Skip to main content

Reactive Oxygen Species and the Central Nervous System

  • Conference paper
Free Radicals in the Brain

Summary

Radicals are species containing one or more unpaired electrons. The oxygen radical superoxide (O -2 ) and the non-radical oxidants hydrogen peroxide (H2O2) and hypochlorous acid (HOCl) are produced during normal metabolism and perform several useful functions. Excessive production of O -2 and H2O2 can result in tissue damage, which often involves generation of highly reactive hydroxy 1 radical (· OH) and other oxidants in the presence of “catalytic” iron or copper ions. A major form of antioxidant defence is the storage and transport of iron or copper ions in forms that will not catalyze formation of reactive radicals. Tissue injury, e. g., by ischaemia or trauma, can cause increased iron availability and accelerate free radical reactions. This may be especially important in the brain, since areas of this organ are rich in iron and cerebrospinal fluid cannot bind released iron ions. Oxidative stress upon nervous tissue can produce damage by several interacting mechanisms, including rises in intracellular free Ca2+ and, possibly, release of excitatory amino acids. Recent suggestions that free radical reactions are involved in the neurotoxicity of aluminium and in damage to the substantia nigra in Parkinson’s disease are reviewed. Finally, the nature of antioxidants is discussed, with a suggestion that antioxidant enzymes and chelators of iron ions may be more generally useful protective agents than chain-breaking antioxidants. Careful precautions must be taken in the design of antioxidants for therapeutic use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JD Jr, Odunze IN (1991) Biochemical mechanisms of l-methyl-4-phenyl-l, 2, 3, 6-tetrahydropyridine toxicity. Could oxidative stress be involved in the brain? Biochem Pharmacol 41: 1099–1105

    Article  PubMed  CAS  Google Scholar 

  • Agardh CD, Zhang H, Smith ML, Siesjö BL (1991) Free radical production and ischemic brain damage: influence of postischemic oxygen tension. Int J Dev Neurosci 9: 127–138

    Article  PubMed  CAS  Google Scholar 

  • Andorn AC, Bacon BR, Nguyen-hunh AT, Paolato SJ, Stitts JA (1988) Guanyl nucleotide interactions with dopaminergic binding sites labelled by [3H]spiroperidol in human caudate and putamen: guanyl nucleotides enhance ascorbate-induced lipid peroxidation and cause an apparent loss of high affinity binding site. Mol Pharmacol 33: 155–162

    PubMed  CAS  Google Scholar 

  • Archibald FS,Tyrce C (1987) Manganese poisoning and the attack of trivalent manganese upon catecholamines. Arch Biochem Biophys 256: 638–650

    Article  PubMed  CAS  Google Scholar 

  • Aruoma OI, Halliwell B, Gajewski E, Dizdaroglu M (1991) Copper ion-dependent damage to the bases in DNA in the presence of hydrogen peroxide. Biochem J 273: 601–604

    PubMed  CAS  Google Scholar 

  • Balentine JD (1982) Pathology of oxygen toxicity. Academic, New York

    Google Scholar 

  • Betz AL (1985) Identification of hypoxanthine transport and xanthine oxidase activity in brain capillaries. J Neurochem 44: 574–579

    Article  PubMed  CAS  Google Scholar 

  • Betz AL, Randall J, Martz D (1991) Xanthine oxidase is not a major source of free radicals in focal cerebral ischemia. Am J Physiol 260: H563–568

    PubMed  CAS  Google Scholar 

  • Birchall JD, Chappell JS (1988) Aluminium, chemical physiology and Alzheimer’s disease. Lancet ii: 1008–1010

    Article  Google Scholar 

  • Blake DR,Winyard P, Lunec J,Williams A, Good PA, Gutteridge JMC, Rowley D, Halliwell B, Hider RC (1985) Cerebral and ocular toxicity induced by desferoxamine. QJ Med 219: 345–355

    Google Scholar 

  • Bolann BJ, Ulvik RJ (1990) On the limited ability of superoxide to release iron from ferritin Eur J Biochem 193: 899–904

    Article  PubMed  CAS  Google Scholar 

  • Braughler JM, Pregenzer JF, Chase RL, Duncan LA, Jacobsen EJ, McCall JM (1987) Novel 21-amino steroids as potent inhibitors of iron-dependent lipid peroxidation. J Biol Chem 262: 10438–10440

    PubMed  CAS  Google Scholar 

  • Carney JM, Starke-Reed PE, Oliver CN, Landum RW, Cheng MS,Wu JF, Floyd RA (1991) Reversal of age-related charges in brain protein oxidation, decrease in enzyme activity, and loss, in temporal and spatial memory by chronic administration of the spin trapping compound N-tert-butyl-α-phenylnitrone Proc Natl Acad Sci USA 88: 3633–3636

    Article  PubMed  CAS  Google Scholar 

  • Chan PH, Longar S, Fishman RA (1987) Protective effects of liposome-entrapped superoxide dismutase on posttraumatic brain edema. Ann Neurol 21: 540–547

    Article  PubMed  CAS  Google Scholar 

  • Chan PH, Chu L, Chen SF, Carlson EJ, Epstein CJ (1990) Reduced neurotoxicity in transgenic mice overexpressing human copper-zinc-superoxide dismutase. Stroke 21 (Suppl III): 80–82

    Google Scholar 

  • Cochrane CJ, Schraufstatter IV, Hyslop P, Jackson J (1988) Cellular and biochemical events in oxidant injury. In: Halliwell B (ed) Oxygen radicals and tissue injury. FASEB, pp 49–54

    Google Scholar 

  • Cohen G (1988) Oxygen radicals and Parkinson’s disease. In Oxygen Radicals and Tissue Ingury (ed. Haliwell, B) FASEB, pp 130–135

    Google Scholar 

  • Colton CA, Gilbert DL (1987) Production of superoxide anions by a CNS macrophage, the microglia. FEBS Lett 223: 284–288

    Article  PubMed  CAS  Google Scholar 

  • Curnutte JT, Babior BM (1987) Chronic granulomatous disease. Adv Hum Genet 16: 229–297

    PubMed  CAS  Google Scholar 

  • Davies MJ (1990) Detection of myoglobin-derived radicals on reaction of metmyoglobin with hydrogen peroxide and other peroxidic compounds. Free Radic Res Commun 10: 361–370

    Article  PubMed  CAS  Google Scholar 

  • Demopoulos HB, Flamm E, Selligman M, Pietronigro DD (1982) Oxygen free radicals in central nervous system ischemia and trauma. In: Autor AP (ed) Pathology of oxygen. Academic, New York, pp 127–155

    Google Scholar 

  • Dexter DT, Wells FR, Lees AJ, Agid F, Agid Y, Jenner P, Marsen CD (1989) Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J Neurochem 52: 1830–1836

    Article  PubMed  CAS  Google Scholar 

  • Dykens JA, Stern A,Trenkner E (1987) Mechanism of kainate toxicity to cerebellar neurons in vitro is analogous to reperfusion tissue injury. J Neurochem 49: 1222–1228

    Article  PubMed  CAS  Google Scholar 

  • Esterbauer H (1985) Lipid peroxidation products: formation, chemical properties and biological activities. In: Poli G, Cheeseman KH, Dianzani MV, Slater TF (eds) Free radicals in liver injury. IRL, pp 29–47

    Google Scholar 

  • Frank DM, Arora PK, Blumer JL, Sayre LM (1987) Model study on the bioreduction of paraquat, MPP+ and analogs. Evidence against a “redox cycling” mechanism in MPTP neurotoxicity. Biochem Biophys Res Commun 147: 1095–1104

    Article  PubMed  CAS  Google Scholar 

  • Frei B, England L, Ames BN (1989) Ascorbate is an outstanding antioxidant in human blood plasma. Proc Natl Acad Sci USA 86: 6377–6381

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I (1978) The biology of oxygen radicals. Science 209: 875–877

    Article  Google Scholar 

  • Gardner PR, Fridovich I (1991) Superoxide sensitivity of the Escherichia coli aconitase. J. Biol. Chem. 266: 19328–19333

    PubMed  CAS  Google Scholar 

  • Gruener N, Gozlan O, Goldstein T, Davis J, Besner I, Iancu TC (1991) Iron, transferrin and ferritin in cerebrospinal fluid of children Clin Chem 37: 263–265

    PubMed  CAS  Google Scholar 

  • Gutteridge JMC (1986) Iron promoters of the Fenton reaction and lipid peroxidation can be released from haemoglobin by peroxides. FEBS Lett 201: 291–295

    Article  PubMed  CAS  Google Scholar 

  • Gutteridge JMC, Quinlan GJ, Clark IA, Halliwell B (1985) Aluminium salts accelerate peroxidation of membrane lipids stimulated by iron salts. Biochim Biophys Acta 835: 441–447

    PubMed  CAS  Google Scholar 

  • Hall ED (1988) Effects of the 21-aminosteroid U74006F on posttraumatic spinal cord ischemia in cats. J Neurosurg 68: 462–465

    Article  PubMed  CAS  Google Scholar 

  • Hall ED, Braughler JM (1988 a) The role of oxygen radical-induced lipid peroxidation in acute central nervous system trauma. Oxygen radicals and tissue injury. (Halliwell, B ed) FASEB, pp 92–98

    Google Scholar 

  • Hall ED, Yonkers PA (1988 b) Attenuation of postischemic cerebral hypoperfusion by the 21-aminosteroid U74006F. Stroke 19: 340–344

    Article  PubMed  CAS  Google Scholar 

  • Hall ED, Yonkers PA, McCall JM (1988 a) Attenuation of hemorrhagic shock by the non-glucocorticoid 21-aminosteroid U74006F Eur J Pharmacol 147: 299–303

    Article  PubMed  CAS  Google Scholar 

  • Hall ED, Yonkers PA, McCall JM, Braughler JM (1988 b) Effects of the 21-aminosteroid U74006F on experimental head injury in mice. J Neurosurg 68: 456–461

    Article  PubMed  CAS  Google Scholar 

  • Hall ED, Pazara KE, Braughler JM, Lineman KL, Jacobsen EJ (1990) Nonsteroidal lazaroid U78517F in models of focal and global ischemia. Stroke 21 (Suppl III): 83–87

    Google Scholar 

  • Halliwell B (1984) Manganese ions, oxidation reactions and the superoxide radical. Neuro-toxicology 5: 113–118

    CAS  Google Scholar 

  • Halliwell B (1987) Oxidants and human disease: some new concepts. FASEB J 1: 358–364

    PubMed  CAS  Google Scholar 

  • Halliwell B (1989 a) Superoxide, iron, vascular endothelium and reperfusion injury. Free Radic Res Commun 5: 315–318

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (1989b) Protection against tissue damage in vivo by desferoxamine. What is its mechanism of action? Free Radic Biol Med 7: 645–651

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (1990) How to characterize a biological antioxidant. Free Radic Res Commun 9: 1–32

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Aruoma OI (1991) DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems. FEBS Lett 281: 9–19

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Grootveld M (1987) The measurement of free radical reactions in humans. FEBS Lett 213: 9–14

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1984) Lipid peroxidation, oxygen radicals, cell damage and antioxidant therapy. Lancet i: 1396–1398

    Article  Google Scholar 

  • Halliwell B, Gutteridge JMC (1986) Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch Biochem Biophys 246: 501–504

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine, second edition. Clarendon, Oxford.

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1990 a) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186: 1–85

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1990 b) The antioxidants of human extracellular fluids. Arch Biochem Biophys 280: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Aruoma OI, Mufti G, Bomford A (1988 a) Bleomycin-detectable iron in serum from leukaemic patients before and after chemotherapy. FEBS Lett 241: 202–204

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Aruoma OI, Wasil M, Gutteridge JMC (1988 b) The resistance of transferrin, lactoferrin and caeruloplasmin to oxidative damage. Biochem J 256: 311–312

    PubMed  CAS  Google Scholar 

  • Halliwell B, Grootveld M, Kaur H, Fagerheim I (1988 c) Aromatic hydroxylation and uric acid degradation as methods for detecting and measuring oxygen radicals in vivo and in vitro. In: Rice-Evans C, Halliwell B (eds) Free radicals: methodology and concepts. Richelieu, London, pp 33–59

    Google Scholar 

  • Halliwell B, Chirico S, Kaur H, Aruoma OI, Grootveld M, Blake DR (1992) Application of new assays for measuring free radical production to human rheumatoid patients. In: Davies KJA (ed) Oxidative damage and repair. Proceedings of the Pasadena conference. Pergamon, New York pp 846–855

    Google Scholar 

  • Hayaishi M, Slater TF (1986) Inhibitory effects of Ebselen on lipid peroxidation in rat liver microsomes. Free Radic Res Commun 2: 179–185

    Article  Google Scholar 

  • Heiskala H, Gutteridge JMC, Westermarck T, Alanen T, Santavuori P (1988) Bleomycin-detectable iron and phenanthroline-detectable copper in the cerebrospinal fluid of patients with neuronal ceroid-lipofuscinoses. Am J Med Genet (Suppl) 5: 193–202

    Article  CAS  Google Scholar 

  • Hirsch EC, Brandel JP, Galle P, Javoy-Agid F, Agid Y (1991) Iron and aluminium increase in the substantia nigra of patients with Parkinson’s disease: an X-ray microanalysis. J Neurochem 56: 446–451

    Article  PubMed  CAS  Google Scholar 

  • Hope BT, Michael GJ, Knigge LM,Vincent SR (1991) Neuronal NADPH diaphorase is a nitric oxide synthetase Proc Natl Acad Sci USA 88: 2811–2814

    Article  PubMed  CAS  Google Scholar 

  • Imlay JA, Linn S (1988) DNA damage and oxygen radical toxicity. Science 240: 1302–1309

    Article  PubMed  CAS  Google Scholar 

  • Kanner J, German JB, Kinsella JE (1987) Initiation of lipid peroxidation in biological systems. Crit Rev Food Sci Nutr 25: 317–374

    Article  PubMed  CAS  Google Scholar 

  • Kehrer JP (1989) Concepts related to the study of reactive oxygen and cardiac reperfusion injury. Free Radic Res Commun 5: 305–314

    Article  PubMed  CAS  Google Scholar 

  • Komulainen H, Bondy SC (1988) Increased free intracellular Ca2+ by toxic agents; an index of potential neurotoxicity? Trends Pharmacol Sci 9: 154–156

    Article  PubMed  CAS  Google Scholar 

  • Kyle ME, Nakae D, Sakaida I, Miccadei S, Farber JL (1988) Endocytosis of superoxide dismutase is required in order for the enzyme to protect hepatocytes from the cytotoxicity of hydrogen peroxide. J Biol Chem 263: 3784–3789

    PubMed  CAS  Google Scholar 

  • Langston JW, Irwin I, Ricaurte GA (1987) Neurotoxins, Parkinsonism and Parkinson’s disease. Pharmcol Ther 32: 19–49

    Article  CAS  Google Scholar 

  • Laughton MJ, Halliwell B, Evans PJ, Hoult JRS (1989) Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol and myricetin. Effects on lipid peroxidation, hydroxy 1 radical generation and bleomycin-dependent damage to DNA. Biochem Pharmacol 38: 2859–2865

    Article  PubMed  CAS  Google Scholar 

  • Laurindo FRM, da Luz PL, Vint L, Rocha TF, Jaeger RG, Lopes EA (1991) Evidence for superoxide radical-dependent coronary vasospasm after angioplasty in intact dogs. Circulation 83: 1705–1715

    PubMed  CAS  Google Scholar 

  • Liccione JJ, Maines MD (1988) Selective vulnerability of glutathione metabolism and cellular defence mechanisms in rat striatum to manganese. J Pharmacol Exp Ther 247: 156–161

    PubMed  CAS  Google Scholar 

  • Lim KH, Connolly M, Rose D, Siegman F, Jacobowitz I, Acinepura A, Cunningham JN Jr (1986) Prevention of reperfusion injury of the ischemic spinal cord: use of recombinant superoxide dismutase. Ann Thorac Surg 42: 282–286

    Article  PubMed  CAS  Google Scholar 

  • Link EM (1988) The mechanism of pH-dependent hydrogen peroxide cytotoxicity in vitro. Arch Biochem Biophys 265: 362–372

    Article  PubMed  CAS  Google Scholar 

  • Maly FE (1990) The B-lymphocyte: a newly-recognized source of reactive oxygen species with immunoregulatory potential. Free Radic Res Commun 8: 143–148

    Article  PubMed  CAS  Google Scholar 

  • Martinovits G, Melamed E, Cohen O, Rosenthal J, Uzzan A (1986) Systemic administration of antioxidants does not protect mice against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP). Neurosci Lett 69: 192–197

    Article  PubMed  CAS  Google Scholar 

  • McConkey DJ, Hartzeil P, Nicotera P, Wyllie AH, Orrenius S (1988) Stimulation of endogenous endonuclease activity in hepatocytes exposed to oxidative stress. Toxicol Lett 42: 123–130

    Article  PubMed  CAS  Google Scholar 

  • McCord JM, Russell WJ (1988) Superoxide inactivates creatine Phosphokinase during reperfusion of ischemic heart. In: Cerutti PA, Fridovich I, McCord JM (eds) Oxy-radicals in molecular biology and pathology. Liss, New York, pp 27–35

    Google Scholar 

  • Meier B, Radeke H, Seile S, Raspe HH, Sies H, Resch K, Habermehl GG (1990) Human fibroblasts release reactive oxygen species in response to treatment with synovial fluids from patients suffering from arthritis. Free Radic Res Commun 8: 149–160

    Article  PubMed  CAS  Google Scholar 

  • Meldrum B (1985) Excitatory amino acids and anoxic/ischaemic brain damage.Trends Neurosci 8: 47–48

    Article  CAS  Google Scholar 

  • Meneghini R (1988) Genotoxicity of active oxygen species in mammalian cells. Mutat Res 195: 215–230

    CAS  Google Scholar 

  • Michel HS,Vaishnav YN, Kempski O, von Lubitz D, Weiss JF, Feuerstein G (1987) Breathing 100% oxygen after global brain ischemia in Mongolian gerbils results in increased lipid peroxidation and increased mortality. Stroke 18: 426–430

    Article  Google Scholar 

  • Muakkassah-Kelly SF, Andresen JW, Shih JC, Hochstein P (1982) Decreased (3H)-serotonin and (3H)-assat-spiperone binding consequent to lipid peroxidation in rat cortical membranes. Biochem Biophys Res Commun 104: 1003–1010

    Article  PubMed  CAS  Google Scholar 

  • Muller A, Cadenas R, Graf P, Sies H (1984) A novel biologically active seleno-organic compound: I. Glutathione peroxidase activity in vitro and anti-oxidant capacity of PZ51 (Ebselen). Biochem Pharmacol 33: 3235–3240

    Article  PubMed  CAS  Google Scholar 

  • Murrell GAC, Francis MJO, Bromley L (1990) Modulation of fibroblast proliferation by oxygen free radicals. Biochem J 265: 659–665

    PubMed  CAS  Google Scholar 

  • Pall HS, Williams AC, Blake DR, Lunec J, Gutteridge JMC, Hall M, Taylor A (1987) Raised cerebrospinal-fluid copper concentrations in Parkinson’s disease. Lancet ii: 238–241

    Article  Google Scholar 

  • Patt A, Harkam AH, Burton LK, Rodell TC, Piermattei D, Schorr WJ, Parker NB, Berger EM, Horesh IR,Terada LS, Linas SL, Cheronic JC, Repine JE (1988) Xanthine oxidase-derived hydrogen peroxide contributes to ischemia reperfusion-induced edema in gerbil brains. J Clin Invest 81: 1556–1562

    Article  PubMed  CAS  Google Scholar 

  • Pellegrini-Giampietro DE, Cherichi G, Alesiani M, Carla V, Moroni F (1988) Excitatory amino acid release from rat hippocampal slices as a consequence of free-radical formation. J Neurochem 51: 1961–1963

    Article  Google Scholar 

  • Puppo A, Halliwell B (1988) Formation of hydroxyl radicals from hydrogen peroxide in the presence of iron. Is haemoglobin a biological Fenton catalyst? Biochem J 249: 185–190

    PubMed  CAS  Google Scholar 

  • Puppo A, Halliwell B (1989) Oxidation of dimethylsulphoxide to formaldehyde by oxy-haemoglobin and oxyleghaemoglobin in the presence of hydrogen peroxide is not mediated by “free” hydroxyl radicals. Free Radic Res Commun 5: 277–281

    Article  PubMed  CAS  Google Scholar 

  • Quinlan GJ, Halliwell B, Moorhouse CP, Gutteridge JMC (1988) Action of lead(II) and aluminium(III) ions on iron-stimulated lipid peroxidation in liposomes, erythrocytes and rat liver microsomal fractions. Biochim Biophys Acta 962: 196–200

    PubMed  CAS  Google Scholar 

  • Radi R, Beckman JS, Bush KM, Freeman BA (1991) Peroxynitrite oxidation of sulfhydryls.The cytotoxic potential of superoxide and nitric oxide. J Biol Chem 266: 4244–4250

    PubMed  CAS  Google Scholar 

  • Riederer P, Sofic E, Rausche WD, Schmidt B, Reynolds GP, Jallinger K,Youdim MBH (1989) Transition metals, ferritin, glutathione and ascorbic acid in Parkinsonian brains. J Neurochem 52: 515–520

    Article  PubMed  CAS  Google Scholar 

  • Rosen AD, Frumin NV (1979) Focal epileptogenesis following intracortical haemoglobin injection. Exp Neurol 66: 277–284

    Article  PubMed  CAS  Google Scholar 

  • Sarafian T, Verity MA (1991) Oxidative mechanisms underlying methyl mercury neurotoxicity Int J Dev Neurosci 9: 147–153

    Article  PubMed  CAS  Google Scholar 

  • Saran M, Michel C, Bors W (1990) Reaction of NO with O2-. Implications for the action of endothelium-derived relaxing factor. Free Radic Res Commun 10: 221–226

    Article  PubMed  CAS  Google Scholar 

  • Schor NF (1988) Inactivation of mammalian brain glutamine synthetase by oxygen radicals. Brain Res 456: 17–21

    Article  PubMed  CAS  Google Scholar 

  • Shapira AHV, Mann VM, Cooper JM, Dexter D, Daniel SE, Jenner P, Clark JB, Marsden CD (1990) Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J Neurochem 55: 2142–2145

    Article  Google Scholar 

  • Sies H (1991) Oxidative stress, oxidants and antioxidants. Academic Press, New York

    Google Scholar 

  • Siesjö BK (1988) Mechanisms of ischemic brain damage. Crit Care Med 16: 954–963

    Article  PubMed  Google Scholar 

  • Siesjö BK (1990) Calcium, excitotoxins and brain damage. NIPS 5: 120–125

    Google Scholar 

  • Siesjö BK, Bendek G, KoideT,Westerberg E, Wieloch T (1985) Influence of acidosis on lipid peroxidation in brain tissues in vitro. J Cereb Blood Flow Metab 5: 153–158

    Google Scholar 

  • Singer TP, Trevor AJ, Castagnoli N Jr (1987) Biochemistry of the neurotoxic action of MPTR Trends Biochem Sci 12: 266–270

    Article  CAS  Google Scholar 

  • Sofic E, Paulus W, Jellinger K, Riederer P, Youdim MBH (1991) Selective increase of iron in substantia nigra zona compacta of Parkinsonian brains. J Neurochem 56: 978–982

    Article  PubMed  CAS  Google Scholar 

  • Sotomatsu A, Nakano M, Hirai S (1990) Phospholipid peroxidation induced by the catechol-Fe3+ (Cu2+) complex: a possible mechanism of nigrostriatal cell damage. Arch Biochem Biophys 283: 334–341

    Article  PubMed  CAS  Google Scholar 

  • Spector R, Eells J (1984) Deoxynucleoside and vitamin transport into the central nervous system. Fed Proc 43: 196–200

    PubMed  CAS  Google Scholar 

  • Stankovic A, Mitrovic DR (1991) Aluminium salts stimulate luminol-enhanced chemilumi-nescence production by human neutrophils. Free Radic Res Commun 14: 47–55

    Article  PubMed  CAS  Google Scholar 

  • Steele JA, Stockbridge N, Maljkovic G, Weir B (1991) Free radicals mediate actions of oxyhemoglobin on cerebrovascular smooth muscle cells. Circulation Research 68: 416–423

    PubMed  CAS  Google Scholar 

  • Stocks J, Gutteridge JMC, Sharp RJ, Dormandy TL (1974) The inhibition of lipid autoxidation by human serum and its relationship to serum proteins and alpha-tocopherol. Clin Sci 47: 223–233

    CAS  Google Scholar 

  • Touati D (1989) The molecular genetics of superoxide dismutase in E. coli. An approach to understanding the biological role and regulation of SODs in relation to other elements of the defence system against oxygen toxicity. Free Radic Res Commun 8: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Turrens JF, Crapo JD, Freeman BA (1984) Protection against oxygen toxicity by intravenous injection of liposome-entrapped catalase and superoxide dismutase. J Clin Invest 73: 87–95

    Article  PubMed  CAS  Google Scholar 

  • Turski L, Bressler K, Rettig KJ, Loschman PA,Wachtel H (1991) Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists. Nature 349: 414–418

    Article  PubMed  CAS  Google Scholar 

  • Van Loon APGM, Pesold-Hurt B, Schatz G (1986) A yeast mutant lacking mitochondrial manganese-superoxide dismutase is hypersensitive to oxygen. Proc Natl Acad Sci USA 83: 3820–3824

    Article  PubMed  Google Scholar 

  • Watson BD, Ginsberg MD (1988) Mechanism of lipid peroxidation potentiated by ischemia in the brain. In Oxygen radicals and tissue injury. (Halliwell B ed) FASEB, pp 81–91

    Google Scholar 

  • Weiner WJ, Nausieda PA, Klawans HL (1977) Effect of chlorpromazine on central nervous system concentrations of manganese, iron and copper. Life Sci 20: 1181–1186

    Article  PubMed  CAS  Google Scholar 

  • Willmore LJ, Ballinger WE, Boggs W, Sypert GW, Rubin JJ (1980) Dendritic alterations in rat isocortex within an iron-induced chronic epileptic focus. Neurosurgery 7: 142–146

    Article  PubMed  CAS  Google Scholar 

  • Willmore LJ,Triggs WJ, Gray JD (1986) The role of iron-induced hippocampal peroxidation in acute epileptogenesis. Brain Res 382: 422–426

    Article  PubMed  CAS  Google Scholar 

  • Youdim MBH (1988 a) Brain iron. Neurochemical and behavioural aspects.Taylor and Francis, New York

    Google Scholar 

  • Youdim MBH (1988 b) Iron in the brain: implications for Parkinson’s and Alzheimer’s diseases. Mt Sinai J Med 55: 97–101

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Halliwell, B. (1992). Reactive Oxygen Species and the Central Nervous System. In: Packer, L., Prilipko, L., Christen, Y. (eds) Free Radicals in the Brain. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77609-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77609-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77611-3

  • Online ISBN: 978-3-642-77609-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics