Skip to main content

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 14))

Abstract

The cell volume is regulated by solute transport across the surface membranes and by metabolic generation or consumption of intracellular, osmotically active solutes. Many membrane transport mechanisms and metabolic pathways that are involved in volume regulation serve other vital cell functions also, including the control of the intracellular milieu (electrolyte concentrations, cell pH), energy, carbohydrate and protein metabolism, nutritive and secretory functions, excitability, cell growth, proliferation and differentiation. Cell volume regulation is thus integrally related to these functions. Furthermore, the mechanisms of homeostatic control and regulation through hormonal, neural and intracellular signals may modify membrane transport mechanisms and enzyme activities that are involved in volume regulation. Thus, both the mechanisms that determine the cell volume and their regulatory signals may be common to other cell functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adorante JS, Miller SS (1990) Potassium-dependent volume regulation in retinal pigment epithelium is mediated by Na, K, Cl cotransport. J Gen Physiol 96: 1153–1176

    PubMed  CAS  Google Scholar 

  • Albus M, Bakker R, Van Heukelom R (1983) Circuit analysis of membrane potential changes due to electrogenic sodium-dependent sugar transport in goldfish intestinal epithelium. Pflügers Arch Eur J Physiol 398: 1–9

    CAS  Google Scholar 

  • Allen JC, Mills JW (1988) Two lines of MDCK epithelial cells with different volume and ion responses to calcium ionophore A23187. In Vitro Cell Dev Biol 24: 588–592

    Google Scholar 

  • Amzel M, Guggino WB (1985) Relationship between cell volume and ion transport in the early distal tubule of Amphiuma kidney. J Membr Biol 86: 31–58

    Google Scholar 

  • Andersen OS (1989) Elementary aspects of acid-base permeation and pH regulation. Ann NY Acad Sci 574: 333–353

    PubMed  CAS  Google Scholar 

  • Armstrong WMcD, Musselman DL, Reitzung HC (1970) Potassium and water content of isolated bullfrog small intestinal epithelia. Am J Physiol 219: 1023–1026

    PubMed  CAS  Google Scholar 

  • Aronson PS, Sacktor B (1975) The Na+ gradient-dependent transport of D-glucose in renal brush-border membranes. J Biol Chem 250: 5032–6039

    Google Scholar 

  • Bagnasco S, Balaban RS, Fales HM, Yang Y-M, Burg M (1986) Predominant osmotically active organic solutes in rat and rabbit renal medullas. J Biol Chem 261: 5872–5877

    PubMed  CAS  Google Scholar 

  • Bagnasco S, Uchida S, Balaban RS, Kador PF, Burg M (1987) Induction of aldose reductase and sorbitol in renal inner medullary cells by elevated extracellular NaCl. Proc Natl Acad Sci 84: 1718–1720

    PubMed  CAS  Google Scholar 

  • Bakker-Grunwald T (1983) Potassium permeability and volume control in isolated hepatocytes. Biochim Biophys Acta 731: 239–242

    PubMed  CAS  Google Scholar 

  • Balaban RS, Burg M (1987) Osmotically active organic solutes in the renal inner medulla. Kidney Int 31: 562–564

    PubMed  CAS  Google Scholar 

  • Bear CE (1990) A nonselective cation channel in rat liver cells is activated by membrane stretch. Am J Physiol 258: C421–C428

    PubMed  CAS  Google Scholar 

  • Bear CE, Petersen OH (1987) L-alanine evokes opening of single Ca2+-activated K+ channels in rat liver cells. Pflügers Arch Eur J Physiol 410: 342–344

    CAS  Google Scholar 

  • Beck JS, Potts DJ (1990) Cell swelling cotransport activation and potassium conductance in isolated perfused rabbit kidney proximal tubules. J Physiol (Lond) 425: 363–378

    Google Scholar 

  • Beck F, Bauer R, Bauer U, Mason J, Dorge A, Rick R, Thurau K (1980) Electron microprobe analysis of intracellular elements in the rat kidney. Kidney Int 17: 756–763

    PubMed  CAS  Google Scholar 

  • Beck F, Dorge A, Rick R, Thurau K (1984) Intra- and extracellular element concentrations of rat renal papilla in antidiuresis. Kidney Int 25: 397–403

    PubMed  CAS  Google Scholar 

  • Beck F, Dorge A, Thurau K (1985) Osmoregulation of renal papillary cells. Pflügers Arch Eur J Physiol 405 (Suppl 1): S28–S32

    Google Scholar 

  • Beck F, Dorge A, Ring T, Sauer M (1989) Element composition of tubule cells in the inner stripe of the renal outer medulla. Miner Electrolyte Metab 15: 144–149

    PubMed  CAS  Google Scholar 

  • Beck FX, Dorge A, Thurau K, Guder WG (1990) Cell osmoregulation in the countercurrent system of the renal medulla: the role of organic osmolytes. In: Beyenbach KW (ed) Comparative physiology, vol 4: Cell volume regulation. Karger, Basel, pp 132–158

    Google Scholar 

  • Beck JS, Breton S, Laprade R, Giebisch G (1991) Volume regulation and intracellular calcium in the rabbit proximal convoluted tubule. Am J Physiol 260: F861–F867

    PubMed  CAS  Google Scholar 

  • Beebe DC, Parmelee JT, Belcher KS (1990) Volume regulation in lens epithelial cells and differentiating lens fiber cells. J Cell Physiol 143: 455–459

    PubMed  CAS  Google Scholar 

  • Bevan C, Theiss C, Kinne RK (1990) The role of Ca2+ in sorbitol release from rat inner medullary collecting duct cells under hypoosmotic stress. Biochem Biophys Res Commun 170: 563–568

    PubMed  CAS  Google Scholar 

  • Blumenfeld JD, Hebert SC, Heilig CW, Balschi JA, Stromski ME, Gullans S (1989) Organic osmolytes in inner medulla of Brattleboro rat: effects of ADH and dehydration. Am J Physiol 256: F916–F922

    PubMed  CAS  Google Scholar 

  • Bonanno JA (1991) K+-H+, a fundamental cell acidifier in corneal epithelium. Am J Physiol 260: C618–625

    PubMed  CAS  Google Scholar 

  • Boron WF, Sackin H (1983) Measurement of intracellular ionic composition and activities in renal tubules. Annu Rev Physiol 45: 483–496

    PubMed  CAS  Google Scholar 

  • Boyer JL, Graf J, Meier PJ (1992) Hepatic transport systems regulating pHi; cell volume and bile secretion. Annu Rev Physiol (in press)

    Google Scholar 

  • Brown PD, Burton KA, Sepülveda FV (1983) The transport of sugars or amino acids increases potassium efflux from isolated enterocytes. FEBS Lett 163: 203–206

    PubMed  CAS  Google Scholar 

  • Bruck R, Haddad P, Graf J, Boyer JL (1990) Regulatory volume decrease following hypotonic stress stimulates bile flow, bile acid excretion and exocytosis in the isolated perfused rat liver. Hepatology 12: 888

    Google Scholar 

  • Burger RE (1987) Composition of renal medullary tissue. Kidney Int 31: 556–561

    Google Scholar 

  • Butt AG, Clapp WL, Frizzell RA (1990) Potassium conductance in tracheal epithelium activated by secretion and cell swelling. Am J Physiol 25: C630–C638

    Google Scholar 

  • Cala PM (1977) Volume regulation by flounder red blood cells in anisotonic media. J Gen Physiol 67: 537–552

    Google Scholar 

  • Candia OA (1989) Regulatory mechanisms of chloride transport in corneal epithelium. Ann NY Acad Sci 574: 416–427

    PubMed  CAS  Google Scholar 

  • Case RM, Argent BE (1989) Pancreatic secretion of electrolytes and water. In: Schultz SG (ed) Handbook of physiology, Section 6, vol III. American Physiological Society, Bethesda, pp 383–417

    Google Scholar 

  • Chase HS Jr, Al-Awqati Q (1981) Regulation of the sodium permeability of luminal border of toad bladder by intracellular sodium and calcium. J Gen Physiol 77: 693–712

    PubMed  Google Scholar 

  • Christensen O (1987) Mediation of cell volume regulation by Ca influx through stretch activated channels. Nature 330: 66–68

    PubMed  CAS  Google Scholar 

  • Christensen O, Zeuthen T (1987) Maxi K+ channels in leaky epithelia are regulated by intracellular Ca2+, pH and membrane potential. Pflügers Arch Eur J Physiol 408: 249–256

    CAS  Google Scholar 

  • Christensen O, Simon M, Randlev T (1989) Anion channels in a leaky epithelium. A patch clamp study of choroid plexus. Pflügers Arch Eur J Physiol 415: 37–46

    CAS  Google Scholar 

  • Civan MM, Rubenstein D, Mauro T, O’Brien TG (1985) Effects of tumor promoters on sodium ion transport across frog skin. Am J Physiol 248: C457–C465

    PubMed  CAS  Google Scholar 

  • Civan MM, Cragoe EJ Jr, Peterson-Yantorno K. (1988) Intracellular pH in frog skin: effects of Na+, volume and cAMP. Am J Physiol 255: F126–F134

    PubMed  CAS  Google Scholar 

  • Clausen C, Dixon TE (1986) Membrane electrical parameters in turtle bladder measured using impedance-analysis techniques. J Membr Biol 92: 9–19

    PubMed  CAS  Google Scholar 

  • Clauss W, Dürr D, Guth S, Skadhauge E (1987) Effects of adrenal steroids on Na transport in lower intestine (coprodeum) of the hen. J Membr Biol 96: 141–152

    PubMed  CAS  Google Scholar 

  • Corasanti JG, Gleeson D, Boyer JL (1990) Effects of osmotic stresses on isolated rat hepatocytes. I. Ionic mechanisms of cell volume regulation. Am J Physiol 258: G290–G298

    PubMed  CAS  Google Scholar 

  • Cornet M, Delpire E, Gilles R (1987) Study of microfilaments network during volume regulation process of cultured PC 12 cells. Pflügers Arch Eur J Physiol 410: 223–225

    CAS  Google Scholar 

  • Cornet M, Delpire E, Gilles R (1988) Relation between cell volume control, microfilaments and microtubules networks in T2 and PCI2 cultured cells. J Physiol (Paris) 83: 43–49

    CAS  Google Scholar 

  • Costa PM, Fernandes PL, Ferreira HG, Ferreira KT, Giraldez F (1987) Effect of cell volume changes on membrane ionic permeabilities and sodium transport in frog skin (Rana ridibunda). J Physiol (Lond) 393: 1–17

    CAS  Google Scholar 

  • Costantin J, Alcalen S, Otero ADS, Dubinski WP, Schultz SG (1989) Reconstitution of an inwardly rectifying potassium channel from the basolateral membranes of Necturus enterocytes into planar lipid bilayers. Proc Natl Acad Sci USA 86: 5212–5216

    PubMed  CAS  Google Scholar 

  • Crowley BD, Ferraris JD, Carper D, Burg M (1990) In vivo osmoregulation of aldose reductase mRNA protein, and sorbitol in renal medulla. Am J Physiol 258: F154–F161

    Google Scholar 

  • Csaky TZ, Esposito G (1969) Osmotic swelling of intestinal epithelial cells during active sugar transport. Am J Physiol 217: 753–755

    PubMed  CAS  Google Scholar 

  • Davis CW, Finn AL (1982) Sodium transport inhibition by amiloride reduces basolateral membrane potassium conductance in tight epithelia. Science 216: 525–527

    PubMed  CAS  Google Scholar 

  • Davis CW, Finn AL (1985a) Cell volume regulation in frog urinary bladder. Fed Proc 44: 2520–2525

    PubMed  CAS  Google Scholar 

  • Davis CW, Finn AL (1985b) Effects of mucosal sodium removal on cell volume in Necturus gallbladder epithelium. Am J Physiol 249: C304–C312

    PubMed  CAS  Google Scholar 

  • Davis CW, Finn AL (1987) Interaction of sodium transport, cell volume, and calcium in frog urinary bladder. J Gen Physiol 89: 687–702

    PubMed  CAS  Google Scholar 

  • Davis CW, Finn AL (1988) Potassium induced cell swelling in Necturus gallbladder epithelium. Am J Physiol 254: C643–C650

    PubMed  CAS  Google Scholar 

  • Dawson DC (1987) Properties of epithelial potassium channels. Curr Top Membr Transp 28: 41–72

    CAS  Google Scholar 

  • Dawson DC, Richards NW (1990) Basolateral K conductance: role in regulation of NaCl absorption and secretion. Am J Physiol 259: C181–C195

    PubMed  CAS  Google Scholar 

  • Demarest JR, Loo DDF (1990) Electrophysiology of the parietal cell. Annu Rev Physiol 52: 307–319

    PubMed  CAS  Google Scholar 

  • Diamond JM (1982) Transcellular cross-talk between epithelial cell membranes. Nature 300: 683–685

    PubMed  CAS  Google Scholar 

  • Donaldson PJ, Chen LK, Lewis SA (1989) Effects of serosal anion composition on the permeability properties of rabbit urinary bladder. Am J Physiol 256: F1125–F1134

    PubMed  CAS  Google Scholar 

  • Dube L, Parent L, Sauve R (1990) Hypotonic shock activates a maxi K+ channel in primary cultured proximal tubule cells. Am J Physiol 259: F348–F356

    PubMed  CAS  Google Scholar 

  • Eaton DC, Frace AM, Silverthorn SU (1982) Active and passive Na+ fluxes across the basolateral membrane of rabbit urinary bladder. J Membr Biol 67: 219–229

    PubMed  CAS  Google Scholar 

  • Epstein FH, Silva P (1985) Na-K-Cl cotransport in chloride transporting epithelia. Ann NY Acad Sci 456: 187–197

    PubMed  CAS  Google Scholar 

  • Ericson A-C, Spring KR (1982a) Coupled NaCl entry into Necturus gallbladder epithelial cells. Am J Physiol 243: C140–C145

    PubMed  CAS  Google Scholar 

  • Ericson AC, Spring KR (1982b) Volume regulation by Necturus gallbladder: apical Na+-H+ and CP-HCCV exchange. Am J Physiol 243: C146–C150

    PubMed  CAS  Google Scholar 

  • Eveloff J, Calamia J (1986) Effect of osmolarity on cation fluxes in medullary thick ascending limb cells. Am J Physiol 250: F176–F180

    PubMed  CAS  Google Scholar 

  • Eveloff JL, Warnock DG (1987) Activation of ion transport systems during cell volume regulation. Am J Physiol 252: F1–F10

    PubMed  CAS  Google Scholar 

  • Exton JH (1988) Role of inositol triphosphate and diacylglycerol in the regulation of liver function. In: Arias IM, Jakoby WB, Popper H, Schachter D, Shafritz DA (eds) The liver: biology and pathology. Raven, New York, pp 785–792

    Google Scholar 

  • Farahbakhsh NA, Fain GL (1987) Volume regulation of non-pigmented cells from ciliary epithelium. Invest Ophthalmol Visual Sci 28: 934–944

    CAS  Google Scholar 

  • Field MJ, Giebisch G (1989) Mechanisms of segmental potassium reabsorption and secretion. In: Seldin DW, Giebisch G (eds) The regulation of potassium balance. Raven, New York, pp 139–155

    Google Scholar 

  • Filipovic D, Sackin H (1991) A calcium-permeable stretch-activated cation channel in renal proximal tubule. Am J Physiol 260: F119–F129

    PubMed  CAS  Google Scholar 

  • Finn AL, Reuss L (1975) Effects of changes in the ionic composition of the serosal solution on the electrical properties of the toad urinary bladder epithelium. J Physiol (Lond) 250: 541–548

    CAS  Google Scholar 

  • Fisher RS, Baxendale LM, Helman SI (1986) Sustained increases of apical membrane channel density after inhibition of transport in frog skin. Fed Proc (Abstr) 45: 516

    Google Scholar 

  • Forte JG, Hanzel DK, Urushidani T, Wolosin JM (1989) Pumps and pathways for gastric HC1 secretion. Ann NY Acad Sci 574: 145–158

    PubMed  CAS  Google Scholar 

  • Foskett JK (1990) [Ca2+]i modulation of Cl content controls cell volume in single salivary acinar cells during fluid secretion. Am J Physiol 259: C998–C1004

    PubMed  CAS  Google Scholar 

  • Foskett JK, Melvin JE (1989) Activation of salivary secretion: coupling of cell volume and [Ca2+]i in single cells. Science 244: 1582–1585

    PubMed  CAS  Google Scholar 

  • Foskett JK, Spring KR (1985) Involvement of calcium and cytoskeleton in gallbladder epithelial cell volume regulation. Am J Physiol 248: C27–C36

    PubMed  CAS  Google Scholar 

  • Foskett JK, Ussing HH (1986) Localization of chloride conductance to mitochondriarich cells in frog skin epithelium. J Membr Biol 91: 251–258

    PubMed  CAS  Google Scholar 

  • Fromter E, Gebler B (1977) Electrical properties of amphibian urinary bladder epithelium. III. The cell membrane resistances and the effect of amiloride. Pflügers Arch Eur J Physiol 371: 99–108

    CAS  Google Scholar 

  • Fromter E, Curci S, Gitter AH (1990) Electrophysiological aspects of gastric ion transport. In: Young JA, Wong PYD (eds) Epithelial secretion of water and electrolytes. Springer, Berlin Heidelberg New York, pp 293–311

    Google Scholar 

  • Furlong TJ, Spring KR (1990) Mechanisms underlying volume regulatory decrease by Necturus gallbladder epithelium. Am J Physiol 258: C1016–C1024

    PubMed  CAS  Google Scholar 

  • Garcia-Perez A, Burg M (1990) Importance of organic osmolytes for osmoregulation by renal medullary cells. Hypertension 16: 595–602

    PubMed  CAS  Google Scholar 

  • Garcia-Perez A, Burg M (1991) Role of organic osmolytes in adaptation of renal cells to high osmolality. J Membr Biol 119: 1–13

    PubMed  CAS  Google Scholar 

  • Garcia-Perez A, Martin B, Murphy HR, Uchida S, Murer H, Cowley BD, Handler JS, Burg M (1989) Molecular cloning of cDNA coding for kidney aldose reductase. J Biol Chem 28: 16815–16821

    Google Scholar 

  • Garty H (1986) Mechanism of aldosterone action in tight epithelia. J Membr Biol 90: 193–204

    PubMed  CAS  Google Scholar 

  • Garty H, Furlong TJ, Ellis DE, Spring KR (1991) Sorbitol permease: an apical membrane transporter in cultured renal papillary epithelial cells. Am J Physiol 260: F650–F656

    PubMed  CAS  Google Scholar 

  • Germann WJ, Ernst SA, Dawson DC (1986) Resting and osmotically induced basolateral K conductances in turtle colon. J Gen Physiol 88: 253–274

    PubMed  CAS  Google Scholar 

  • Giebisch GH (1987) Cell models of potassium transport in the renal tubule. Curr Top Membr Transp 28: 133–184

    Google Scholar 

  • Giraldez F, Sepulveda FV (1987) Changes of the apparent chloride permeability of Necturus enterocytes during the sodium-coupled transport of alanine. Biochim Biophys Acta 898: 248–252

    PubMed  CAS  Google Scholar 

  • Giraldez F, Valverde MA, Sepulveda FV (1988) Hypotonicity increases apical membrane Cl conductance in Necturus enterocytes. Biochim Biophys Acta 942: 353–356

    CAS  Google Scholar 

  • Gleeson D, Corasanti JG, Boyer JL (1990) Effects of osmotic stresses on isolated hepatocytes. II. Modulation of intracellular pH. Am J Physiol 258: G299–G307

    PubMed  CAS  Google Scholar 

  • Graf J (1990) Hepatic electrolyte transport and bile formation. In: Young JA, Wong PYD (eds) Epithelial Secretion of water and electrolytes. Springer, Berlin Heidelberg New York, pp 313–332

    Google Scholar 

  • Graf J, Korn P, Peterlik M (1972) Choleretic effects of ouabain and ethacrynic acid in the isolated perfused rat liver. Naunyn Schmiedeberg’s Arch Pharmacol 272: 230–233

    CAS  Google Scholar 

  • Graf J, Haddad P, Häussinger D, Lang F (1988) Cell volume regulation in liver. Renal Physiol Biochem 11: 202–220

    PubMed  CAS  Google Scholar 

  • Graf J, Schild L, Boyer JL, Giebisch G (1990) Volumetric analysis of water and solute fluxes in isolated rat hepatocyte couplets. Renal Physiol Biochem 13: 166

    Google Scholar 

  • Grasset E, Gunter-Smith P, Schultz SG (1983) Effects of Na-coupled alanine transport on intracellular K activities and K conductance of the basolateral membranes of Necturus small intestine. J Membr Biol 71: 89–94

    PubMed  CAS  Google Scholar 

  • Greger R (1985) Ion transport mechanisms in thick ascending limb of Henle’s loop of mammalian nephron. Physiol Rev 65: 760–797

    PubMed  CAS  Google Scholar 

  • Greger R, Schlatter E, Wang F, Forrest JN Jr (1984) Mechanisms of NaCl secretion in rectal gland tubules of spiny dogfish (Squalus acanthias). III. Effects of stimulation of secretion by cyclic AMP. Pflügers Arch Eur J Physiol 402: 376–384

    CAS  Google Scholar 

  • Grinstein S, Rothstein A, Sarkadi B, Gelfand EW (1984) Responses of lymphocytes to anisotonic media: volume-regulatory behavior. Am J Physiol 246: C204–C215

    PubMed  CAS  Google Scholar 

  • Grinstein S, Goetz-Smith JD, Steward D, Beresford BJ, Mellors A (1986) Protein phosphorylation during activation of Na+/H+ exchange by phorbol esters and by osmotic shrinking: possible relation to cell pH and volume regulation. J Biol Chem 261: 8009–8016

    PubMed  CAS  Google Scholar 

  • Gullans S, Blumenfeld JD, Balschi JA, Kaleta M, Brenner RM, Heilig CW, Hebert SC (1988) Accumulation of major organic osmolytes in rat renal inner medulla in dehydration. Am J Physiol 255: R626–R634

    Google Scholar 

  • Gullans S, Heilig CW Stromski ME, Blumenfeld JD (1989) Methylamines and polyols in kidney, urinary bladder, urine, liver, brain, and plasma. Renal Physiol Biochem 12: 191–201

    PubMed  CAS  Google Scholar 

  • Gunther-Smith P, Grasset E, Schultz SG (1982) Sodium coupled amino acid and sugar transport by Necturus small intestine: an equivalent electrical circuit analysis of a rheogenic co-transport system. J Membr Biol 66: 25–39

    Google Scholar 

  • Haddad P, Graf J (1989) Volume-regulatory K+ fluxes in the isolated perfused rat liver: characterization by ion transport inhibitors. Am J Physiol 257: G357–G363

    PubMed  CAS  Google Scholar 

  • Haddad P, Thalhammer T, Graf J (1989) Effect of hypertonic stress on liver cell volume, bile flow and volume regulatory K+ fluxes. Am J Physiol 256: G563–G569

    PubMed  CAS  Google Scholar 

  • Haddad P, Beck JS, Boyer JL, Graf J (1991) Role of chloride ions in liver cell volume regulation. Am J Physiol 261: G340–G348

    PubMed  CAS  Google Scholar 

  • Häussinger D, Lang F (1990) Exposure of perfused liver to hypo tonic conditions modifies cellular nitrogen metabolism. J Cell Biochem 43: 355–361

    PubMed  Google Scholar 

  • Häussinger D, Hallbrucker C, vom Dahl S, Lang F, Gerok W (1990a) Cell swelling inhibits proteolysis in perfused rat liver. Biochem J 272: 239–242

    PubMed  Google Scholar 

  • Häussinger D, Lang F, Bauers K, Gerok W (1990b) Control of hepatic nitrogen metabolism and glutathione release by cell volume regulatory mechanisms. Eur J Biochem 193: 891–898

    Google Scholar 

  • Häussinger D, Stehle T, Lang F (1990c) Volume regulation in liver: further characterization by inhibitors and ionic substitutions. Hepatology 11: 243–254

    PubMed  Google Scholar 

  • Hazama A, Okada Y (1988) Ca2+ sensitivity of volume regulatory K+ and Cl channels in cultured human epithelial cells. J Physiol (Lond) 402: 687–702

    CAS  Google Scholar 

  • Hazama A, Okada Y (1990) Biphasic rises in cytosolic free Ca2+ in association with activation of K+ and Cl conductance during regulatory volume decrease in cultured human epithelial cells. Pflügers Arch Eur J Physiol 416: 710–714

    CAS  Google Scholar 

  • He XL, Ship J, Wu XZ, Brown AM, Wellner RB (1989) Beta-adrenergic control of cell volume and chloride transport in an established rat submandibular cell line. J Cell Physiol 138: 527–535

    PubMed  CAS  Google Scholar 

  • Hebert SC (1986a) Hypertonic cell volume regulation in mouse thick limbs. I. ADH dependency and nephron heterogeneity. Am J Physiol 250: C907–C919

    PubMed  CAS  Google Scholar 

  • Hebert SC (1986b) Hypertonic cell volume regualtion in mouse thick limbs. II. Na+-H+ and C1-HCO3 exchange in basolateral membranes. Am J Physiol 250: C920–C931

    PubMed  CAS  Google Scholar 

  • Hebert SC, Sun A (1988) Hypotonic cell volume regulation in mouse medullary thick ascending limb: effects of ADH. Am J Physiol 255: F962–F969

    PubMed  CAS  Google Scholar 

  • Helander HF, Leth R, Olbe L (1986) Stereological investigations on human gastric mucosa. I. Normal oxyntic mucosa. Anat Rec 216: 373–380

    PubMed  CAS  Google Scholar 

  • Helman SI, Fisher RS (1977) Microelectrode studies of the active Na transport pathways of frog skin. J Gen Physiol 69: 571–604

    PubMed  CAS  Google Scholar 

  • Helman SI, Nageo W, Fisher RS (1979) Ouabain on active transepithelial Na transport in frog skin: studies with microelectrodes. J Gen Physiol 74: 105–127

    PubMed  CAS  Google Scholar 

  • Hermansson K, Spring KR (1986) Potassium induced changes in cell volume of gallbladder epithelium. Pflügers Arch Eur K Physiol 407: S90–S99

    Google Scholar 

  • Higgins TJ, Gebler B, Frömter E (1977) Electrical properties of amphibian urinary bladder epithelium. I. The cell potential profile of Necturus maculosus. Pflügers Arch Eur J Physiol 371: 87–97

    CAS  Google Scholar 

  • Hoffmann EK, Simonsen LO (1989) Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol Rev 69: 315–382

    PubMed  CAS  Google Scholar 

  • Hoffmann EK, Schiodt M, Dunham P (1986) The number of chloridecation cotransport sites on Ehrlich ascites cells measured with [3H] bumetanide. Am J Physiol 250: C688–C693

    PubMed  CAS  Google Scholar 

  • Howard LD, Wondergem R (1987) Effects of anisosmotic medium on cell volume, transmembrane potential and intracellular K+ activity in mouse hepatocytes. J Membr Biol 100: 53–61

    PubMed  CAS  Google Scholar 

  • Hudson RL, Schultz SG (1984) Effects of sodium-coupled sugar transport on intracellular sodium activities and sodium pump activity in Necturus small intestine. Science 224: 1237–1239

    PubMed  CAS  Google Scholar 

  • Hudson RL, Schultz SG (1988) Sodium-glycine uptake by Ehrlich ascites tumor cells results in an increase in cell volume and plasma membrane channel activities. Proc Natl Acad Sci USA 85: 279–283

    PubMed  CAS  Google Scholar 

  • Hunter M (1990) Stretch-activated channels in the basolateral membrane of single proximal cells of frog kidney. Pflügers Arch Eur J Physiol 416: 448–453

    CAS  Google Scholar 

  • Jensen PK, Fisher RS, Spring KR (1984) Feedback inhibition of NaCl entry in Necturus gallbladder epithelial cells. J Membr Biol 82: 95–104

    PubMed  CAS  Google Scholar 

  • Jorgensen PL (1980) Sodium and potassium ion pump in kidney tubules. Physiol Rev 60: 864–917

    PubMed  CAS  Google Scholar 

  • Kanno T (1990) The metabolic basis of secretion by the exocrine pancreas. In: Young JA, Wong PYD (eds) Epithelial secretion of water and electrolytes. Springer, Berlin Heidelberg New York, pp 267–275

    Google Scholar 

  • Kessler M, Semenza AG (1983) The small intestinal Na+, D-glucose cotransporter: an asymmetric gated channel (or pore) responsive to Delta Psi. J Membr Biol 76: 27–56

    PubMed  CAS  Google Scholar 

  • Kimmich GA, Randies J (1988) Na+-coupled sugar cotransport: membrane potential-dependent Km and Ki for Na+. Am J Physiol 255: C485–C494

    Google Scholar 

  • Kinne R, Hannafin JA, Konig B (1985) Role of NaCl-KCl cotransport system in active chloride absorption and secretion. Ann NY Acad Sci 456: 198–206

    PubMed  CAS  Google Scholar 

  • Kirk KL, Halm DR, Dawson DC (1980) Active sodium transport by turtle colon via an electrogenic Na-K exchange pump. Nature 287: 237–239

    PubMed  CAS  Google Scholar 

  • Kirk KL, Schafer JA, DiBona DR (1987) Cell volume regulation in rabbit proximal straight tubule perfused in vitro. Am J Physiol 252: F922–F932

    PubMed  CAS  Google Scholar 

  • Kleinzeller A, Mills JW (1989) K+-induced cell swelling of the dogfish shark (Squalusacanthias) rectal gland cells is associated with changes of the cytoskeleton. Biochim Biophys Acta 1014: 40–52

    PubMed  CAS  Google Scholar 

  • Kleinzeller A, Ziyadeh FN (1990) Cell volume regulation in epithelia - with emphasis on the role of osmolytes and the cytoskeleton. In: Beyenbach KW (ed) Cell volume regulation, vol IV. Comp Physiol. Karger, Basel, pp 59–86

    Google Scholar 

  • Kleinzeller A, Booz GW, Mills JW, Ziyadeh FN (1990) pCMBS-induced swelling of dogfish (Squalus acanthias) rectal gland cells: role of the Na+-K+-ATPase and the cytoskeleton. Biochim Biophys Acta 1025: 21–31

    Google Scholar 

  • Knickelbein R, Aronson PS, Atherton W, Dobbins JW (1983) Sodium and chloride transport across rabbit ileal brush border. I. Evidence for Na-H-exchange. Am J Physiol 245: G504–G510

    PubMed  CAS  Google Scholar 

  • Knickelbein R, Aronson PS, Schron CM, Seifter J, Dobbins J (1985) Sodium and chloride transport across rabbit ileal brush border. II. Evidence for Cl-HCO3 exchange and mechanism of coupling. Am J Physiol 249: G236–G245

    PubMed  CAS  Google Scholar 

  • Koefoed-Johnsen U, Ussing HH (1958) The nature of the frog skin potential. Acta Physiol Scand 42: 298–308

    PubMed  CAS  Google Scholar 

  • Kristensen LO (1980) Energization of alanine transport in isolated rat hepatocytes. Electrogenic Na+-alanine cotransport leading to increased K+ permeability. J Biol Chem 255: 5236–5243

    PubMed  CAS  Google Scholar 

  • Kristensen LO (1986) Associations between transport of alanine and cations across cell membrane in rat hepatocytes. Am J Physiol 251: G575–G584

    PubMed  CAS  Google Scholar 

  • Kristensen LO, Folke M (1984) Volume regulatory K+ efflux during concentrative uptake of alanine in isolated rat hepatocytes. Biochem J 221: 265–268

    PubMed  CAS  Google Scholar 

  • Lambert IH (1989) Leukotriene-D4 induced cell shrinkage in Ehrlich ascites tumor cells. J Membr Biol 108: 165–176

    PubMed  CAS  Google Scholar 

  • Lambert IH, Hoffmann EK, Christensen P (1987) Role of prostaglandins and leukotrienes in volume regulation by Ehrlich ascites tumor cells. J Membr Biol 98: 247–256

    PubMed  CAS  Google Scholar 

  • Lang F, Rehwald W (1992) Potassium channels in renal epithelial transport regulation. Physiol Rev 72: 1–32

    PubMed  CAS  Google Scholar 

  • Lang F, Messner G, Rehwald W (1986) Electrophysiology of sodium-coupled transport in proximal renal tubules. Am J Physiol 250: F953–F962

    PubMed  CAS  Google Scholar 

  • Lang F, Macknight ADC, Ballanyi K, Volkl H, Beck F, Reuss L, Graf J, Hoffmannn EK, Lauf PK, Deutsch C, Gilles R (1988) Cell volume regulation. Renal Physiol Biochem3: 114–288

    Google Scholar 

  • Lang F, Stehle T, Häussinger D (1989) Water, K+, H+, lactate and glucose fluxes during cell volume regulation on perfused rat liver. Pflügers Arch Eur J Physiol 413: 209–216

    CAS  Google Scholar 

  • Lapointe JY, Garneau L, Bell PD, Cardinal J (1990) Membrane cross talk in the proximal tubule during alterations in transepithelial sodium transport. Am J Physiol 258: F339–F345

    PubMed  CAS  Google Scholar 

  • Larsen EH, Ussing HH, Spring KR (1987) Ion transport in mitochondria-rich cells in toad skin. J Membr Biol 99: 25–40

    PubMed  CAS  Google Scholar 

  • Larson M, Spring KR (1984) Volume regulation by Necturus gallbladder: basolateral KC1 exit. J Membr Biol 81: 219–232

    PubMed  CAS  Google Scholar 

  • Larson M, Spring KR (1987) Volume regulation in epithelia. Curr Top Membr Transp 30: 105–120

    CAS  Google Scholar 

  • Lau KR, Hudson RL, Schultz SG (1984) Cell swelling increases a barium inhibitable potassium conductance in the basolateral membrane of Necturus small intestine. Proc Natl Acad Sci USA 81: 3591–3594

    PubMed  CAS  Google Scholar 

  • Lau KR, Hudson RL, Schultz SG (1986) Effect of hypertonicity on the increase in basolateral conductance of Necturus small intestine in response to Na+-sugar cotransport. Biochim Biophys Acta 855: 193–196

    PubMed  CAS  Google Scholar 

  • Lau KR, Elliott AC, Brown PD, Case RM (1990) Bicarbonate transport by salivary gland acinar cells. In: Young JA, Wong PYD (eds) Epithelial secretion of water and electrolytes. Springer, Berlin Heidelberg New York, pp 171–187

    Google Scholar 

  • Leblanc G, Morel F (1975) Na and K movements across the membrane of frog skin epithelium associated with transient current changes. Pflügers Arch Eur J Physiol 358: 159–177

    CAS  Google Scholar 

  • Lechene C (1985) Cell volume and cytoplasmic gel. Biol Cell 55: 177–180

    PubMed  CAS  Google Scholar 

  • Lee CO, Armstrong WMcD (1972) Activities of sodium and potassium ions in epithelial cells of small intestine. Science 175: 1261–1264

    PubMed  CAS  Google Scholar 

  • Leibowich S, DeLong J, Civan MM (1988) Apical Na+ permeability of frog skin during serosal Cl replacement. J Membr Biol 102: 121–130

    PubMed  CAS  Google Scholar 

  • Lewis SA, DeMoura JLC (1982) Incorporation of cytoplasmic vesicles into apical membrane of mammalian urinary bladder epithelium. Nature 297: 675–688

    Google Scholar 

  • Lewis SA, DeMoura JLC (1984) Apical membrane area of rabbit urinary bladder increases by fusion of intracellular vesicles: an electrophysiological study. J Membr Biol 82: 123–136

    PubMed  CAS  Google Scholar 

  • Lewis SA, Diamond JM (1976) Na+ transport by rabbit urinary bladder, a tight epithelium. J Membr Biol 28: 1–40

    PubMed  CAS  Google Scholar 

  • Lewis SA, Donaldson P (1989) Sodium dependence of cation permeabilities and transport. Curr Top Membr Transp 34: 83–104

    CAS  Google Scholar 

  • Lewis SA, Donaldson P (1990) Ion channels and cell volume regulation: chaos in an organized system. News Physiol Sci 5: 112–119

    Google Scholar 

  • Lewis SA, Eaton DC, Diamond JM (1976) The mechanism of Na+ transport by rabbit urinary bladder. J Membr Biol 28: 41–70

    PubMed  CAS  Google Scholar 

  • Lewis SA, Butt AG, Bowler MJ, Leader JP, Macknight ADC (1985) Effects of anions on cellular volume and transepithelial Na+ transport across toad urinary bladder. J Membr Biol 83: 119–137

    PubMed  CAS  Google Scholar 

  • Liedtke CM, Hopfer U (1982) Mechanism of Cl translocation across small intestinal brush border membrane. I. Absence of Na-Cl cotransport. Am J Physiol 242: G263–G271

    PubMed  CAS  Google Scholar 

  • Lienhard GE (1983) Regulation of cellular membrane transport by exocytotic insertion and endocytic retrieval of transporters. Trends Biochem Sci 8: 125–127

    CAS  Google Scholar 

  • Lipton P (1972) Effect of changes in osmolarity on sodium transport accross the isolated toad bladder. Am J Physiol 222: 821–828

    PubMed  CAS  Google Scholar 

  • Lohr J, Sullivan LP, Cragoe EJ, Grantham JJ (1989) Volume regulation determinants in isolated proximal tubules in hypertonic medium. Am J Physiol 256: F622–F631

    PubMed  CAS  Google Scholar 

  • Loo DDF, Kaunitz JD (1989) Ca2+ and cAMP activated K+ channels in the basolateral membrane of crypt cells isolated from rabbit distal colon. J Membr Biol 110: 19–28

    PubMed  CAS  Google Scholar 

  • Lopes AG, Guggino WB (1987) Volume regulation in the early proximal tubule of the Necturus kidney. J Membr Biol 97: 117–125

    PubMed  CAS  Google Scholar 

  • Lopes AG, Amzel LM, Markakis D, Guggino WB (1988) Cell volume regulation by the thin descending limb of Henle’s loop. Proc Natl Acad Sci USA 85: 2873–2877

    PubMed  CAS  Google Scholar 

  • Lote CJ, Haylor J (1989) Eicosanoids in renal function. Prostaglandins Leukot Essent Fatty Acids 36: 203–217

    PubMed  CAS  Google Scholar 

  • Machen TE, Townsley MC, Paradiso AM, Wenzl E, Negulescu PA (1989) H and HCO3 transport across the basolateral membrane of the parietal cell. Ann NY Acad Sci 574: 447–462

    PubMed  CAS  Google Scholar 

  • Macknight ADC (1988) Principles of cell volume regulation. Renal Physiol Biochem 11: 114–141

    PubMed  CAS  Google Scholar 

  • Macknight ADC, Pigrim JP, Robinson BA (1974) The regulation of cellular volume in liver slices. J Physiol 238: 279–294

    PubMed  CAS  Google Scholar 

  • MacLeod RJ, Hamilton JR (1991a) Volume regulation initiated by Na+-nutrient cotransport in isolated mammalian villus enterocytes. Am J Physiol 260: G26–G33

    PubMed  CAS  Google Scholar 

  • MacLeod RJ, Hamilton JR (1991b) Separate K+ and Cl transport pathways are acitvated for regulatory volume decrease in jejunal villus cells. Am J Physiol 260: G405–G415

    PubMed  CAS  Google Scholar 

  • MacRobbie EAC, Ussing HH (1961) Osmotic behaviour of the epithelial cells of frog skin. Acta Physiol Scand 53: 348–365

    PubMed  CAS  Google Scholar 

  • Marin R, Proverbio T, Proverbio F (1989) The effect of K+ on the volume regulation in rat kidney cortex cells. Biomed Biochim Acta 48: 303–315

    PubMed  CAS  Google Scholar 

  • Marsh DJ, Spring KR (1985) Polarity of volume regulatory increase in Necturus gallbladder epithelium. Am J Physiol 249: C471–C475

    PubMed  CAS  Google Scholar 

  • Maruyama Y (1989) Control of exocytosis in single cells. NIPS 4: 53–56

    Google Scholar 

  • McCann JD, Welsh MJ (1990) Regulation of Cl and K+ channels in airway epithelium. Annu Rev Physiol 52: 115–135

    PubMed  CAS  Google Scholar 

  • McCann JD, Li M, Welsh MJ (1989) Identification and regulation of whole-cell chloride currents in airway epithelium. J Gen Physiol 94: 1015–1036

    PubMed  CAS  Google Scholar 

  • McCarty NA, O’Neil RG (1990) Dihydropyridine-sensitive cell volume regulation in proximal tubule: the calcium window. Am J Physiol 259: F950–F960

    PubMed  CAS  Google Scholar 

  • Messner G, Oberleithner H, Lang F (1985) The effect of phenylalanine on the electrical properties of proximal tubule cells in the frog kidney. Pflügers Arch Eur J Physiol 404: 138–144

    CAS  Google Scholar 

  • Mills JW (1987) The cytoskeleton: possible role in volume control. Curr Top Membr Transp 30: 75–101

    Google Scholar 

  • Mills JW, Lubin M (1986) Effect of adenosine 3′,5′-cyclic monophosphate on volume and cytoskeleton of MDCK cells. Am J Physiol 250: C319–C324

    PubMed  CAS  Google Scholar 

  • Mills JW, Skiest DL (1985) Role of cyclic AMP and the cytoskeleton in volume control in MDCK cells. Mol Physiol 8: 247–262

    CAS  Google Scholar 

  • Mircheff AK, Bradley ME, Yiu SC, Lambert RW (1989) Rapid stimulation associated changes in exocrine Na+,K+-ATPase subcellular distribution. Curr Top Membr Transp 34: 121–142

    CAS  Google Scholar 

  • Montero MC, Ilundain A (1989) Effects of anisosmotic buffers on K+ transport in isolated chicken enterocytes. Biochim Biophys Acta 979: 269–271

    PubMed  CAS  Google Scholar 

  • Montrose-Rafizadeh C, Guggino WB (1990) Cell volume regulation in the nephron. Annu Rev Physiol 52: 761–772

    PubMed  CAS  Google Scholar 

  • Montrose-Rafizadeh C, Guggino WB (1991) Role of intracellular calcium in volume regulation by rabbit medullary thick ascending limb cells. Am J Physiol 260: F402–F409

    CAS  Google Scholar 

  • Moran WM, Hudson RL, Schultz SG (1986) Transcellular sodium transport and intracellular sodium activities in rabbit gall-bladder. Am J Physiol G155–G159

    Google Scholar 

  • Moriyama T, Garcia-Perez A, Burg M (1989) Osmotic regulation of aldose reductase protein synthesis in renal medullary cells. J Biol Chem 264: 16810–16814

    PubMed  CAS  Google Scholar 

  • Moriyama T, Garcia-Perez A, Burg M (1990) Factors affecting the ratio of different organic osmolytes in renal medullary cells. Am J Physiol 259: F847–F858

    PubMed  CAS  Google Scholar 

  • Muallem S, Loessberg PA (1990) Intracellular pH-regulatory mechanisms in pancreatic acinar cells. II. Regulation of H+ and HCO3 transporters by Ca2+-mobilizing agonists. J Biol Chem 265: 12813–12819

    PubMed  CAS  Google Scholar 

  • Nakahari T, Murakami M, Yoshida H, Miyamoto M, Sohma Y, Imai Y (1990) Decrease in rat submandibular acinar cell volume during ACh stimulation. Am J Physiol 258: G878–G886

    PubMed  CAS  Google Scholar 

  • Nakanishi T, Burg MB (1989) Osmoregulation of glycerophosphorylcholine content of mammalian renal cells. Am J Physiol 257: C795–C801

    PubMed  CAS  Google Scholar 

  • Natke E (1990) Cell volume regulation of rabbit cortical collecting tubule in anisotonic media. Am J Physiol 258: F1657–F1665

    PubMed  Google Scholar 

  • Nauntofte B, Poulsen JH (1986) Effects of Ca2+ and furosemide on Cl transport and O2 uptake in rat parotid acini. Am J Physiol 251: C175–C185

    PubMed  CAS  Google Scholar 

  • Ngezahayo A, Kolb HA (1990) Gap junction permeability is affected by cell volume changes and modulates volume regulation. FEBS Lett 276: 6–8

    PubMed  CAS  Google Scholar 

  • Nielsen R (1979) A 3 to 2 coupling ratio of the Na-K pump responsible for the transepithelial Na transport in frog skin as disclosed by the effect of Ba. Acta Physiol Scand 107: 189–191

    PubMed  CAS  Google Scholar 

  • Novak I (1990) Electrolyte transport in pancreatic ducts. In: Young JA, Wong PYD (eds) Epithelial secretion of water and electrolytes. Springer, Berlin Heidelberg New York, pp 239–252

    Google Scholar 

  • Novak I, Greger R (1988a) Electrophysiological study of transport systems in isolated perfused pancreatic ducts: properties of the basolateral membrane. Pflügers Arch Eur J Physiol 411: 58–68

    CAS  Google Scholar 

  • Novak I, Greger R (1988b) Properties of the luminal membrane of isolated perfused rat pancreatic ducts. Effect of cyclic AMP and blockers of chloride transport. Pflügers Arch Eur J Physiol 411: 546–553

    CAS  Google Scholar 

  • O’Grady SM, Musch MW, Field M (1986) Stoichiometry and ion affinities of the Na-K-Cl cotransport system in the intestine of the winter flounder (Pseudopleuronectes americanus). J Membr Biol 91: 33–41

    PubMed  Google Scholar 

  • O’Grady SM, Palfrey HC, Field M (1987) Characteristics and functions of Na-K-Cl cotransport in epithelial tissues. Am J Physiol 253: C177–C192

    PubMed  Google Scholar 

  • Olea RS, Pasantes-Morales H, Lazaro A, Cereijido M (1991) Osmolarity-sensitive release of free amino acids from cultured kidney cells (MDCK). J Membr Biol 121: 1–9

    Google Scholar 

  • O’Neil R (1989) Modulation of Na+,K+-ATPase expression in renal collecting duct. Curr Top Membr Transp 34: 209–228

    Google Scholar 

  • Ozawa T, Saito Y, Nishiyama A (1988) Mechanism of uphill chloride transport of the mouse lacrimal acinar cells: studies with Cl sensitive microelectrode. Pflügers Arch Eur J Physiol 412: 509–515

    CAS  Google Scholar 

  • Palmer LG, Sackin H (1988) Regulation of renal ion channels. FASEB J 2: 3061–3065

    PubMed  CAS  Google Scholar 

  • Palmer LG, Edelman IS, Lindemann B (1980) Current-voltage analysis of apical sodium transport in toad urinary bladder: effects of inhibitors of transport and metabolism. J Membr Biol 57: 59–71

    PubMed  CAS  Google Scholar 

  • Palmer LG, Frindt G, Silver RB, Strieter J (1989) Feedback regulation of epithelial sodium channels. Curr Top Membr Transp 34: 45–60

    CAS  Google Scholar 

  • Paradiso AM, Negulescu PA, Machen TE (1986) Na+-H+ and Cr-OH (HCO3 ) exchange in gastric glands. Am J Physiol 250: G524–G534

    PubMed  CAS  Google Scholar 

  • Persson B-E, Larson M (1986) Carbonic anhydrase inhibition and cell volume regulation in Necturus gallbladder. Acta Physiol Scand 128: 501–507

    PubMed  CAS  Google Scholar 

  • Persson B-E, Spring KR (1982) Gallbladder epithelial cell hydraulic water permeability and volume regulation. J Gen Physiol 79: 481–505

    PubMed  CAS  Google Scholar 

  • Petersen OH (1986) Calcium-activated potassium channels and fluid secretion by exocrine glands. Am J Physiol 251: G1–G13

    PubMed  CAS  Google Scholar 

  • Petersen OH, Maruyama Y (1984) Calcium activated potassium channels and their role in secretion. Nature 307: 693–696

    PubMed  CAS  Google Scholar 

  • Pierce SK, Politis AD (1990) Ca2+-activated cell volume recovery mechanisms. Annu Rev Physiol 52: 27–42

    PubMed  CAS  Google Scholar 

  • Pirani D, Evans LAR, Cook DI, Young JA (1987) Intracellular pH in the rat mandibular salivary gland: the role of Na-H and C1-HCO3 antiports in secretion. Pflügers Arch Eur J Physiol 408: 178–184

    CAS  Google Scholar 

  • Pollack LR, Tate EM, Cook JS (1981) Turnover and regulation of Na,K-ATPase in HeLa cells. Am J Physiol 67: 537–552

    Google Scholar 

  • Powell DW (1979) Transport in large intestine. In: Giebisch G, Tosteson DC, Ussing HH (eds) Membrane transport in biology, vol IVB. Springer, Berlin Heidelberg New York, pp 781–809

    Google Scholar 

  • Powell DW (1987) Intestinal water and electrolyte transport. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Raven Press, New York, pp 1267–1305

    Google Scholar 

  • Proverbio F, Duque JA, Proverbio T, Marin R (1988) Cell volume-sensitive Na+-ATPase activity in rat kidney cortex cell membranes. Biochim Biophys Acta 941: 107–110

    PubMed  CAS  Google Scholar 

  • Proverbio F, Marin R, Proverbio T (1989) The “second” sodium pump and cell volume. Curr Top Membr Transp 34: 105–120

    CAS  Google Scholar 

  • Quinton PM, Reddy MM (1989) Cl conductance and acid secretion in the human sweat duct. Ann NY Acad Sci 574: 438–446

    PubMed  CAS  Google Scholar 

  • Reuss L (1985) Independence of apical membrane Na+ and Cl entry in Necturus gallbladder epithelium. J Gen Physiol 84: 423–445

    Google Scholar 

  • Reuss L (1988) Cell volume regulation in nonrenal epithelia. Renal Physiol Biochem 3–5: 187–201

    Google Scholar 

  • Reuss L (1989) Regulation of transepithelial chloride transport by amphibian gallbladder epithelium. Ann NY Acad Sci 574: 370–384

    PubMed  CAS  Google Scholar 

  • Richards NW, Dawson DC (1986) Single potassium channels blocked by lidocaine and quinidine in isolated turtle colon epithelial cells. Am J Physiol 251: C85–C89

    PubMed  CAS  Google Scholar 

  • Rick R, Beck FX, Dorge A, Thurau K (1987) Intracellular ion concentration in the frog cornea epithelium during stimulation and inhibition of Cl secretion. J Membr Biol 95: 229–240

    PubMed  CAS  Google Scholar 

  • Robertson GL, Berl T (1991) Pathophysiology of water metabolism. In: Brenner BM, Rector FC (eds) The kidney. Saunders, Philadelphia pp 677–736

    Google Scholar 

  • Roden M, Turnheim K (1988) Sodium pump quantity and turnover in rabbit descending colon at different rates of sodium absorption. Pflügers Arch Eur J Physiol 413: 181–189

    CAS  Google Scholar 

  • Rome L, Grantham J, Savin V, Lohr J, Lechene C (1989) Proximal tubule volume regulation in hyperosmotic media: intracellular K+, Na+, and Cl. Am J Physiol 257: C1093–C1100

    PubMed  CAS  Google Scholar 

  • Ronson CW, Nixon BT, Ausbel FM (1987) Conserved domains in bacterial regulatory proteins that respond to environmental stimuli. Cell 49: 579–581

    PubMed  CAS  Google Scholar 

  • Rossier BC, Geering K, Kraehenbuhl JP (1987) Regulation of the sodium pump: how and why? Trends Biochem Sci 12: 483–487

    CAS  Google Scholar 

  • Roy G, Sauve R (1987) Effect of anisotonic media on volume, ion, and amino-acid content and membrane potential of kidney cells (MDCK) in culture. J Membr Biol 100: 83–96

    PubMed  CAS  Google Scholar 

  • Sachs F (1987) Baroreceptor mechanisms at the cellular level. Fed Proc 46: 12–16

    PubMed  CAS  Google Scholar 

  • Sachs G, Spenney JG, Lewin M (1978) H+ transport: regulation and mechanism in gastric mucosa and membrane vesicles. Physiol Rev 58: 106–173

    PubMed  CAS  Google Scholar 

  • Sackin H (1987) Stretch-activated potassium channels in renal proximal tubule. Am J Physiol 253: F1253–F1262

    PubMed  CAS  Google Scholar 

  • Sackin H (1989) A stretch-activated K+ channel sensitive to cell volume. Proc Natl Acad Sci USA 86: 1731–1735

    PubMed  CAS  Google Scholar 

  • Sackin H (1990) Regulation of renal proximal tubule basolateral potassium channels. Prog Clin Biol Res 334: 231–249

    PubMed  CAS  Google Scholar 

  • Sackin H, Palmer LG (1987) Basolateral potassium channels in renal proximal tubule. Am J Physiol 253: F476–F487

    PubMed  CAS  Google Scholar 

  • Saikia TC (1991) Composition of the renal cortex and medulla of rats during water diuresis and antidiuresis. Q J Exp Physiol 50: 146–157

    Google Scholar 

  • Saito Y, Wright WM (1987) Regulation of intracellular chloride in bullfrog choroids plexus. Brain Res 417: 267–272

    PubMed  CAS  Google Scholar 

  • Saito Y, Ozawa T, Suzuki S, Nishiyama A (1988) Intracellular pH regulation in mouse lacrimal gland acinar cells. J Membr Biol 101: 73–81

    PubMed  CAS  Google Scholar 

  • Saito Y, Ozawa T, Nishiyama A (1990) Electrolyte secretion by the lacrimal gland. In: Young JA, Wong PYD (eds) Epithelial secretion of water and electrolytes. Springer, Berlin Heidelberg New York, pp 229–237

    Google Scholar 

  • Sánchez Olea R, Pasantes-Morales H, Lázaro A, Cereijido M (1991) Osmolarity-sensitive release of free amino acids from cultured kidney cells (MDCK). J Membr Biol 121: 1–9

    PubMed  Google Scholar 

  • Sandle GI, Fraser G, Long S, Warhurst G (1990) A cAMP-activated chloride channel in the plasma membrane of cultured human gastric cells (HGT-1). Pflügers Arch Eur J Physiol 417: 259–263

    CAS  Google Scholar 

  • Sands JM, Knepper MA, Spring KR (1986) Na-K-Cl cotransport in apical membrane of rabbit renal papillary surface epithelium. Am J Physiol 251: F457–F484

    Google Scholar 

  • Schild L, Aronson PS, Giebisch G (1990) Effect of apical Cl-formate exchange on cell volume in rabbit proximal tubule. Am J Physiol 258: F530–F536

    PubMed  CAS  Google Scholar 

  • Schild L, Aronson PS, Giebisch G (1991) Basolateral transport pathways for K+ and Cl in rabbit proximal tubule: effects on cell volume. Am J Physiol 260: F101–F109

    PubMed  CAS  Google Scholar 

  • Schmidt-Nielson B (1975) Comparative physiology of cellular ion and volume-regulation. J Exp Zool 194: 207–220

    Google Scholar 

  • Schmolke M, Beck F, Guder WG (1989) Effect of antidiuretic hormone on renal organic osmolytes in brattleboro rats. Am J Physiol 257: F732–F737

    PubMed  CAS  Google Scholar 

  • Schultz SG (1972) Electrical potential differences and electromotive forces in epithelia. J Gen Physiol 59: 794–798

    PubMed  CAS  Google Scholar 

  • Schultz SG (1981) Homocellular regulatory mechanisms in sodium-transporting tissues: avoidance of extinction by “flush-through”. Am J Physiol 241: F579–F590

    PubMed  CAS  Google Scholar 

  • Schultz SG (1986) Cellular models of epithelial ion transport. In: Andreoli TF, Hoffman JF, Fanestil DD, Schultz SG (eds) Physiology of membrane disorders, 2nd edn. Plenum Press, New York, pp 519–534

    Google Scholar 

  • Schultz SG (1989a) Volume preservation: then and now. News Physiol Sci 4: 169–172

    Google Scholar 

  • Schultz SG (1989b) Intracellular sodium activities and basolateral membrane potassium conductances of sodium absorbing epithelia. Curr Top Membr Transp 34: 21–44

    CAS  Google Scholar 

  • Schultz SG, Hudson RL (1986) How do sodium absorbing cells do their job and survive? News Physiol Sci 1: 185–189

    CAS  Google Scholar 

  • Schultz SG, Zalusky R (1964) Ion transport in isolated rabbit ileum. II. The interaction between active sodium and active sugar transport. J Gen Physiol 47: 1043–1059

    PubMed  CAS  Google Scholar 

  • Sernka TJ (1990) Direct hyposmotic stimulation of gastric acid secretion. Membr Biochem 9: 1–7

    PubMed  CAS  Google Scholar 

  • Siebens AW, Kregenow FM (1985) Volume regulatory responses of Amphiuma red cells in anisotonic media. J Gen Physiol 86: 527–564

    PubMed  CAS  Google Scholar 

  • Siebens AW, Spring KR (1989) A novel sorbitol transport mechanism in cultured renal papillary epithelial cells. Am J Physiol 257: F937–F946

    PubMed  CAS  Google Scholar 

  • Silva P, Myers M, Epstein FH (1986) Stoichiometry of sodium chloride transport by rectal gland of Squalus acanthias. Am J Physiol 250: F516–F519

    PubMed  CAS  Google Scholar 

  • Simmons NL (1984) Epithelial cell volume regulation in hypotonic fluids: studies using a model tissue culture renal epithelial cell system. Q J Exp Physiol 69: 83–95

    PubMed  CAS  Google Scholar 

  • Singh J (1984) Effects of acetylcholine and caerulein on 86Rb+ efflux in the mouse pancreas. Evidence for a sodium-potassium-chloride cotransport system. Biochem Biophys Acta 775: 77–85

    PubMed  CAS  Google Scholar 

  • Soltoff SP, McMillian MK, Cantley LC, Cragoe EJ Jr, Talamo BR (1989) Effects of muscarinic, alpha-adrenergic, and substance P agonists and ionomycin on ion transport mechanisms in the rat parotid acinar cell. The dependence of ion transport on intracellular calcium. J Gen Physiol 93: 285–319

    PubMed  CAS  Google Scholar 

  • Soltoff SP, McMillian MK, Cragoe EJ Jr, Cantley LC, Talamo BR (1990) Effects of extracellular ATP on ion transport systems and [Ca2+]i in rat parotid acinar cells. Comparison with the muscarinic agonist carbachol. J Gen Physiol 95: 319–346

    PubMed  CAS  Google Scholar 

  • Spring KR, Siebens AW (1988) Solute transport and epithelial cell volume regulation. Comp Biochem Physiol 90A: 557–560

    CAS  Google Scholar 

  • Spring KR, Ussing HH (1986) The volume of mitochondriarich cells of frog skin epithelium. J Membr Biol 92: 21–26

    PubMed  CAS  Google Scholar 

  • Stetson DL, Beauwens R, Palmisano J, Mitchell PP, Steinmetz PR (1985) A double-membrane model for urinary bicarbonate secretion. Am J Physiol 249: F546–F552

    PubMed  CAS  Google Scholar 

  • Stoddard JS, Reuss L (1989) Electrophysiological effects of mucosal Cl-removal in Necturus gallbladder epithelium. Am J Physiol 257: C568–C578

    PubMed  CAS  Google Scholar 

  • Strange K (1989) Volume regulation following Na+ pump inhibition in CCT principal cells: apical K+ loss. Am J Physiol 257: C1093–C1100

    Google Scholar 

  • Stuenkel EL, Machen TE, Williams JA (1988) pH regulatory mechanisms in rat pancreatic ductal cells. Am J Physiol 254: G925–G930

    PubMed  CAS  Google Scholar 

  • Sudo J-I, Morel F (1984) Na+ and K+ cell concentrations in collagenase-treated rat kidney tubules incubated at various temperatures. Am J Physiol 246: C407–C414

    PubMed  CAS  Google Scholar 

  • Sun A, Hebert SC (1989) Rapid hypertonic cell volume regulation in the perfused inner medullary collecting duct. Kidney Int 36: 831–842

    PubMed  CAS  Google Scholar 

  • Sun AM, Soldzberg SN, Kikeri D, Hebert SC (1990) Mechanisms of cell volume regulation by the mouse medullary thick ascending limb of Henle. Kidney Int 38: 1019–1029

    PubMed  CAS  Google Scholar 

  • Suzuki M, Kawahara K, Ogawa A, Morita T, Kawaguchi Y, Kurihara S, Sakai O (1990) [Ca2+]i rises via G protein during regulatory volume decrease in rabbit proximal tubule cells. Am J Physiol 258: F690–F696

    PubMed  CAS  Google Scholar 

  • Taniguchi J, Guggino WB (1989) Membrane stretch: a physiological stimulator of Ca2+-activated K+ channels in thick ascending limb. Am J Physiol 257: F347–F352

    PubMed  CAS  Google Scholar 

  • Tauc M, Le-Maout S, Poujeol P (1990) Fluorescent video-microscopy study of regulatory volume decrease in primary culture of rabbit proximal convoluted tubule. Biochim Biophys Acta 1052: 278–284

    PubMed  CAS  Google Scholar 

  • Thomas SR, Suzuki Y, Thompson SM, Schultz SG (1983) Electrophysiology of Necturus urinary bladder. I. “Instantaneous” current-voltage relations in the presence of varying mucosal sodium concentrations. J Membr Biol 73: 157–175

    PubMed  CAS  Google Scholar 

  • Tosteson DC, Hoffmann JF (1960) Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J Gen Physiol 44: 169–194

    PubMed  CAS  Google Scholar 

  • Tune BM, Burg MB (1971) Glucose transport by proximal renal tubules. Am J Physiol 221: 580–585

    PubMed  CAS  Google Scholar 

  • Turner RJ, George JN, Baum BJ (1986) Evidence for a Na/K/Cl cotransport system in basolateral membrane vesicles from rabbit parotid. J Membr Biol 94: 143–152

    PubMed  CAS  Google Scholar 

  • Turnheim K (1991) Intrinsic regulation of apical sodium entry in epithelia. Physiol Rev 71: 429–445

    PubMed  CAS  Google Scholar 

  • Turnheim K, Frizzell RA, Schultz SG (1978) Interaction between cell sodium and the amiloride-sensitive sodium entry step in rabbit colon. J Membr Biol 39: 233–256

    PubMed  CAS  Google Scholar 

  • Turnheim K, Thompson SM, Schultz SG (1983) Relation between intracellular sodium and active sodium transport in rabbit colon: current-voltage relations of the apical sodium entry mechanism in the presence of varying luminal sodium concentrations. J Membr Biol 76: 299–309

    PubMed  CAS  Google Scholar 

  • Turnheim K, Plass H, Grasl M, Krivanek P, Wiener H (1986) Sodium absorption and potassium secretion in rabbit colon during sodium deficiency. Am J Physiol 250: F235–F245

    PubMed  CAS  Google Scholar 

  • Turnheim K, Hudson RL, Schultz SG (1987) Cell Na+ activities and transcellular Na+ absorption by descending colon from normal and Na+-deprived rabbits. Pflügers Arch Eur J Physiol 410: 279–283

    CAS  Google Scholar 

  • Turnheim K, Costantin J, Chan S, Schultz SG (1989) Reconstitution of a calcium-activated potassium channel in basolateral membranes of rabbit colonocytes into planar lipid bilayers. J Membr Biol 112: 247–254

    PubMed  CAS  Google Scholar 

  • Ubl J, Murer H, Kolb HA (1988a) Hypotonic shock evokes opening of Ca2+ activated K channels in opossum kidney cells. Pflügers Arch Eur J Physiol 412: 551–553

    CAS  Google Scholar 

  • Ubl J, Murer H, Kolb HA (1988b) Ion channels activated by osmotic and mechanical stress in membranes of opossum kidney cells. J Membr Biol 104: 223–232

    PubMed  CAS  Google Scholar 

  • Uchida S, Garcia-Perez A, Murphy H, Burg MB (1989) Signal for induction of aldose reductase in renal medullary cells by high external NaCl. Am J Physiol 256: C614–C620

    PubMed  CAS  Google Scholar 

  • Ussing HH (1965) Relationship between osmotic reactions and active sodium transport in frog skin epithelium. Acta Physiol Scand 63: 141–155

    PubMed  CAS  Google Scholar 

  • Ussing HH (1985) Volume regulation and basolateral co-transport of sodium, potassium and chloride ions in frog skin epithelium. Pflügers Arch Eur J Physiol 405 (Suppl 1): S2–S7

    CAS  Google Scholar 

  • Ussing HH (1986) Epithelial cell volume regulation illustrated by experiments in frog skin. Renal Physiol 9: 38–46

    PubMed  CAS  Google Scholar 

  • Ussing HH (1987) Role of potassium in epithelial transport illustrated by experiments on frog skin epithelium. Curr Top Membr Transp 28: 3–18

    CAS  Google Scholar 

  • Ussing HH (1990) Volume regulation of frog skin epithelium. In: Beyenbach KW (ed) Comparative physiology, vol 4. Cell volume regulation. Karger, Basel, pp 87–113

    Google Scholar 

  • Ussing HH, Biber TUL, Bricker NB (1965) Exposure of the isolated frog skin to high potassium concentrations at the internal surfaces. J Gen Physiol 48: 425–433

    PubMed  CAS  Google Scholar 

  • Valtin H (1966) Sequestration of urea and nonurea solutes in renal tissues of rats with hereditary hypothalamic diabetes insipidus: effect of vasopressin and dehydration on the countercurrent mechanism. J Clin Invest 45: 337–345

    PubMed  CAS  Google Scholar 

  • van Driessche W, Erlij P (1983) Noise analysis of inward and outward Na+ currents across the apical borders of ouabain-treated frog skin. Pflügers Arch Eur J Physiol 398: 179–188

    Google Scholar 

  • van Dyke R, Scharschmidt B (1983) (Na,K)-ATPase mediated cation pumping in cultured rat hepatocytes. Rapid modulation by alanine and taurocholate transport and characterization of its relationship to intracellular sodium concentration. J Biol Chem 285: 12912–12919

    Google Scholar 

  • van Rossum GDV, Russo MA (1981) Ouabain-resistant mechanism of volume control and the ultrastructural organization of liver slices recovering from swelling in vitro. J Membr Biol 59: 191–209

    PubMed  Google Scholar 

  • van Rossum GDV, Russo MA (1984) Requirement of CP and Na+ for the ouabain resistant control of cell volume in slices of rat liver. J Membr Biol 77: 63–76

    PubMed  Google Scholar 

  • van Rossum GDV, Russo MA, Schisselbauer JC (1987) Role of cytoplasmic vesicles in volume maintenance. Curr Top Membr Transp 30: 45–74

    Google Scholar 

  • Venosa RA (1991) Hypo-osmotic stimulation of active Na+ transport in frog muscle: apparent upregulation. J Membr Biol 120: 97–104

    PubMed  CAS  Google Scholar 

  • Volkl H, Lang F (1990) Effect of potassium on cell volume regulation in renal straight proximal tubules. J Membr Biol 117: 113–122

    PubMed  CAS  Google Scholar 

  • Volkl H, Paulmichl M, Lang F (1988) Cell volume regulation in renal cortical cells. Renal Physiol Biochem 11: 158–173

    PubMed  CAS  Google Scholar 

  • vom Dahl S, Hallbrucker C, Lang F, Gerok W, Häussinger D (1991) Regulation of liver cell volume and proteolysis by glucagon and insulin. Biochem J 278: 519–521

    Google Scholar 

  • Wade JB (1986) Role of membrane fusion in hormonal regulation of epithelial transport. Annu Rev Physiol 48: 213–223

    PubMed  CAS  Google Scholar 

  • Wangemann P, Marcus DC (1990) K+-induced cell swelling of vestibular dark cells is dependent on Na+ and Cl and inhibited by piretanide. Pflügers Arch Eur J Physiol 416: 262–269

    CAS  Google Scholar 

  • Wartford M (1990) A “swell” way to regulate metabolism. TIBS 15: 329–330

    Google Scholar 

  • Weinman SA, Reuss L (1982) Na-H exchange at the apical membrane of Necturus gallbladder. J Gen Physiol 80: 299–321

    PubMed  CAS  Google Scholar 

  • Welling PA, Linshaw MA (1988) Importance of anion in hypotonic volume regulation of rabbit proximal straight tubule. Am J Physiol 255: R853–R860

    Google Scholar 

  • Welling PA, O’Neil RG (1989) Cell swelling activates basolateral Cl and K conductances in rabbit proximal tubule. Am J Physiol 258: F951–F962

    Google Scholar 

  • Welling PA, Linshaw MA, Sullivan LP (1985) Effect of barium on cell volume regulation in rabbit proximal straight tubules. Am J Physiol 249: F20–F27

    PubMed  CAS  Google Scholar 

  • White JF, Imon MA (1983) Effect of galactose on intracellular potential and sodium activity in urodele small intestine. Evidence for basolateral electrogenic transport. In: Gilles-Baillien M, Gilles R (eds) Intestinal transport. Springer, Berlin Heidelberg New York, pp 295–312

    Google Scholar 

  • Wiener H, Turnheim K (1990) Calcium-activated potassium channels in basolateral membranes of colon epithelial cells; reconstitution and functional properties. Wien Klin Wochenschr 26: 622–628

    Google Scholar 

  • Wills NK, Lewis SA (1980) Intracellular Na activity as a function of Na transport across a tight epithelium. Biophys J 30: 181–186

    PubMed  CAS  Google Scholar 

  • Wills NK, Millinoff LP, Crowe WE (1991) Na+ channel activity in cultured renal (A6) epithelium: regulation by solution osmolarity. J Membr Biol 121: 79–90

    PubMed  CAS  Google Scholar 

  • Wirthensohn G, Lefrank S, Schmolke M, Guder WG (1989) Regulation of organic osmolyte concentrations in tubules from rat renal inner medulla. Am J Physiol 256: R128–R135

    Google Scholar 

  • Wondergem R, Castillo LB (1988) Quinine decreases hepatocyte transmembrane potential and inhibits amino acid transport. Am J Physiol 254: G795–G801

    PubMed  CAS  Google Scholar 

  • Wong PYD (1988) Mechanism of adrenergic stimulation of anion secretion in cultured rat epididymal epithelium. Am J Physiol 254: F121–F133

    PubMed  CAS  Google Scholar 

  • Wong PYD (1990) Electrolyte and fluid transport in the epididymis. In: Young JA, Wong PYD (eds) Epithelial secretion of water and electrolytes. Springer, Berlin Heidelberg New York, pp 333–347

    Google Scholar 

  • Wong SME, Chase HS Jr (1986) Role of intracellular calcium in cellular volume regulation. Am J Physiol 250: C841–C852

    PubMed  CAS  Google Scholar 

  • Yamauchi A, Kwon HM, Uchida S, Preston AS, Handler JS (1991) Myoinositol and betaine transporters regulated by tonicity are basolateral in MDCK cells. Am J Physiol 261: F197–F202

    PubMed  CAS  Google Scholar 

  • Yancey PH, Burg MB (1989) Distribution of major organic osmolytes in rabbit kidneys in diuresis and antidiruesis. Am J Physiol 257: R602–R607

    Google Scholar 

  • Yancey PH, Haner G, Feudenberger TH (1990) Effects of an aldose reductase inhibitor on organic osmotic effectors in rat renal medulla. Am J Physiol 259: F733–F738

    PubMed  CAS  Google Scholar 

  • Yantorno RE, Coca-Prados M, Krupin T, Civan MM (1989) Volume regulation of cultured transformed, non-pigmented epithelial cells from human ciliary body. Exp Eye Res 49: 423–437

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Graf, J., Guggino, W.B., Turnheim, K. (1993). Volume Regulation in Transporting Epithelia. In: Lang, F., Häussinger, D. (eds) Advances in Comparative and Environmental Physiology. Advances in Comparative and Environmental Physiology, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77124-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77124-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77126-2

  • Online ISBN: 978-3-642-77124-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics