Skip to main content

Minimal Replicator Theory I: Parabolic Versus Exponential Growth

  • Chapter
Bioorganic Chemistry Frontiers

Part of the book series: Bioorganic Chemistry Frontiers ((BIOORGANIC,volume 3))

Abstract

The paper describes an analytical treatment of artificial self-replicating systems. All artificial self-replicating systems known today are minimal replicators in the sense that their kinetic behavior can be rationalized by a common, minimal reaction model which is outlined in the introduction. In the second section, empirical rate equations are introduced which have proven useful for the evaluation of experimental concentration-time profiles. The third section begins with an discussion of reaction models which have been described earlier to explain the autocatalytic synthesis of self-replicating template molecules. It is followed by an analytical treatment of the minimal reaction model: A + B + CABCC 2;⇌ 2C, where C is a self-complementary template molecule, A and B its precursor molecules, ABC a termolecular complex, and C 2 a template duplex. It is assumed that the irreversible formation of C 2 from ABC is the rate limiting step and that the total template concentration is small as compared to its precursors. The analytical expressions derived allow us to estimate the rate and autocatalytic reaction order for synthetic self-replicating systems from the elementary rate and equilibria constants involved. Three limit growth laws for minimal self-replicating systems—termed as parabolic, weak exponential, and strong exponential—can be distinguished. The following section deals with the influence of temperature. Strong exponential growth is to be expected for low temperatures, whereas weak exponential growth should occur at high temperatures. Parabolic growth is expected for average temperatures. Depending on the activation energy of the irreversible step as well as on the enthalpies of the formation of ABC and C 2, the maximum of the autocatalytic rate occurs either at the temperature of the transition from strong exponential to parabolic growth, or, at the temperature of transition from parabolic to weak exponential growth, or, at an average temperature. The analytical results from the treatment of the above minimal reaction model are then compared to results from more realistic models. In particular, it is shown that the formation of a complex AB from A and B makes it difficult to observe strong exponential growth which otherwise might be found at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. von Kiedrowski G, Helbing J, Wlotzka B, Jordan S, Matzen M, Achilles T, Sievers D, Terfort A, Kahrs BC (1992) Nachr Chem Tech Lab 40:578

    Article  Google Scholar 

  2. von Kiedrowski G (1990) In: 40 Jahre Fonds der Chemischen Industrie 1950-1990. Verband der Chemischen Industrie, Frankfurt, p 197

    Google Scholar 

  3. von Kiedrowski G (1992) Chemie heute 1992/1993:66

    Google Scholar 

  4. Orgel LE (1992) Nature 358:203

    Article  CAS  Google Scholar 

  5. Joyce GF (1987) In: Cold Spring Harbor Symp Quant Biol, Cold Spring Harbor Press, New York, vol 7, p 41

    Google Scholar 

  6. Hoffmann S (1992) Angew Chem 104:1032; Angew Chem Int Ed Engl 31:1013

    Article  CAS  Google Scholar 

  7. Famulok M, Nowick JS, Rebek J (1992) Acta Chem Scand 46:315

    Article  CAS  Google Scholar 

  8. Rebek J (1992) Chem Ind 1992:171

    Google Scholar 

  9. Eigen M, Schuster P (1979) The hypercycle, Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  10. Hoffmann S (1978) Molekulare Matrizen, Akademie-Verlag, Berlin, vol I: Evolution, vol II: Proteine, vol III: Nucleinsäuren, vol. IV: Membrane

    Google Scholar 

  11. The term informational self-replication was recently introduced [4] in order to distinguish autocatalytic template syntheses from other forms of autocatalytic reactions which were reported as self-replicating systems: Bachmann PA, Luisi PL, Lang J (1992) Nature 357

    Article  CAS  Google Scholar 

  12. Lehn JM (1988) Angew Chem 100:91; Angew Chem Int Ed Engl 27:89

    Article  CAS  Google Scholar 

  13. Whitesides GM (1990) Angew Chem 102:1247; Angew Chem Int Ed Engl 29:1209

    Article  Google Scholar 

  14. Lindsey JS (1991) New J Chem 15:153

    CAS  Google Scholar 

  15. Schramm G, Grötsch H, Pollmann W (1962) Angew Chem 74:53; Angew Chem Int Ed Engl 1:1

    Article  CAS  Google Scholar 

  16. Orgel LE, Lohrmann R (1974) Ace. Chem. Res. 7:368

    Article  CAS  Google Scholar 

  17. Woese CR (1967) The origins of the genetic code. Harper and Row, New York

    Google Scholar 

  18. Crick F (1968) J Mol Biol 38:367

    Article  CAS  Google Scholar 

  19. Orgel LE (1968) J Mol Biol 38:381

    Article  CAS  Google Scholar 

  20. Kuhn H (1981) Angew. Chem. 93:495

    Article  CAS  Google Scholar 

  21. Joyce GF (1989) Nature 338:217

    Article  CAS  Google Scholar 

  22. Pace NR, Marsh TL (1985) Origins of Life 16:97

    Article  CAS  Google Scholar 

  23. Szostak J (1988) In: Benner S (ed) Redesigning the molecules of life. Springer, Berlin Heidelberg New York, p 87

    Chapter  Google Scholar 

  24. Watson JD, Hopkins NH, Roberts JW, Steitz JA, Weiner AM (1987) Molecular biology of the gene, Benjamin Cummings, Menlo Park, p 1097

    Google Scholar 

  25. Benner SA, Ellington AD (1990) In: Dugas H (ed) Bioorganic chemistry frontiers, Springer, Berlin, Heidelberg New York, Vol 1, p 1

    Google Scholar 

  26. Eschenmoser A (1991) Nachr Chem Tech Lab 39:795

    Article  CAS  Google Scholar 

  27. Kellogg RM, Visser CM (1988) In: Benner S (ed) Redesigning the molecules of life, Springer, Berlin Heidelberg New York, p 1

    Chapter  Google Scholar 

  28. Cech TR (1990) Angew Chem 102:745; Angew Chem Int Ed Engl 29:716

    Article  CAS  Google Scholar 

  29. Altman S (1990) Angew Chem 102:735; Angew Chem Int Ed Engl 29:707

    Article  CAS  Google Scholar 

  30. Doudna JA, Szostak JW (1989) Nature 339:519

    Article  CAS  Google Scholar 

  31. Doudna JA, Conture J, Szostak JW (1991) Science 251:1605

    Article  CAS  Google Scholar 

  32. von Kiedrowski G (1986) Angew Chem 93:932; Angew Chem Int Ed Engl 25:932

    Article  Google Scholar 

  33. Zielinski WS, Orgel LE (1987) Nature 327:364

    Article  Google Scholar 

  34. von Kiedrowski G, Wlotzka B, Helbing J (1989) Angew Chem 101:1249; Angew Chem Int Ed Engl 28:1235

    Article  Google Scholar 

  35. Tjivikua T, Ballister P, Rebek J (1990) J Am Chem Soc 112:1249

    Article  CAS  Google Scholar 

  36. von Kiedrowski G, Wlotzka B, Helbing J, Matzen M, Jordan S (1991) Angew Chem 103:456, 1066; Angew Chem Int Ed Engl 30:423, 892

    Article  Google Scholar 

  37. Rotello V, Hong JI, Rebek J (1991) J Am Chem Soc 113:9422

    Article  CAS  Google Scholar 

  38. Hong JI, Feng Q, Rotello V, Rebek J (1992) Science 255:848

    Article  CAS  Google Scholar 

  39. Terfort A, von Kiedrowski G (1992) Angew Chem 104:626; Angew Chem Int Ed Engl 31:654 39a.

    Article  CAS  Google Scholar 

  40. Park TK, Feng Q, Rebek J (1992) J Am Chem Soc 104:4529

    Article  Google Scholar 

  41. Data analysis has been carried using a computer program written for this purpose. A typical input data set consists of the experimental concentration-time profiles of A, B, and C from four experiments differing in the initial concentrations of C. Initial guesses for the apparent rate constants ka, kb, and if necessary kc have to be provided as numerical parameters. The program performs numerical integrations of equation (2) to calculate the theoretical concentrations for the data set. A nonlinear least-square approximation procedure based on the Newton-Raphson algorithm gives the optimized parameters, whose standard errors and covariances are determined consequently.

    Google Scholar 

  42. Póta G, Bazsa G (1988) J Chem Soc, Faraday Trans I 84(1):215

    Article  Google Scholar 

  43. Nowick JS, Feng Q, Tjivikua T, Ballester P, Rebek J (1991) J Am Chem Soc 113:8831

    Article  CAS  Google Scholar 

  44. von Kiedrowski G, unpublished results

    Google Scholar 

  45. Gear CW (1971) Numerical initial value problems in ordinary differential equations, Prentice Hall, New Jersey

    Google Scholar 

  46. Wu T, Orgel LE (1992) J Am Chem Soc 114:317, 7963

    Article  CAS  Google Scholar 

  47. Freier SM, Sinclair A, Neilson T, Turner DH (1985) J Mol Biol 185:645

    Article  CAS  Google Scholar 

  48. Freier SM, Albergo DD, Turner DH (1983) Biopolymers 22:1107

    Article  CAS  Google Scholar 

  49. Wlotzka B (1992) Dissertation, University of Göttingen

    Google Scholar 

  50. Breslauer KH (1988) In: Hinz HJ (ed) Thermodynamic data for biochemistry and biotechnology, Springer, Berlin Heidelberg New York

    Google Scholar 

  51. Breslauer KH, Frank R, Blöcker H, Marky LA (1986) Proc Natl Acad Sci USA 83:3746

    Article  CAS  Google Scholar 

  52. Pörschke D, Uhlenbeck OC, Martin FH (1973) Biopolymers 12:1313

    Article  Google Scholar 

  53. Szathmáry E, Gladkih I (1989) J theor Biol 138:55

    Article  Google Scholar 

  54. Szathmáry E (1989) Oxf Surv Evol Biol 6:169

    Google Scholar 

  55. Szathmáry E (1991) Trends Ecol Evol 6, 366

    Article  Google Scholar 

  56. Goodwin JT, Lynn DG (1992) J Am Chem Soc 114:9197

    Article  CAS  Google Scholar 

  57. Persico F, Wuest JD (1993) J Org Chem 58:95

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

von Kiedrowski, G. (1993). Minimal Replicator Theory I: Parabolic Versus Exponential Growth. In: Dugas, H., Schmidtchen, F.P. (eds) Bioorganic Chemistry Frontiers. Bioorganic Chemistry Frontiers, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78110-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78110-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78112-4

  • Online ISBN: 978-3-642-78110-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics