spratt BG, Bowler LD, Zhang QY, Zhou J, Maynard-Smith J (1992) Role of interspecies transfer of chromosomal genes in the evolution of penicillin resistance in pathogenic and commensal Neisseria species. J Mol Evol 34: 115–125

    PubMed  CAS  Google Scholar 

  • Suzuki E, Hiramatsu K, Yokota T (1992) Survey of methicillin-resistant clinical strains of coagulase-negative staphylococci for mecA gene distribution. Antimicrob Agents Chemother 36: 429–434

    PubMed  CAS  Google Scholar 

  • Suzuki H, van Heijenoort Y, Tamura T, Mizoguchi J, Hirota Y, van Heijenoort J (1980) In vitro peptidoglycan polymerization catalysed by penicillin-binding protein lb of Escherichia coli. FEBS Lett 110: 245–249

    PubMed  CAS  Google Scholar 

  • Thompson JS, Malamy MH (1990) Sequencing the gene for imipenem-cefoxitin-hydrolysing enzyme (CfiA) from Bacteroides fragilis TAL2480 reveals strong similarity between CfiA and Bacillus cereus ß-lactamase II. J Bacteriol 172: 2584–2593

    PubMed  CAS  Google Scholar 

  • Thomson CJ, Amyes SGB (1992) TRC-1: emergence of a clavulanic acid-resistant TEM ß-lactamase in a clinical strain. FEMS Microbiol Lett 91: 113–118

    CAS  Google Scholar 

  • Tipper DJ, Strominger JL (1965) Mechanism of action of penicillins: a proposal based on the structural similarity to acyl-D-alanyl-D-alanine. Proc Natl Acad Sci USA 54: 1131–1141 Ubukata K, Yamashita N, Konno M (1985) Occurrence of ß-lactamase inducible penicillin-binding protein in methicillin-resistant staphylococci. Antimicrob Agents Chemother 27: 851–857

    Google Scholar 

  • Vedel G, Belaaouaj A, Gilly L, Labia R, Philippon A, Nevot P, Paul G (1992) Clinical isolates of Escherichia coli producing TRI ß-lactamases: novel TEM-enzymes conferring resistance to ß-lactamase inhibitors. J Antimicrob Chemother 30: 449–462

    PubMed  CAS  Google Scholar 

  • Waley SG (1987) An explicit model for bacterial resistance: application to beta-lactam antibiotics. Microbiol Sci 4: 143–146

    PubMed  CAS  Google Scholar 

  • Waley SG (1992) ß-Lactamase: mechanism of action. In: Page MI (ed) The chemistry of ß-lactams Chapman and Hall, Glasgow, pp 198–228

    Google Scholar 

  • Wientjes FB, Nanninga N (1991) On the role of the high molecular weight penicillin-binding proteins in the cell cycle of Escherichia coli. Res Microbiol. 142: 333–344

    PubMed  CAS  Google Scholar 

  • Wilkin JM, Jamin M, Joris B, Frère JM (1993) The mechanism of action of DD-peptidases. The role of asparagine 161 in the Streptomyces R61 DD-peptidase. Biochem J 293: 195–201

    PubMed  CAS  Google Scholar 

  • Williams DH, Butcher DW (1981) Binding site of the antibiotic vancomycin for a cell-wall peptide analogue. J Am Chem Soc 103: 5697–5700

    CAS  Google Scholar 

  • Yocum RR, Amanuma H, O’Brien TA, Waxman DJ, Strominger JL (1982) Penicillin is an active site inhibitor for four genera of bacteria. J Bacteriol 149: 1150–1153

    PubMed  CAS  Google Scholar 

  • Zafaralla G, Mobashery S (1992) Facilitation of the 42—A1 pyrroline tautomerization of carbapenem antibiotics by the highly conserved arginine-244 of class A ß-lactamases during the course of turnover. J Am Chem Soc 114: 1505–1506

    CAS  Google Scholar 

  • Zafaralla G, Manavathu EK, Lerner SA, Mobashery S (1992) Elucidation of the role of arginine-244 in the turnover processes of class A ß-lactamases. Biochemistry 31: 3847–3852

    PubMed  CAS  Google Scholar 

  • Zimmermann W, Rosselet A (1977) Function of the outer membrane of Escherichia coli as a permeability barrier to beta-lactam antibiotics. Antimicrob Agents Chemother 12: 368–372

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Coyette, J., Nguyen-Distèche, M., Lamotte-Brasseur, J., Joris, B., Fonzé, E., Frère, JM. (1994). Molecular Adaptations in Resistance to Penicillins and Other β-Lactam Antibiotics. In: Advances in Comparative and Environmental Physiology. Advances in Comparative and Environmental Physiology, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78598-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78598-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78600-6

  • Online ISBN: 978-3-642-78598-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics