Skip to main content

The Solved and Unsolved Problems of Hydrocephalus Valves: A Critical Comment

  • Conference paper
Intracerebral Hemorrhage Hydrocephalus malresorptivus Peripheral Nerves

Part of the book series: Advances in Neurosurgery ((NEURO,volume 21))

Abstract

Four goals should be aimed at with an artificial shunt: (1) The intraventricular pressure must be kept within physiological ranges, especially during intracranial pressure (ICP) crises, independent of the body position, coughing, crying of children, external pressure, and flexion and torsion of valve or shunt components. (2) In venous shunting, reflux must be strictly excluded. For peritoneal shunting this aim seems less obligatory. (3) Ideally, a shunt system should offer the possibility of reestablishing shunt independency step by step, or a very close approximation to this. (4) Design, material, and surface of a life-long implant should produce optimum biocompatibility, stability, and durability: In 25 years, a valve must potentially resist a billion opening and closing maneuvers, caused by cardiac actions and breathing. When a valve is pumped, pressure peaks of up to 2000 mmHg, a maximum flow of 2000 ml/h, and a suction before the valve of −330 mmHg occur. Shunts are surrounded by a chemically aggressive milieu and threatened by protein, calcium precipitations, and detritus around the clock.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe H, Chiba Y, Tokoro K (1991) Effect of anti-siphon device in shunting procedure: Intraventricular pressure during posture changes. In: Matsumoto S, Tamaki N (eds) Hydrocephalus. Pathogenesis and treatment. Springer, Berlin Heidelberg New York, pp 391–398

    Google Scholar 

  2. American Society for Testing and Materials (1989) Standard practice for evaluating and specifying implantable shunt assemblies for neurosurgical application. Designation F 647–679

    Google Scholar 

  3. Aschoff A, Osterloh M, Kunze S (1990) Longtime-tests of 30 hydrocephalus-valves. 18th annual scientific meeting of the International Society for Pédiatric Neurosurgery, Paris, 17-19.9.1990. Childs Nerv Syst 6:282

    Google Scholar 

  4. Aschoff A, Osterloh M, Benesch C, Von Haken M, Kremer P, Kunze St (1990) Criteria and methods for testing of hydrocephalus-valves and anti-siphon-devices. Results of 102 tested exemplares. Joint Meeting of the Deutsche und Griechische Gesellschaft für Neurochirurgie, Athens, 14.-17.10.1990

    Google Scholar 

  5. Aschoff A, Kremer P, Benesch C, Klank A, Kunze S (1991) Shunt-technology and overdrainage. A critical review of hydrostatic, programmable and variable-resistance-valves and flow-reducing devices. Eur J Pediatr Surg 1 (Suppl I):49–50

    Article  PubMed  Google Scholar 

  6. Benesch C, Aschoff A (1992) Hydrocephalus treatment with the programmable Medos-Hakim valve — laboratory testing and clinical experiences with 70 implantations. Meeting of the Society for Research into Hydrocephalus and Spina Bifida, Mainz, 15-18.7.1992

    Google Scholar 

  7. Castillo M, Hudgins PA, Malko JA, Burrow BK, Hoffinann JC (1991) Flow-sensitive MR imaging of ventriculoperitoneal shunts: In vitro findings, clinical applications, and pitfalls. AJNR 12:667–674

    PubMed  CAS  Google Scholar 

  8. Chapman PH, Cosman ER, Arnold MA (1990) The relationship between ventricular fluid pressure and body position in normal subjects and subjects with shunt: a telemetric study. Neurosurgery 26:181–189

    Article  PubMed  CAS  Google Scholar 

  9. Chervu S, Chervu LR, Vallabhajosyula B, Milstein DM, Shapiro KM, Shulman K, Blau-fox MD (1984) Quantitave evaluation of cerebrospinal fluid shunt flow. J Nucl Med 25:91–95

    PubMed  CAS  Google Scholar 

  10. Chiba Y, Yuda K (1980) Thermosensitive determination of CSF shunt patency with a pair of small disc thermistors. J Neurosurg 52:700–704

    Article  PubMed  CAS  Google Scholar 

  11. Chiba Y, Tokoro K, Abe H (1991) Importance of anti-siphon devices in shunt therapy of pédiatric and adolescent hydrocephalus In: Matsumoto S, Tamaki N (eds) Hydrocephalus. Pathogenesis and treatment. Springer, Berlin Heidelberg New York, pp 375–382

    Google Scholar 

  12. Cinalli G, Sainte-Rose C, Pierre-Kahn A, Renier D, Hoppe-Hirsch E, Hirsch JF (1992) Analysis of a pédiatric series of 523 hydrocéphalie patients treated with a CSF flow regulating device. In: Hydrocephalus 92 — consensus conference on pediatrie neurosurgery, Assisi, 1992 (abstract p 66). Editrice C.S.H., Milan

    Google Scholar 

  13. Da Silva MC, Drake JM (1992) The effect of subcutaneous implantation on anti-siphon device function. Clinical and experimental results. In: Hydrocephalus 92 — consensus conference on pediatrie neurosurgery, Assisi, 1992 (abstract p 99). Editrice C.S.H., Milan

    Google Scholar 

  14. Dautheribes M, Liguoro D, San Galli F, Kerdiles C, Guerin J (1992) Programmable shunting in various hydrocephalus: a series of 28 cases. In: Hydrocephalus 92 — consensus conference on pédiatrie neurosurgery, Assisi, 1992 (abstract p 95). Editrice C.S.H., Milan

    Google Scholar 

  15. Dietrich U, Lumenta C, Sprick C, Majewski B (1987) Subdural hematoma in a case of hydrocephalus and macrocrania. Experience with a pressure-adjustable valve. Childs Nerv System 3:242–246

    Article  CAS  Google Scholar 

  16. Ekstedt J, Friden H (1980) Hydrodynamic properties of CSF shunt systems. In: Shulmann K, Marmarou A, Miller JD, Becker DP, Hochwald GM, Brock M (eds) Intracranial pressure IV. Springer, Berlin Heidelberg New York, pp 483–485

    Chapter  Google Scholar 

  17. Faulhaber K, Schmitz P (1978) Overdrainage phenomena in shunt treated hydrocephalus. Acta Neurochirurg 45:89–101

    Article  Google Scholar 

  18. Foltz EL, Blanks JP (1988) Symptomatic low intracranial pressure in shunted hydrocephalus. J Neurosurg 68:401–408

    Article  PubMed  CAS  Google Scholar 

  19. Fox JD, McCullough DC, Green RC (1973) Effect of cerebrospinal fluid shunts on intracranial pressure and on cerebrospinal fluid dynamics. 2. A new technique of pressure measurements: results and concepts. 3. A concept of hydrocephalus. J Neurol Neurosurg Psychiatr 36:302–312

    Article  PubMed  CAS  Google Scholar 

  20. Fox JD, Portnoy HD, Shulte R (1973) Cerebrospinal fluid shunts: an experimental evaluation of flow rates and pressure values in the anti-siphon valve. Surg Neurol 1:299–302

    PubMed  CAS  Google Scholar 

  21. Genitori L, Lena G, Erdincler P, Tavares de Lima F, Achouri M, Choux M (1992) Mechanical and functional complications in shunts. A series of 1244 children and 2845 operations. In: Hydrocephalus 92 — consensus conference on pédiatrie neurosurgery, Assisi, 1992 (abstract p 63). Editrice C.S.H., Milan

    Google Scholar 

  22. Gruber R, Jenny P, Herzog B (1984) Experiences with the antisiphon-device (ASD) in shunt therapy of pédiatrie hydrocephalus. J Neurosurg 61:156–162

    Article  PubMed  CAS  Google Scholar 

  23. Hakim S, Duran de la Roche F, Burton JD (1973) A critical analysis of valve shunts used in the treatment of hydrocephalus. Dev Med Child Neurol 15:230–255

    Article  PubMed  CAS  Google Scholar 

  24. Hakim S (1973) Hydraulic and mechanical miss-matching of valve shunts used in the treatment of hydrocephalus: the need for a servo-valve shunt. Dev Med Child Neurol 15:646–653

    Article  PubMed  CAS  Google Scholar 

  25. Hara M, Kadowsk C, Konishi Y (1983) A new method for measuring CSF flow in shunts. J Neurosurg 58:557–561

    Article  PubMed  CAS  Google Scholar 

  26. Hashimoto T, Nakamura N, Kanki T, Shimazu H, Yamakoshi K, Gondoh M, Tamai T (1991) A new shunt system with non-invasive flow rate regulation and pressure measurement. In: Matsumoto S, Tamaki N, (eds) Hydrocephalus. Pathogenesis and treatment. Springer, Berlin Heidelberg New York, pp 422–431

    Google Scholar 

  27. Horton DD, Williams G, Pollay M (1991) The effectiveness of a siphon control device in preventing the complications of overshunting. In: Matsumoto S, Tamaki N (eds) Hydrocephalus. Pathogenesis and treatment. Springer, Berlin Heidelberg New York, pp 370–374

    Google Scholar 

  28. Jaskoska E, MacKinnon AE (1988) Experience with antisiphon devices: successes and complications. Z Kinderchir 43:22–23

    Google Scholar 

  29. Jones RFC, Teo C, Curri B, BCT Kwok, VV Nayanar (1991) The antisiphon device: its value in preventing excessive drainage. In: Matsumoto S, Tamaki N (eds) Hydrocephalus. Pathogenesis and treatment. Springer, Berlin Heidelberg New York, pp 383–390

    Google Scholar 

  30. Kadowaki C, Hara M, Numoto M, Takekeuchi K (1986) Factors affecting cerebospinal fluid flow in a shunt. Br J Neurosurg 1:467–475

    Article  Google Scholar 

  31. Kadowaki C, Hara M, Numoto M, Takekeuchi K (1989) CSF hydrodynamics and CSF flow through a shunt in hydrocephalus. Hoff JT, Betz AL (eds) Intracranial pressure 7. Springer, Berlin Heidelberg New York

    Google Scholar 

  32. Keith HD, Watts C (1983) Testing of cerebrospinal fluid shunt systems under dynamic flow conditions. Med Instrum 17:297–302

    PubMed  CAS  Google Scholar 

  33. Keith HD, Avula X, Schelich C, Watts C (1981) Investigation of cerebrospinal fluid valves. Final report, Phase II. USPH FDA 223-79-5064, University of Missouri, August 1, 1981

    Google Scholar 

  34. Kremer P, Aschoff A, Kunze S (1991) Therapeutical risks of anti-siphon-devices. Eur J Pediatr Surg 1(Suppl I):47–48

    PubMed  Google Scholar 

  35. Lakke JPWF, Go KG (1968) A simple method to determine patency of ventriculo-atrial shunts in children with hydrocephalus. Neurochirurgia 11:210–216

    PubMed  CAS  Google Scholar 

  36. Lumenta CB, N Roosen, Dietrich U (1990) Clinical experience with a pressure-adjustable valve SOPHY in the management of hydrocephalus. Childs Nerv Syst 6:1–6

    Article  Google Scholar 

  37. Maitrot D, Valéry CA, Boyer P, Kehrli P, Buchheit F (1991) Sophy shunts in the treatment of 130 patients. In: Matsumoto S, Tamaki N (eds) Hydrocephalus. Pathogenesis and treatment. Springer, Berlin Heidelberg New York, pp 399–404

    Google Scholar 

  38. Matsumae M, Murakami T, Ueda M, Suzuki Y (1987) Dynamic changes of cerebrospinal fluid shunt in patient’s daily life. Shoni no Noshinkei 3:30–34

    CAS  Google Scholar 

  39. Matsumae M, Sat O, Itoh K, Fukuda T, Suzuki Y (1989) Quantification of cerebrospinal fluid shunt flow rates. Assessment of the programmable pressure valve. Childs Nerv Syst 5:356–360

    Article  PubMed  CAS  Google Scholar 

  40. Martin AJ, Drake LM, Lemaire C, Henkelman RM (1989) Cerebrospinal fluid shunts: MR measurement of CSF shunt flow. Radiology 173:243–247

    PubMed  CAS  Google Scholar 

  41. McCullough DC (1982) Complications with antisiphon devices in hydrocephalics with ventriculoperitoneal shunts. In: Concepts in paediatric neurosurgery II. Karger Basel pp 63–74

    Google Scholar 

  42. McCullough DC (1986) Symptomatic progressive ventriculomegaly in hydrocephalus with patent shunt and anti-siphon devices. Neurosurgery 4:617–621

    Article  Google Scholar 

  43. Oi S, Matsumoto S (1987) Infantile hydrocephalus and the slit ventricle syndrome in early infancy. Child’s Nerv Syst 3:145–150

    Article  CAS  Google Scholar 

  44. Portnoy HD, Schulte RR, Fox JL (1973) Antisiphon and reversible occlusion valves for shunting in hydrocephalus and preventing post-shunt subdural hematomas. J Neurosurg 38:729–738

    Article  PubMed  CAS  Google Scholar 

  45. Pudenz RH, Foltz L (1991) Hydrocephalus: overdrainage by ventricular shunts. A review and recommendations. Surg Neurol 35:200–212

    Article  PubMed  CAS  Google Scholar 

  46. Rayport M, Reiss J (1969) Hydrodynamic properties of certain shunt assemblies for the treatment of hydrocephalus. Part 2: Pressure flow characteristics of the Spitz-Holter, Pudenz-Heyer, and Cordis-Hakim shunt systems. J Neurosurg 30:463–467

    Google Scholar 

  47. Richard KE, Block FR, Ackermann CW, Britten E, Steinberg J, Weber M (1989) Untersuchung des Regelverhaltens von Shuntsystemen zur operativen Behandlung des Hydrocephalus. Abschlußbericht zum Forschungsvorhaben RI328/3-2 der DFG

    Google Scholar 

  48. Sainte-Rose C, Hooven MD, Hirsch JF (1987) A new approach in the treatment of hydrocephalus. J Neurosurg 66:213–226

    Article  PubMed  CAS  Google Scholar 

  49. Savader SJ, Savader BL, Murtagh FR, Clarke LP, Silbinger ML (1988) MR evaluation of flow in a ventricular shunt phantom with in vivo correlation. J Comp Ass Tomogr 12:765–769

    Article  CAS  Google Scholar 

  50. Schmitt J, Spring A (1990) Die Therapie des Normaldruckhydrocephalus mit dem transcutan magnetisch verstellbaren Ventil. Neurochirurgia 33(Suppl I):23–26

    PubMed  Google Scholar 

  51. Schoener WF, Verheggen R, Reparon C, Markakis E (1991) Evaluation of shunt failures by compliance analysis and inspection of shunt valves and shunt materials, using microscopic or scanning electron microscopic techniques. In: Matsumoto S, Tamaki N (eds) Hydrocephalus. Pathogenesis and treatment. Springer, Berlin Heidelberg New York, pp 452–472

    Google Scholar 

  52. Seida M, Ito U, Tomida S, Yamazaki S, Inaba Y (1987) Ventriculoperitoneal shunt malfunction with antisiphon device in normal-pressure hydrocephalus: report of three cases. Neurol Med Chir (Tokyo) 27:769–773

    Article  CAS  Google Scholar 

  53. Serl W, Saukkonen AL, Heikkinen E, von Wendt L (1989) The incidence and management of the slit ventricle syndrome. Acta Neurochir 99:113–116

    Article  Google Scholar 

  54. Sparrow OC (1989) Laboratory performance of single-piece ventriculoperitoneal shunts with distal slit-valve control. J Neurosurg 70:946–953

    Article  PubMed  CAS  Google Scholar 

  55. Tokoro K, Chiba Y (1991) Optimum position for an antisiphon device in a cerebrospinal fluid shunt system. Neurosurgery 29:519–525

    Article  PubMed  CAS  Google Scholar 

  56. Tokoro K, Chiba Y, Abe H (1991) Pitfalls of the Sophy programmable pressure valve: Is it really better than a conventional valve and an anti-siphon device? In: Matsumoto S, Tamaki N (eds) Hydrocephalus. Pathogenesis and treatment, Springer, Berlin Heidelberg New York, pp 405–421

    Google Scholar 

  57. Trost HA, Claussen G, Heissler H, Gaab MR (1991) Testing the hydrocephalus shunt valve: long term bench test results of various new and implanted hydrocephalus shunt valves. The need for a model for testiung shunt valves under physiological conditions. Eur J Pediatr Surg 1(Suppl I):38–40

    Article  PubMed  Google Scholar 

  58. Van der Veen PH (1972) Hydrodynamics of Holter ventriculo-atrial shunt systems under various conditions. Dev Med Child Neurol 14(Suppl 27):132–139

    Google Scholar 

  59. Whitehouse HE, Czosnyka M, Pickard JD (1992) Shunt audit: a computerized method for testing the performance characteristics of CSF shunts in vitro. In: Hydrocephalus 92 consensus conference, Assisi, April 26–30 1992

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aschoff, A. et al. (1993). The Solved and Unsolved Problems of Hydrocephalus Valves: A Critical Comment. In: Lorenz, R., Klinger, M., Brock, M. (eds) Intracerebral Hemorrhage Hydrocephalus malresorptivus Peripheral Nerves. Advances in Neurosurgery, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77997-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77997-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56304-4

  • Online ISBN: 978-3-642-77997-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics