Skip to main content

Too Much of a Good Thing? Long-Term Exposure to Elevated CO2 Decreases Carboxylating and Photorespiratory Enzymes and Increases Respiratory Enzyme Activity in Spruce

  • Conference paper
Interacting Stresses on Plants in a Changing Climate

Part of the book series: NATO ASI Series ((ASII,volume 16))

Abstract

The long-term effects of an enriched CO2 atmosphere on the primary carbon metabolism of four year old spruce trees (Picea abies L. Karst) were examined. Six key enzymes were studied in one year old needles of trees exposed for two years in open-top chambers to three CO2 levels (350, 480 and 570 ppmv). The specific activity and quantity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO, EC 4.1.1.39) and the specific activities of the photorespiratory enzymes, glycolate oxidase (EC 1.1.3.15) and hydroxypyruvate reductase (HPR, EC 1.1.1.29) showed significant decreases in the CO2-enriched atmospheres. In contrast, a net increase was found for the specific activities of the mitochondrial enzymes, NAD-malic enzyme (NAD-ME, EC 1.1.1.39) and especially fumarase (EC 4.2.1.2). The carboxylating enzyme, phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31), showed a marked decrease in activity. These results clearly demonstrate increases in the activities of enzymes linked to the respiratory process and decreases in CO2-fixing enzymes as a result of long-term exposure to less than double the present ambient level of CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amthor JS (1991) Respiration in a future, higher-CO2 world. Plant, Cell and Environment 14: 13–20

    Article  CAS  Google Scholar 

  • Arp WP (1991) Effects of source-sink relations on photosynthetic acclimation to elevated CO2. Plant, Cell and Environment 14: 869–875

    Article  CAS  Google Scholar 

  • Bazzaz FA, Fajer ED (1992) Plant life in a CO2-rich World. Scientific American 266: 68–74

    Article  CAS  Google Scholar 

  • Besford RT, Ludwig LJ, Withers AC (1990) The greenhouse effect: Acclimation of tomato plants growing in high CO2, photosynthesis and ribulose-1,5-bisphosphate carboxylase protein. Journal of Experimental Botany 41: 925–931

    Article  CAS  Google Scholar 

  • Besford RT, Withers AC, Ludwig LJ (1984) Ribulose bisphosphate carboxylase and net CO2 fixation in tomato leaves. In: Advances in photosynthetic research III. Martinus Nijhof/Dr W Junk, The Hague, pp 479–482

    Google Scholar 

  • Cave G, Tolley LC, Strain BR (1981) Effects of carbon dioxide enrichment on chlorophyll content, starch and starch grain structure in Trifolium subterraneum leaves. Physiologia Plantarum 51: 171–174

    Article  CAS  Google Scholar 

  • Clough JM, Peet MM, Kramer PJ (1981) Effects of high atmospheric CO2 and sink size on rates of photosynthesis of a soybean cultivar. Plant Physiology 67: 1007–1010

    Article  PubMed  CAS  Google Scholar 

  • Conroy JP, Milham PJ, Reed ML, Barlow EW (1990) Increases in phosphorus requirements for CO2-enriched pine species. Plant Physiology 92: 977–982

    Article  PubMed  CAS  Google Scholar 

  • Delucia EH, Sasek TW, Strain BR (1985) Photosynthetic inhibition after long-term exposure to elevated levels of atmospheric carbon dioxide. Photosynthesis Research 7: 175–184

    Article  CAS  Google Scholar 

  • Douce R (1985) Mitochondria in higher plants. Academic Press, New York

    Google Scholar 

  • Houpis JLJ, Surano KA, Cowles S, Shinn JH (1988) Chlorophyll and carotenoid concentrations in two varieties of Pinus ponderosa seedlings subjected to long-term elevated carbon dioxide. Tree Physiology 4: 187–193

    PubMed  CAS  Google Scholar 

  • Kramer PJ (1981) Carbon dioxide concentration, photosynthesis, and dry matter production. Bioscience 31: 29–33

    Article  CAS  Google Scholar 

  • Laitat E, Impens R, Van Oosten JJ (1991) Chambres de culture à ciel ouvert et simulation sur un écosystème forestier des teneurs élevée en CO2 atmosphérique. Bulletin de Recherche Agronomique Gembloux 26: 21–37

    Google Scholar 

  • Lambers H (1985) Respiration in intact plants and tissues: its regulation and dependence on environmental factors, metabolism and invaded organisms. In: Douce R, Day DA (eds) Higher plant cell respiration. Springer-Verlag, Berlin, pp 418–465

    Google Scholar 

  • Lance C, Chauveau M, Dizengremel P (1985) The cyanide-resistant pathway of plant mitochondria. In: Douce R, Day DA (eds) Encyclopedia of plant physiology, Vol. 18. Springer-Verlag, Berlin, pp 202–247

    Google Scholar 

  • Leegood RC, Walker DA, Foyer C (1985) Regulation of the Benson-Calvin cycle. In: Barber J, Baker NR (eds) Photosynthetic mechanism and the environment. Elsevier, New York, USA, pp 191–258

    Google Scholar 

  • Lilley RC, Portis AR (1990) Activation of ribulose-l,5-bisphosphate carboxylase/oxygenase (Rubisco) by Rubisco Activase. Effects of some sugar phosphates. Plant Physiology 94: 245–250

    Article  PubMed  CAS  Google Scholar 

  • O’Neill EG, Luxmoore RJ, Norby RJ (1987) Increases in mycorrhizal colonization and seedling growth in Pinus echinata and Quercus alba in an enriched CO2 atmosphere. Canadian Journal of Forest Research 17: 878–883

    Article  Google Scholar 

  • Peet MM, Huber SC, Patterson DT (1986) Acclimation to CO2 in cucumbers. Plant Physiology 80: 63–67

    Article  PubMed  CAS  Google Scholar 

  • Reekie EG, Bazzaz FA (1989) Competition and patterns of resource use among seedlings of five tropical trees at ambient and elevated CO2. Oecologia 79: 212–222

    Article  Google Scholar 

  • Sasek TW, Delucia EH, Strain BR (1985) Reversibility of photosynthetic inhibition in cotton after long-term exposure to elevated CO2 concentrations. Plant Physiology 78: 619–622

    Article  PubMed  CAS  Google Scholar 

  • Sheen J (1990) Metabolic repression of transcription in higher plants. Plant Cell 2: 1027–1038

    Article  PubMed  CAS  Google Scholar 

  • Stitt M (1991) Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells. Plant, Cell and Environment 14: 741–762

    Article  CAS  Google Scholar 

  • Stitt M, von Schaewen A, Willmitzer l (1990) ‘Sink’ regulation of photosynthetic metabolism in transgenic tobacco plants expressing yeast invertase in their cell wall involves a decrease of the Calvin-cycle enzymes and an increase of glycolytic enzymes. Planta 183: 40–50

    Google Scholar 

  • Tolley LC, Strain BR (1984) Effects of CO2 enrichment on growth of Liquidambar styraciflua and Pinus taeda seedlings under different irradiance levels. Canadian Journal of Forest Research 14: 343–350

    Article  Google Scholar 

  • Van Oosten J-J (1992a) Apercu de la regulation du metabolisme primaire du carbone chez les vegetaux superieurs de type C3. Annales de Gembloux 98: 63–78

    Google Scholar 

  • Van Oosten J-J (1992b) Could a higher phosphorus fertilization be required for the plants growing in a CO2 enriched atmosphere? Proceedings 4th IMPHOS. Louvain-la Neuve, Belgium (in press)

    Google Scholar 

  • Van Oosten J-J, Afif D, Dizengremel P (1992a) Long-term effects of a CO2 enriched atmosphere on enzymes of the primary carbon metabolism of spruce trees. Plant Physiology and Biochemistry 30: 541–547

    Google Scholar 

  • Van Oosten J-J, Laitat E, Dizengremel P, Gerant D (1992b) The effects of CO2 enrichment on the biochemistry of photosynthesis and photorespiration of spruce trees cultivated in open-top chambers. In: Teller A, Mathy P, Jeffers JNR (eds) Responses of forest ecosystems to environmental changes. Elsevier, London New York, pp 655–656

    Google Scholar 

  • Yelle S, Beeson RC Jr, Trudel M, Gosselin A (1989) Acclimation of two tomato species to high atmospheric CO2. II. Ribulose-l,5-bisphosphate carboxylase/oxygenase and phosphoenolpyruvate carboxylase. Plant Physiology 90: 1473–1477

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van Oosten, JJ., Dizengremel, P., Laitat, E., Impens, R. (1993). Too Much of a Good Thing? Long-Term Exposure to Elevated CO2 Decreases Carboxylating and Photorespiratory Enzymes and Increases Respiratory Enzyme Activity in Spruce. In: Jackson, M.B., Black, C.R. (eds) Interacting Stresses on Plants in a Changing Climate. NATO ASI Series, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78533-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78533-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78535-1

  • Online ISBN: 978-3-642-78533-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics