Skip to main content

The Basic-Region Leucine-Zipper Family of DNA Binding Proteins

  • Chapter
Nucleic Acids and Molecular Biology

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 6))

Abstract

Related functions in proteins are commonly mediated by conserved structural motifs. Such motifs are widespread in transcriptional regulatory proteins. In this review, we will focus on the basic-region leucine-zipper or bZip motif, which is involved in dimerization and DNA recognition. Our emphasis will be on the relationship between the sequence and structure of the bZip motif, and the ways in which structural information relates to our understanding of the function of bZip proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agre P, Johnson PF, McKnight SL (1989) Cognate DNA binding specificity retained after leucine zipper exchange between GCN4 and C/EBP. Science 246: 922–925

    Article  PubMed  CAS  Google Scholar 

  • Beckman H, Kadesch T (1991) The leucine zipper of TFE3 dictates helix-loop-helix dimerization specificity. Genes Dev 5: 1057–1066

    Article  Google Scholar 

  • Blackwood EM, Eisenman RN (1991) Max: a helix-loop-helix zipper protein that forms a sequence specific DNA binding complex with Myc. Science 251: 1211–1217

    Article  PubMed  CAS  Google Scholar 

  • Bohmann D, Tjian R (1989) Biochemical analysis of transcriptional activation by Jun: differential activity of c-and v-Jun. Cell 59: 709–717

    Article  PubMed  CAS  Google Scholar 

  • Bowie JU, Reidhaar-Olson JF, Lim WA, Sauer RT (1990) Deciphering the message in protein sequences: tolerance to amino acid substitutions. Science 247: 1306–1310

    Article  PubMed  CAS  Google Scholar 

  • Chakrabartty A, Schellman JA, Baldwin RL (1991) Large differences in the helix propensities of alanine and glycine. Nature (London) 351: 586–588

    Article  CAS  Google Scholar 

  • Cohen C, Parry DAD (1990) α-Helical coiled coils and bundles: bow to design an α-helical protein. Proteins 7: 1–15

    Article  PubMed  CAS  Google Scholar 

  • Cohen DR, Curran T (1990) Analysis of dimerization and DNA binding functions in Fos and Jun by domain-swapping: involvement of residues outside the leucine zipper/basic region. Oncogene 5: 929–939

    PubMed  CAS  Google Scholar 

  • Creighton TE (1984) Proteins. Freeman, San Francisco

    Google Scholar 

  • Crick FHC (1953) The packing of a-helices: simple coiled-coils. Acta Crystallogr 6: 689–697

    Article  CAS  Google Scholar 

  • Curran T, Franza BRJ (1988) Fos and Jun: the AP-1 connection. Cell 55: 395–397

    Article  PubMed  CAS  Google Scholar 

  • Cusack S, Berthet-Colominas C, Haertlein M, Nassar N, Leberman R (1990) A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 A. Nature (London) 347: 249–255

    Article  CAS  Google Scholar 

  • DeGrado WF, Wasserman ZR, Lear JD (1989) Protein design, a minimalist approach. Science 243: 622–628

    Article  PubMed  CAS  Google Scholar 

  • Descombes P, Chojkier M, Lichtsteiner S, Falvey E, Schibler U (1990) LAP, a novel member of the C/EBP gene family encodes a liver-enriched transcriptional activator protein. Genes Dev 4: 1541–1551

    Article  PubMed  CAS  Google Scholar 

  • Dwarki VJ, Montminy M, Verma IM (1990) Both the basic region and the leucine zipper’ domain of the cyclic AMP response element binding ( CREB) protein are essential for transcriptional activation. EMBO J 9: 225–232

    Google Scholar 

  • Flemington E, Speck SH (1990) Evidence for coiled-coil dimer formation by an Epstein-Barr virus transactivator that lacks a heptad repeat of leucine residues. Proc Natl Acad Sci USA 87: 9459–9463

    Article  PubMed  CAS  Google Scholar 

  • Foulkes NS, Borrelli E, Sassone CP (1991) CREM gene: use of alternative DNA-binding domains generates multiple antagonists of cAMP-induced transcription. Cell 64: 739–749

    Article  PubMed  CAS  Google Scholar 

  • Fu YH, Paietta JV, Mannix DG, Marzluf GA (1989) Cys-3, the positive-acting sulfur regulatory gene of Neurospora crassa, encodes a protein with a putative leucine zipper DNA-binding element. Mol Cell Biol 9: 1120–1127

    PubMed  CAS  Google Scholar 

  • Gartenberg MR, Ampe C, Steitz TA, Crothers DM (1990) Molecular characterization of the GCN4-DNA complex. Proc Natl Acad Sci USA 87: 6034–6038

    Article  PubMed  CAS  Google Scholar 

  • Gentz R, Rauscher FJ 3d, Abate C, Curran T (1989) Parallel association of Fos and Jun leucine zippers juxtaposes DNA binding domains. Science 243: 1695–1699

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez G, Yamamoto KK, Fisher WH, Karr D, Menzel P, Biggs W 3d, Vale WW, Montminy MR (1989) A cluster of phosphorylation sites on the cyclic AMP regulated nuclear factor CREB predicted by its sequence. Nature (London) 337: 749–752

    Article  CAS  Google Scholar 

  • Guiltinan MJ, Marcotte WJ, Quatrano RS (1990) A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250: 267–271

    Article  PubMed  CAS  Google Scholar 

  • Hai T, Curran T (1991) Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc Nati Acad Sci USA 88: 3720–3724

    Article  CAS  Google Scholar 

  • Hai TW, Liu F, Coukos WJ, Green MR (1989). Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Genes Dev 3: 2083–2090

    Article  PubMed  CAS  Google Scholar 

  • Hartings H, Maddaloni M, Lazzaroni N, Di Fonzo N, Motto M, Salamini F, Thompson R (1989) The 02 gene which regulates zein deposition in maize endosperm encodes a protein with structural homologies to transcriptional activators. EMBO J 8: 2795–2801

    PubMed  CAS  Google Scholar 

  • Hodges RS, Semchuk PD, Taneja AK, Kay CM, Parker JMR, Mant CT (1988) Protein design using model synthetic peptides. Pept Res 1: 19–30

    PubMed  CAS  Google Scholar 

  • Hoeffler J, Meyer T, Yun Y, Jameson J, Habener J (1988) Cyclic AMP responsive DNA binding protein: structure based on a cloned placental cDNA. Science 242: 1430–1433

    Article  PubMed  CAS  Google Scholar 

  • Hope IA, Struhl K (1986) Functional dissection of an eukaryotic transcriptional activator protein, GCN4 of yeast. Cell 46: 885–894

    Article  PubMed  CAS  Google Scholar 

  • Hsu J-C, Laz T, Mohn K, Taub R (1991) Identification of LRF-1, a leucine-zipper protein that is rapidly and highly induced in regenerating liver. Proc Natl Acad Sci USA 88: 3511–3515

    Article  PubMed  CAS  Google Scholar 

  • Hu JC, O’Shea EK, Kim PS, Sauer RT (1990) Sequence requirements for coiled-coils: analysis with lambda repressor-GCN4 leucine zipper fusions. Science 250: 1400–1403

    Article  PubMed  CAS  Google Scholar 

  • Katagiri F, Lam E, Chua NH (1989) Two tobacco DNA-binding proteins with homology to the nuclear factor CREB. Nature (London) 340: 727–730

    Article  CAS  Google Scholar 

  • Kerppola T, Curran T (1991) Transcription factor interactions: basics on zippers. Curr Opinion Struct Biol 1: 71–79

    Article  CAS  Google Scholar 

  • Kouzarides T, Ziff E (1988) The role of the leucine zipper in the fos-jun interaction. Nature (London) 336: 646–651

    Article  CAS  Google Scholar 

  • Kouzarides T, Packham G, Cook A, Farrell PJ (1991) The BZLF1 protein of EBV has a coiled coil dimerisation domain without a heptad leucine repeat but with homology to the C/EBP leucine zipper. Oncogene 6: 195–204

    PubMed  CAS  Google Scholar 

  • Landschulz WH, Johnson PF, Adashi EY, Graves BJ, McKnight SL (1988a) Isolation of a recombinant copy of the gene encoding C/EBP. Genes Dev 2: 786–800

    Article  PubMed  CAS  Google Scholar 

  • Landschulz WH, Johnson PF, McKnight SL (1988b) The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240: 1759–1764

    Article  PubMed  CAS  Google Scholar 

  • Landschulz WH, Johnson PF, McKnight SL (1989) The DNA binding domain of the rat liver nuclear protein C/EBP is bipartite. Science 243: 1681–1688

    Article  PubMed  CAS  Google Scholar 

  • Lin YS, Green MR (1988) Interaction of a common transcription factor, ATF, with regulatory elements in both E1A and cyclic AMP-inducible promoters. Proc Natl Acad Sci USA 85: 3396–3400

    Article  PubMed  CAS  Google Scholar 

  • Lupas A, van Dyke M, Stock J (1991) Predicting coiled coils from protein sequences. Science 252: 1162–1164

    Article  CAS  Google Scholar 

  • Maekawa T, Sakura H, Kanei IC, Sudo T, Yoshimura T, Fujisawa J, Yoshida M, Ishii S (1989) Leucine zipper structure of the protein CRE-BP1 binding to the cyclic AMP response element in brain. EMBO J 8: 2023–2028

    PubMed  CAS  Google Scholar 

  • McLachlan AD, Stewart M (1975) Tropomyosin coiled-coil interactions: evidence for an unstaggered structure. J Mol Biol 98: 293–304

    Article  PubMed  CAS  Google Scholar 

  • Moye-Rowley WS, Harshman KD, Parker CS (1989) Yeast YAPL encodes a novel form of the jun family of transcriptional activator proteins. Genes Dev 3: 283–292

    Article  PubMed  CAS  Google Scholar 

  • Murre C, McCaw PS, Baltimore D (1989) A new DNA binding and dimerization motif in immunoglobin enhancer binding, daughterless, myoD, and myc proteins. Cell 56: 777–783

    Article  PubMed  CAS  Google Scholar 

  • Nakabeppu Y, Nathans D (1991) A naturally occurring truncated form of FosB that inhibits Fos/Jun transcriptional activity. Cell 64: 751–759

    Article  PubMed  CAS  Google Scholar 

  • Neuberg M, Schuermann M, Hunter JB, Müller R (1989) Two functionally different regions in Fos are required for the sequence-specific DNA interaction of the Fos/Jun protein complex. Nature (London) 338: 589–590

    Article  CAS  Google Scholar 

  • Nicklin MJ, Casari G (1991) A single site mutation in a truncated Fos protein allows it to interact with the THE in vitro. Oncogene 6: 173–179

    PubMed  CAS  Google Scholar 

  • Nye JA, Graves BJ (1990) Alkylation interference identifies essential DNA contacts for sequence specific binding of the eukaryotic transcription factor C/EBP. Proc Natl Acad Sci USA 87: 3992–3996

    Article  PubMed  CAS  Google Scholar 

  • Oakley M, Dervan P (1990) Structural motif of the GCN4 DNA binding domain characterized by affinity cleaving. Science 248: 847–850

    Article  PubMed  CAS  Google Scholar 

  • Oas TG, McIntosh LP, O’Shea EK, Dahlquist FW, Kim PS (1990) Secondary structure of a leucine zipper determined by nuclear magnetic resonance spectroscopy. Biochemistry 29: 2891–2894

    Article  PubMed  CAS  Google Scholar 

  • Oeda K, Salinas J, Chua N-H (1991) A tobacco bZip transcription activator (TAF-1) binds to a G-box-like motif conserved in plant genes. EMBO J 10: 1793–1802

    PubMed  CAS  Google Scholar 

  • Oliphant AR, Brandt CJ, Struhl K (1989) Defining the sequence specificity of DNA-binding proteins by analysis of yeast GCN4 protein. Mol Cell Biol 9: 2944–2949

    PubMed  CAS  Google Scholar 

  • O’Neil KT, DeGrado WF (1990) A thermodynamic scale for the helix-forming tendencies of the commonly occuring amino acids. Science 250: 646–651

    Article  PubMed  Google Scholar 

  • O’Neil KT, Hoess RH, DeGrado WF (1990) Design of DNA-binding peptides based on the leucine zipper motif. Science 249: 774–778

    Article  PubMed  Google Scholar 

  • O’Shea EK, Rutkowski R, Kim PS (1989a) Evidence that the leucine zipper is a coiled coil. Science 243: 538–542

    Article  PubMed  Google Scholar 

  • O’Shea EK, Rutkowski R, Stafford W III, Kim PS (1989b) Preferential heterodimer formation by isolated leucine zippers from fos and jun. Science 245: 646–648

    Article  PubMed  Google Scholar 

  • O’Shea EK, Klemm JD, Kims PS, Alber T (1991) X-ray structure of the GCN4 leucine zipper, a two stranded coiled-coil. Science 254: 539–544

    Article  PubMed  Google Scholar 

  • Paluh JL, Yanofsky C (1991) Characterization of Neurospora CPC1, a bZIP DNA-The Basic-Region Leucine-Zipper Family of DNA Binding Proteins 101 binding protein that does not require aligned heptad leucines for dimerization. Mol Cell Biol 11: 935–944

    PubMed  CAS  Google Scholar 

  • Patel L, Abate C, Curran T (1990) Altered protein conformation on DNA binding by Fos and Jun Nature (London) 347: 572–575

    CAS  Google Scholar 

  • Perkins KK, Admon A, Patel N, Tjian R (1990) The Drosophila Fos-related AP-1 protein is a developmentally regulated transcription factor. Genes Dev 4: 822–834

    Article  PubMed  CAS  Google Scholar 

  • Poli V, Mancini FP, Cortese R (1990) IL-6DBP, a nuclear protein involved in interleukin6 signal transduction, defines a new family of leucine zipper proteins related to C/EBP. Cell 63: 643–653

    Article  PubMed  CAS  Google Scholar 

  • Pu TW, Struhl K (1991a) The leucine zipper symmetrically positions the adjacent basic regions for specific DNA binding.Proc Natl Acad Sci USA 88 (6901–6905)

    Article  Google Scholar 

  • Pu TW, Struhl K (1991b) Highly conserved residues in the bZIP domain of yeast GCN4 are not essential for DNA binding. Mol Cell Biol 11: 4918–4926

    PubMed  CAS  Google Scholar 

  • Ransone U, Visvader J, Sassone CP, Verma IM (1989) Fos-Jun interaction: mutational analysis of the leucine zipper domain of both proteins. Genes Dev 3: 770–781

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen R, Benvegnu D, O’Shea EK, Kim PS, Alber T (1991) X-ray scattering indicates that the leucine zipper is a coiled coil. Proc Natl Acad Sci USA 88: 561–564

    Article  PubMed  CAS  Google Scholar 

  • Risse G, Joos K, Neuberg M, Brüller H-J, Müller R (1989) Asymmetric recognition of the palindromic AP1 binding site ( TRE) by Fos protein complexes. EMBO J 8: 3825–3832

    Google Scholar 

  • Roman C, Platero JS, Shuman J, Calame K (1990) Ig/EBP-1: a ubiquitously expressed immunoglobulin enhancer binding protein that is similar to C/EBP and heterodimerizes with C/EBP. Genes Dev 4: 1404–1415

    Article  PubMed  CAS  Google Scholar 

  • Sassone-Corsi P, Ransone LJ, Lamph WW, Verma IM (1988) Direct interaction between fos and jun nuclear oncoproteins: role of the leucine zipper’ domain. Nature (London) 336: 692–695

    Article  CAS  Google Scholar 

  • Schmidt-Dörr T, Oertel-Buchheit P, Pernelle C, Bracco L, Schnarr M, Granger-Schnarr M (1991) Construction, purification and characterization of• a hybrid protein comprising the DNA binding domain of the LexA repressor and the Jun leucine zipper: a circular dichroism and mutagenesis study. Biochemistry 30: 9657–9664

    Article  PubMed  Google Scholar 

  • Schuermann M, Neuberg M, Hunter JB, Jenuwein T, Ryseck RP, Bravo R, Müller R (1989) The leucine repeat motif in Fos protein mediates complex formation with Jun/AP-1 and is required for transformation. Cell 56: 507–516

    Article  PubMed  CAS  Google Scholar 

  • Sellers JW, Struhl K (1989) Changing fos oncoprotein to a jun-independent DNA binding protein with GCN4 dimerization specificity by swapping “leucine zippers” Nature (London) 341: 74–76

    CAS  Google Scholar 

  • Shuman JD, Vinson CR, McKnight SL (1990) Evidence of changes in protease sensitivity and subunit exchange rate on DNA binding by C/EBP. Science 249: 771–774

    Article  PubMed  CAS  Google Scholar 

  • Smeal T, Angel P, Meek J, Karin M (1989) Different requirements for formation of Jun: Jun and Jun: Fos complexes. Genes Dev 3: 2091–2100

    Google Scholar 

  • Struhl K (1989) Helix-turn-helix, zinc-finger, and leucine zipper motifs for eukaryotic transcriptional regulatory proteins. Trends Biol Sci 14: 137–140

    Article  CAS  Google Scholar 

  • Tabata T, Takase H, Takayama S, Mikami K, Nakatsuka A, Kawata T, Nakayama T, Iwabuchi M (1989) A protein that binds to a cis-acting element of wheat histone genes has a leucine zipper motif. Science 245: 965–967

    Article  PubMed  CAS  Google Scholar 

  • Talanian RV, McKnight CJ, Kim PS (1990) Sequence-specific DNA binding by a short peptide dimer. Science 249: 769–771

    Article  PubMed  CAS  Google Scholar 

  • Turner R, Tjian R (1989) Leucine repeats and an adjacent DNA binding domain mediate the formation of functional cFos-cJun heterodimers. Science 243: 1689–1694

    Article  PubMed  CAS  Google Scholar 

  • Vinson CR, Sigler PB, McKnight SL (1989) Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science 246: 911–916

    Article  PubMed  CAS  Google Scholar 

  • Weiss MA, Ellenberger T, Wobbe CR, Lee JP, Harrison SC, Struhl K (1990) Folding transition in the DNA-binding domain of GCN4 on specific binding to DNA. Nature (London) 347: 575–578

    Article  CAS  Google Scholar 

  • Williams T, Tjian R (1991) Characterization of a dimerization motif in AP-2 and its function in heterologous DNA-binding proteins. Science 251: 1067–1071

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hu, J.C., Sauer, R.T. (1992). The Basic-Region Leucine-Zipper Family of DNA Binding Proteins. In: Eckstein, F., Lilley, D.M.J. (eds) Nucleic Acids and Molecular Biology. Nucleic Acids and Molecular Biology, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77356-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77356-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77358-7

  • Online ISBN: 978-3-642-77356-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics