Skip to main content

Abstract

About 100 years ago, Ernest Starling defined the forces governing the transcapillary fluid and protein movement and postulated the presence of pores in the membranes that cause an osmotic gradient [1]. Based on these findings and considerations much investigative work has now been done on permeability changes due to various insults. However, lung edema remains a major problem clinically, because this extensive research has not resulted in equally major therapeutic advances. In patients identified as at high risk for development of permeability edema, neither early application of differentiated ventilatory treatment (positive end-expiratory pressure, PEEP) nor the administration of corticosteroids could prevent the development of permeability edema [2, 3]. At present it is believed that the cornerstones of therapy are to maintain adequate organ perfusion and to prevent life-threatening hypoxemia. Understanding the interactions of the multiple pathways producing lung injury and high-permeability edema are important for the prevention and diagnosis as well as for treatment of acute respiratory failure. This may help to minimize the extent of pulmonary and extrapulmonary injury leading to multiple organ system failure, and help to improve patients’ outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Starling E (1896) On the absorbtion of fluids from the connective tissue spaces. J Physiol 19:312–326.

    PubMed  CAS  Google Scholar 

  2. Pepe PE, Hudson LC, Carrico J (1984) Early application of end-expiratory pressure in patients at risk for the adult respiratory syndrome. N Engl J Med 311:281–286.

    PubMed  CAS  Google Scholar 

  3. Bone RC, Fisher CJ, Clemmer TP, Slotmann GJ, Matz CA, Balk RA (1987) A controlled clinical trial of high dose methylprednisolone in the treatment of severe sepsis and septic shock. N Engl J Med 317:653–658.

    PubMed  CAS  Google Scholar 

  4. Granger HJ, Laine GA, Barnes GE, Lewis RE (1984) Dynamics and control of transmicrovascular fluid exchange. In: Staub NC, Taylor AE (eds) Edema. Raven, New York.

    Google Scholar 

  5. Kramer G, Harms B, Demling R, Renkin E (1982) Mechanism of redistribution of plasma protein following acute protein depletion. Am J Physiol 243: 803–809.

    Google Scholar 

  6. Demling RH, Harms B, Kramer G, Gunther R (1982) Acute versus sustained hypoproteinemia and posttraumatic edema. Surgery 92:79–86.

    PubMed  CAS  Google Scholar 

  7. Drake RE, Gabel JC (1991) Estimation of the pulmonary microvascular reflection coefficient to protein in dogs. J Appl Physiol 71:94–98.

    PubMed  CAS  Google Scholar 

  8. Parker JC, Parker RE, Taylor AE (1981) Vascular permeability and transvascular fluid and protein transport in the dog lung. Circ Res 48:549–561.

    PubMed  CAS  Google Scholar 

  9. Schneeberger E, Karnovsky MJ (1976) Substructure of intercellular junctions in freeze-fractured alveolar-capillary membranes of mouse lung. Circ Res 38: 404–411.

    PubMed  CAS  Google Scholar 

  10. Comper WD (1984) Interstitium. In: Staub NC, Taylor AE (eds) Edema. Raven, New York.

    Google Scholar 

  11. Lai-Fook SL, Toporoff B (1980) Pressure-volume behavior of perivascular interstitium measured in isolated dog lung. J Appl Physiol 48:939–946.

    PubMed  CAS  Google Scholar 

  12. Unruh HW, Goldberg HS, Oppenheimer L (1984) Pulmonary interstitial compartements and tissue resistance to fluid. J Appl Physiol 57:1512–1519.

    PubMed  CAS  Google Scholar 

  13. Goldberg HS (1980) Pulmonary interstitial compliance and microvascular filtration coefficient. Am J Physiol 239:H189–H198.

    PubMed  CAS  Google Scholar 

  14. Lai-Fook SJ, Brown LV (1991) Effects of electric charge on hydraulic conductivity of pulmonary interstitium. J Appl Physiol 70:1928–1932.

    PubMed  CAS  Google Scholar 

  15. Pou NA, Roselli RJ, Parker RE, Clanton JA, Harris TR (1989) Measurement of lung fluid volumes and albumin exclusion in sheep. J Appl Physiol 67: 1323–1330.

    PubMed  CAS  Google Scholar 

  16. Parker JC, Falgout HJ, Grimbert FA, Taylor AE (1980) The effect of increased vascular pressure on albumin-excluded volume and lung lymph flow in the dog lung. Circ Res 47:866–875.

    PubMed  CAS  Google Scholar 

  17. Drake RE, Weiss D, Gabel JC (1991) Active lymphatic pumping and sheep lymph flow. J Appl Physiol 71:99–103.

    PubMed  CAS  Google Scholar 

  18. Ishibashi M, Reed RK, Townsley MI, Parker JC, Taylor AE (1991) Albumin transport across pulmonary capillary-interstitial barrier in anesthetized dogs. J Appl Physiol 70:2104–2110.

    PubMed  CAS  Google Scholar 

  19. Nuytinck JK, Goris RJA, Redl H, Schlag G, van Munster PJJ (1986) Posttraumatic complications and inflammatory response. Arch Surg 121:886–890.

    PubMed  CAS  Google Scholar 

  20. Demling RH (1988) The role of mediators in human ARDS. J Crit Care 1:56–72.

    Google Scholar 

  21. Deitch E (1990) The role of intestinal barrier failure and bacterial translocation in the development of systemic infection and multiple organ failure. Arch Surg 125:403–404.

    PubMed  CAS  Google Scholar 

  22. Mc Cord JM (1987) Oxygen derived radicals: a link between reperfusion injury and inflammation. Fed Proc 46:2402–2406.

    PubMed  CAS  Google Scholar 

  23. Rubanyi GM (1988) Vascular effects of oxygen derived radicals. Free Radic Biol 4:107–120.

    CAS  Google Scholar 

  24. Schlag G, Redl H (1986) Morphology of the human lung after traumatic injury. In: Zapol WM, Falke KJ (eds) Acute respiratory failure. Dekker, New York.

    Google Scholar 

  25. Kreutzfelder E, Joka T, Klainecke HO, Obertacke U, Schmit-Neuerburg KP, Nakhosteen JA, Paar D, Scheierman N (1988) Adult respiratory distress syndrome as a specific manifestation of a general permeability defect in trauma patients. Am Rev Respir Dis 137:95–99.

    Google Scholar 

  26. Brigham KL, Meyrick B (1986) Endotoxin and lung injury. Am Rev Respir Dis 133:913–927.

    PubMed  CAS  Google Scholar 

  27. Bloom RJ, Simon LM, Benitz WE (1988) Endotoxin and pulmonary cell injury. Surg Gynecol Obstet 167:92–97.

    PubMed  CAS  Google Scholar 

  28. Zanaboni PB, Bradley JD, Webster RO, Dahms DE (1991) Cyclooxygenase inhibitors prevent ethchlorvynol-induced injury in rat and rabbit lungs. J Appl Physiol 71:43–49.

    PubMed  CAS  Google Scholar 

  29. Rippe B, Townsley M, Thigpen J, Parker JC, Korthuis RJ, Taylor AE (1984) Effects of the vascular pressure on the pulmonary microvasculature in isolated dog lungs. J Appl Physiol 57:233–239.

    PubMed  CAS  Google Scholar 

  30. Tsukimoto K, Mathieu-Coszello O, Prediletto R, Elliott ER, West JB (1991) Ultrastructural appearance of pulmonary capillaries at high transmural pressures. J Appl Physiol 71:573–582.

    PubMed  CAS  Google Scholar 

  31. Mc Gowan SE, Murray JJ (1987) Direct effects of neutrophil oxidants on elastase-induced extra-cellular matrix proteolysis. Am Rev Respir Dis 135:1286–1293.

    PubMed  CAS  Google Scholar 

  32. De los Santos R, Scidenfeld JJ, Anzueto A, Collins JF, Coalson JJ, Johanson JR, Peters JI (1987) One hundred percent oxygen lung injury in adult baboons. Am Rev Respir Dis 136:657–661.

    Google Scholar 

  33. Staub NC (1984) Pathophysiology of pulmonary edema. In: Staub NC, Taylor AE (eds) Edema. Raven, New York.

    Google Scholar 

  34. Allison RC, Kyle J, Adkins WK, Prasad VR, McCord JM, Taylor AE (1990) Effect of ischemia reperfusion or hypoxia reoxygenation on lung vascular permeability and resistance. J Appl Physiol 69: 597–603.

    PubMed  CAS  Google Scholar 

  35. Mullins RJ, Tahamont MV, Bell DR, Malik AB (1991) Effect of fluid resuscitation from endotoxic shock on lung transvascular fluid and protein exchange. Am J Physiol 260:H1415–H1423.

    PubMed  CAS  Google Scholar 

  36. Oestern HJ, Sturm AJ (1983) Cardiopulmonary parameters in severe multiple trauma. Injury 14:75–80.

    Google Scholar 

  37. Noble WH, Kay JC (1984) Lung water increases with fluid administration during CPPV after pulmonary microembolization. Anesthesiology 61:703–707.

    PubMed  CAS  Google Scholar 

  38. Rutili G, Parker JC, Taylor AE (1984) Fluid balance in ANTU-injured lungs during crystalloid and colloid infusions. J Appl Physiol 56:993–998.

    PubMed  CAS  Google Scholar 

  39. Ehrhart IC, Hofman WF (1991) Relationship of fluid filtration to lung vascular pressure during edema. J Appl Physiol 70:202–209.

    PubMed  CAS  Google Scholar 

  40. Harms BA, Kramer GC, Bodai BI, Demling RH (1981) Effect of hypoproteinemia on pulmonary and soft tissue edema formation. Crit Care Med 9:503–508.

    PubMed  CAS  Google Scholar 

  41. Nanjo S, Bhattacharya J, Staub NC (1983) Concentrated albumin does not affect lung edema formation after acid instillation in the dog. Am Rev Respir Dis 128:884–889.

    PubMed  CAS  Google Scholar 

  42. Weil MH, Henning RJ (1979) New concepts in the diagnosis and fluid treatment of circulatory shock. Anesth Analg 58:124–132.

    PubMed  CAS  Google Scholar 

  43. Matalon S, Egan EA (1984) Interstitial fluid volumes and albumin spaces in pulmonary oxygen toxicity. J Appl Physiol 57:1767–1772.

    PubMed  CAS  Google Scholar 

  44. Parker JC, Townsley JT, Cartledge JT (1989) Lung edema increases transvascular filtration rate but not filtration coefficient. J Appl Physiol 66:1553–1560.

    PubMed  CAS  Google Scholar 

  45. Ashbough DG, Bigelow DB, Petty TL, Levine BE (1967) Acute respiratory distress in adults. Lancet 2:319–323.

    Google Scholar 

  46. Gabel JC, Drake RE, Arens JF (1979) Oxygenation as an indicator of fluid accumulation. Anesthesiology 51:S156.

    Google Scholar 

  47. Bongard FS, Matthay M, Mackersie RC, Lewis FR (1984) Morphologic and physiologic correlates of increased extravascular lung water. Surgery 96: 395–402.

    PubMed  CAS  Google Scholar 

  48. Modig J (1988) Comparison of effects of dextran-70 and Ringer’s acetate on pulmonary function, hemodynamics, and survival in experimental septic shock. Crit Care Med 16:266–271.

    PubMed  CAS  Google Scholar 

  49. Forsgren P, Wegenius G, Modig J (1986) Pulmonary function, extravascular lung water and chest radiography in a porcine model of adult respiratory distress syndrome. Acta Anaesthesiol Scand 30: 463–469.

    PubMed  CAS  Google Scholar 

  50. Brigham KL, Kariman K, Harris TR, Snapper JR (1983) Correlation of oxygenation with vascular permeability-surface area but not with lung water in humans with acute respiratory failure and pulmonary edema. J Clin Invest 72:339–349.

    PubMed  CAS  Google Scholar 

  51. Demling RH, Katz A, Lalonde C, Ryan P, Li-Juan J (1987) The immediate effect of burn would excision on pulmonary function in sheep: the role of prostanoids, oxygen radicals, and chemoattractants. Surgery 101:44–55.

    PubMed  CAS  Google Scholar 

  52. Esbenshade AM, Newman JH, Lams PM, Jolies H, Brigham KL (1982) Respiratory failure after endotoxin infusion in sheep: lung mechanics and lung fluid balance. J Appl Physiol 53:967–976.

    PubMed  CAS  Google Scholar 

  53. Michel RP, Zocchi L, Rossi A, Cardinal GA, Ploy-Song-Sang Y, Poulsen RS, Milic-Emili J, Staub NC (1987) Does interstitial edema compress airways and arteries? A morphometric study. J Appl Physiol 62:108–115.

    PubMed  CAS  Google Scholar 

  54. Peterson B, Brooks J, Zack A (1982) Use of a microwave oven for determination of postmortem water volume of lungs. J Appl Physiol 53:1661–1663.

    Google Scholar 

  55. Staub N, Bland R, Brigham K, Demling RH, Erdmann A, Wolverton W (1975) Preparation of chronic lung lymph fistulas in sheep. J Surg Res 19:315–320.

    PubMed  CAS  Google Scholar 

  56. Wegenius G, Modig J (1985) Determinants of early adult respiratory distress syndrome with special reference to chest radiography. Acta Radiol Diag 26:649–657.

    CAS  Google Scholar 

  57. Pistolesi M, Giuntini C (1978) Assessment of extravascular lung water. Radiol Clin North Am 26: 551–574.

    Google Scholar 

  58. Pistolesi M, Miniati Milne EN, Giuntine C (1988) Measurement of lung edema: the radiographic approach. ACP 2:141–150.

    Google Scholar 

  59. Schmidt HC, Tsay D, Higgins CB (1986) Pulmonary edema: an MR study of permeability and hydrostatic types in animals. Radiology 158:297–302.

    PubMed  CAS  Google Scholar 

  60. Mc Lennan FM, Foster MA, Smith FW, Crosher GA (1986) Measurement of total lung water from nuclear magnetic resonance images. Br J Radiol 59: 553–560.

    Google Scholar 

  61. Schuster DP, Marklin GF (1986) The effect of regional lung injury or alveolar hypoxia on pulmonary blood flow and lung water measured by positron emission tomography. Am Rev Respir Dis 133: 1037–1042.

    PubMed  CAS  Google Scholar 

  62. Overland ES, Gupta RN, Huchon GJ, Murray JF (1981) Measurement of pulmonary tissue volume and blood flow in persons with normal and edematous lungs. J Appl Physiol 51:1375–1383.

    PubMed  CAS  Google Scholar 

  63. Zellner JL, Spinale FG, Crawford FA (1990) Bioimpedance: a novel method for the assessment of extravascular lung water. J Surg Res 48:454–450.

    PubMed  CAS  Google Scholar 

  64. Chinard FP, Enns T (1954) Transcapillary pulmonary exchange of water in the dog. Am J Physiol 178:197–202.

    PubMed  CAS  Google Scholar 

  65. Gee MH, Miller PD, Stage AF, Banchero N (1971) Estimation of pulmonary extravascular fluid volume by use of thermodilution. Fed Proc 30:379.

    Google Scholar 

  66. Lewis FR, Elings VB, Hill SL, Christensen JM (1982) The measurement of extravascular lung water by thermal-green dye indicator dilution. Ann NY Acad Sci 384:394–410.

    PubMed  CAS  Google Scholar 

  67. Lewis FR, Elings VI (1978) Microprocessor determination of lung water using thermal green-dye double indicator dilution. Surg Forum 29:182–184.

    PubMed  Google Scholar 

  68. Wickerts CJ, Frostell C, Hedenstierna G (1990) Measurement of extravascular lung water by thermal-dye dilution technique: mechanism of cardiac output dependence. Intensive Care Med 16:115–120.

    PubMed  CAS  Google Scholar 

  69. Fallon KD, Drake RE, Laine GA, Gabel JC (1985) Effect of cardiac output on extravascular lung water: estimates with the Edwards® lung water computer. Anesthesiology 62:505–508.

    PubMed  CAS  Google Scholar 

  70. Sugerman HJ, Tatum JL, Burke TS, Strash AM, Glausner FL (1984) Gamma scintigraphic analysis of albumin flux in patients with acute respiratory distress syndrome. Surgery 95:674–681.

    PubMed  CAS  Google Scholar 

  71. Gorin AB, Weidner WJ, Demling RH, Staub NC (1978) Noninvasive measurement of pulmonary transvascular protein flux in sheep. J Appl Physiol 45:225–233.

    PubMed  CAS  Google Scholar 

  72. Dauber IM, Weil JV (1985) Noninvasive radioisotopic assessment of pulmonary vascular protein leak. Clin Chest Med 6:427–437.

    PubMed  CAS  Google Scholar 

  73. Basran GS, Byrne AJ, Hardy JG (1985) A noninvasive technique for monitoring lung vascular permeability in man. Nucl Med Commun 3:3–10.

    Google Scholar 

  74. Tennenberg SD, Jacobs MP, Solomkin JS, Ehlers NA, Hurst JM (1987) Increased pulmonary alveolar-capillary permeability in patients at risk for adult respiratory distress syndrome. Crit Care Med 15: 289–293.

    PubMed  CAS  Google Scholar 

  75. Tennenberg SD, Jacobs MP, Solomkin JS (1987) Complement-mediated neutrophil activation in sepsis-and trauma-related adult respiratory distress syndrome. Arch Surg 12226–12232.

    Google Scholar 

  76. Baude S, Nolop KB, Hughes J, Barnes P, Royston D (1986) Comparison of lung vascular and epithelial permeability indices in the adult respiratory distress syndrome. Am Rev Respir Dis 133:1002–1005.

    Google Scholar 

  77. Mason GR, Effros RM, Uszler JM, Mena I (1985) Small solute clearance from the lungs of patients with cardiogenic and noncardiogenic pulmonary edema. Chest 88:327–334.

    PubMed  CAS  Google Scholar 

  78. Gorin AB, Kohler J, DeNardo G (1980) Noninvasive measurement of pulmonary transvascular protein flux in normal man. J Clin Invest 66:869–877.

    PubMed  CAS  Google Scholar 

  79. Tatum J, Sugerman H, Perdikaris N, Burke T, Fratkin M (1989) Determinants of diagnostic accuracy in pulmonary scintigraphy for pulmonary capillary protein leak associated with adult respiratory distress syndrome (ARDS): a technical note. Eur J Nucl Med 15:67–70.

    PubMed  CAS  Google Scholar 

  80. Sturm JA, Wisner DH, Oestern HJ, Kant CJ, Tscherne H, Creutzig H (1986) Increased lung capillary permeability after trauma: a prospective clinical study. J Trauma 26:409–418.

    PubMed  CAS  Google Scholar 

  81. Goris RJA, te Boekhorst TPA, Nuytinck JKS, Gim-brere JSF (1985) Multiple-organ failure. Arch Surg 120:1115–1190.

    Google Scholar 

  82. Spicer KM, Reines DH, Frey GD (1986) Diagnosis of adult respiratory distress syndrome with Tc-99m human serum albumin and portable probe. Crit Care Med 14:669–676.

    PubMed  CAS  Google Scholar 

  83. Schuller D, Mitchell JP, Calandrino FS, Schuster DP (1991) Fluid balance during pulmonary edema. Chest 100:1068–1075.

    PubMed  CAS  Google Scholar 

  84. Lauvers LF, Rosseel P, Rolants A, Beeckman C, Baute L (1986) A retrospective study of 130 consecutive multiple trauma patients in an intensive care unit. Int Care Med 12:296–301.

    Google Scholar 

  85. Pepe PE, Potkin RT, Reus DH, Hudson LD, Carrico CJ (1982) Clinical predictors of the adult respiratory distress syndrome. Am J Surg 144:124–130.

    PubMed  CAS  Google Scholar 

  86. Borg T, Modig J (1985) Positive effects of prophylactic ventilator treatment on gas exchange and extravascular lung water in a porcine model of adult respiratory distress syndrome induced by endotoxaemia. Acta Chir Scand 151:501–508.

    PubMed  CAS  Google Scholar 

  87. Koller W, Benzer H, Duma S, Mutz N, Pauser G (1983) Ein Modell zur einheitlichen Behandlung und Therapieauswertung beim schweren ARDS. Anaes-thesist 32:576–581.

    CAS  Google Scholar 

  88. Benzer H, Haider W, Mutz N, Geyer A, Goldschmied W, Pauser G, Baum M (1979) Der alveolo-arterielle Sauerstoffquotient = “Quotient” = pAO2-paO2/pAO2. Anaesthesist 28:533–539.

    PubMed  CAS  Google Scholar 

  89. Faist E, Baue AE, Dittmer H, Heberer G (1983) Multiple organ failure in polytrauma patients. J Trauma 23:775–787.

    PubMed  CAS  Google Scholar 

  90. Mutz N, Neumann M, Hörmann Ch, Koller W, Putensen Ch, Putz G, Benzer H (1990) Verlauf des extravaskulären Lungenwassers (EVLW) bei schwerverletzten Intensivpatienten mit und ohne Thoraxtrauma. Anaesthesist 39:535–539.

    PubMed  CAS  Google Scholar 

  91. Baker SP, O’Neil B, Hadorn W, Long WB (1974) The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. J Trauma 14:187–196.

    PubMed  CAS  Google Scholar 

  92. Saul GM, Feely TW, Mihm FG (1982) Effect of graded PEEP on lung water in noncardiogenic pulmonary edema. Crit Care Med 10:667–669.

    PubMed  CAS  Google Scholar 

  93. Henning RJ, Heyman V, Alcover I, Romeo S (1986) Cardiopulmonary effects of oleic acid-induced pulmonary edema and mechanical ventilation. Anesth Analg 65:925–932.

    PubMed  CAS  Google Scholar 

  94. Pare P, Wariner B, Baile EM, Hogg JC (1983) Redistribution of pulmonary extravascular water with positive end-expiratory pressure in canine pulmonary edema. Am Rev Respir Dis 127:590–593.

    PubMed  CAS  Google Scholar 

  95. Byrne K, Tatum JL, Henry DA, Hisch JI, Crossland M, Barnes T, Tompson JA, Young J, Sugerman HJ (1992) Increased morbidity with increased pulmonary albumin flux in sepsis related adult respiratory distress syndrome. Crit Care Med 20:28–34.

    PubMed  CAS  Google Scholar 

  96. Montgomery AB, Stager MA, Carrico CJ, Hudson LD (1985) Causes of mortality in patients with the adult respiratory distress syndrome. Am Rev Respir Dis 132:485–489.

    PubMed  CAS  Google Scholar 

  97. De Camp M, Demling RH (1988) Posttraumatic multisystem organ failure. JAMA 4:530–534.

    Google Scholar 

  98. Shippy CR, Appel PL, Shoemaker WC (1984) Reliability of clinical monitoring to assess blood volume in critically ill. Crit Care Med 12:107–112.

    PubMed  CAS  Google Scholar 

  99. Tuchschmied J, Fried J, Swinney R, Sharma OP (1989) Early hemodynamic correlates of survival in patients with septic shock. Crit Care Med 17:719–722.

    Google Scholar 

  100. Shoemaker WC, Appel PL, Kram HB (1988) Tissue oxygen debt as a determinant of lethal and nonlethal postoperative organ failure. Crit Care Med 16:1117–1120.

    PubMed  CAS  Google Scholar 

  101. D’Orio V, Mendes P, Carlier P, Fatemi M (1991) Lung fluid dynamics and supply dependency of oxygen uptake during experimental endotoxin shock and volume resuscitation. Crit Care Med 19: 955–962.

    PubMed  Google Scholar 

  102. Eisenberg PR, Hansbrough JR, Anderson D, Schuster DP (1987) A prospective study of lung water measurement during patient management in an intensive care unit. Am Rev Respir Dis 136: 662–668.

    PubMed  CAS  Google Scholar 

  103. Modig J (1988) Comparison of effects of dextran-70 and Ringers’ acetate on pulmonary function, hemodynamics, and survival in experimental septic shock. Crit Care Med 16:266–271.

    PubMed  CAS  Google Scholar 

  104. Brinkmayer S, Safar P, Motoyama E, Stezoski W (1981) Superiority of colloid over electrolyte solution for fluid resuscitation (severe normovolemic hemodilution). Crit Care Med 9:369–370.

    Google Scholar 

  105. Lowe RJ, Moss GS, Jilek J, Levine HD (1977) Crystalloid vs colloid in the etiology of pulmonary failure after trauma: a randomized trial in man. Surgery 81:676–683.

    PubMed  CAS  Google Scholar 

  106. Virgillo RW, Rice CL, Smith DE, James DR, Zarins CK, Hobelman CF (1979) Crystalloid vs colloid resuscitation: is one better? Surgery 85:129–139.

    Google Scholar 

  107. Metildi LA, Shackford SR, Virgillo RW, Peters RM (1984) Crystalloid versus colloid in fluid resuscitation of patients with severe pulmonary insufficiency. Surg Gynecol Obstet 158:207–212.

    PubMed  CAS  Google Scholar 

  108. Hein LG, Albrecht M, Dworschak M, Frey L, Brückner UB (1988) Long-term observation following traumatic-hemorrhagic shock in the dog: a comparison of crystalloid vs. colloidal fluids. Circ Shock 26:353–364.

    PubMed  CAS  Google Scholar 

  109. Hankeln K, Raedel C, Beez M, Laniewski P, Bohmert F (1989) Comparison of hydroxyethyl starch and lactated Ringer’s solution on hemodynamics and oxygen transport of critically ill patients in prospective cross over studies. Crit Care Med 17:133–135.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Seyr, M., Mutz, N.J. (1993). Permeability Changes. In: Schlag, G., Redl, H. (eds) Pathophysiology of Shock, Sepsis, and Organ Failure. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76736-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76736-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76738-8

  • Online ISBN: 978-3-642-76736-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics