Skip to main content

Abstract

Complex surgical procedures, as well as accidental and/or intentional physical injury to a person, are traumatic events which may lead to severe immunological, microcirculatory and metabolic complications and possibly death. Complicated surgical procedures are more frequently performed, especially in the elderly population of patients, and postoperative septic complications may have devastating consequences. Accidental and/or intentional physical traumatic injuries remain to date among the most common causes of death during the first three decades of life and account for nearly 100000 deaths each year in the USA [1]. Such injuries remain the fourth leading cause of death both on a national as well as on a state level [2]. This is illustrated in the state of Mississippi where the accidental death rate of 55.9 per 100000 individuals makes it the fourth leading cause of death following heart disease, malignant neoplasms, and cerebrovascular disease [2]. This ranking has remained consistent over the past decade. Since 50–75% of trauma deaths occur in a group of people ranging from 15 to 44 years in age [1, 3, 4], it becomes evident that more years of productive life are lost from traumatic injuries than from heart disease and cancer combined. In addition, the rate of permanent disability is extremely high following such injuries (approx. 2 major long term disabilities for every trauma related death [5]), further decreasing both productivity and quality of life for those victims.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lewis FR, Krupski WC, Trunkey DD (1988) Management of the injured patient. In: Way LW (ed) Current surgical diagnosis and treatment. Appleton and Lange, San Mateo, pp 187–209.

    Google Scholar 

  2. Poole GV (1991) Trauma in Mississippi. definition, incidence, etiology. J Miss State Med Assoc 32:83–86.

    PubMed  CAS  Google Scholar 

  3. Trunkey DD (1982) Overview of trauma. Surg Clin North Am 62:3–7.

    PubMed  CAS  Google Scholar 

  4. Trunkey DD (1983) Trauma. Sci Am 249:28–35.

    PubMed  CAS  Google Scholar 

  5. Trunkey DD (1982) Presidential address: on the nature of things that go bang in the night. Surgery 92:123–132.

    PubMed  CAS  Google Scholar 

  6. Antonacci AC (1989) Immune consequences of the acute stress response and sepsis. In: Faist E, Ninnemann J, Green D (eds) Immune consequences of trauma, shock, and sepsis. Springer, Berlin Heidelberg New York, pp 441–449.

    Google Scholar 

  7. Baue AE (1990) Multiple organ failure. In: Baue AE (ed) Multiple organ failure: patient care and prevention. Mosby Year Book, St Louis, pp 421–470.

    Google Scholar 

  8. Baue AE (1975) Multiple, progressive, or sequential system failure: a syndrome of the 1970s. Arch Surg 110:779–781.

    PubMed  CAS  Google Scholar 

  9. Carrico CJ, Meakins JL, Marshall JC, Fry D, Maier RV (1986) Multiple organ failure syndrome. Arch Surg 121:196–203.

    PubMed  CAS  Google Scholar 

  10. Deitch EA (1990) Multiple organ failure: pathophysiology and basic concepts of therapy. Thieme, New York, pp 1–299.

    Google Scholar 

  11. Eiseman B, Beart R, Norton L (1977) Multiple organ failure. Surgy Gynecol Obstet 144:323–326.

    CAS  Google Scholar 

  12. Alexander JW, Steinnett JD, Ogle CK, Ogle JD, Morris MJ (1979) A comparison of immunologic profiles and their influence on bacteremia in surgical patients with a high risk of infections. Surgery 86:94–101.

    PubMed  CAS  Google Scholar 

  13. Antonacci A, Reaves L, Calvano S, Amad R, DeRiesthal H, Shires GT (1984) Flow cytometric analysis of lymphocyte subpopulations after thermal injury in human beings. Surg Gynecol Obstet 159:1–8.

    PubMed  CAS  Google Scholar 

  14. Cheadle WG, Hershman MJ, Wellhausen SR, Polk HC Jr (1989) Role of monocyte HLA-DR expression following trauma in predicting clinical outcome. In: Faist E, Ninnemann J, Green D (eds) Immune consequences of trauma, shock and sepsis. Springer, Berlin Heidelberg New York, pp 119–122.

    Google Scholar 

  15. Christou NV, MacLean L, Meakins JL (1980) Host defense in blunt trauma: interrelationships of kinetic of anergy and depressed neutrophil function: nutritional status and sepsis. J Trauma 20:833–841.

    PubMed  CAS  Google Scholar 

  16. Christou NV, Meakins JL (1979) Neutrophil function in surgical patients: two inhibitors of granulocyte Chemotaxis associated with sepsis. J Surg Res 26:355–364.

    PubMed  CAS  Google Scholar 

  17. Faist E, Ertel W, Mewes A, Alkan S, Walz A, Strasser T (1989) Trauma-induced alterations of the lymphokine cascade. In: Faist E, Ninnemann J, Green D (eds) Immune consequences of trauma, shock and sepsis. Springer, Berlin Heidelberg New York, pp 79–94.

    Google Scholar 

  18. Faist E, Mewes A, Baker CC, Strasser T, Alkan SS, Rieber P, Heberer G (1987) Prostaglandin E2 dependent suppression of interleukin-2 production in patients with major trauma. J Trauma 27:837–848.

    PubMed  CAS  Google Scholar 

  19. Baker CC, Degutis LC, DeSantis JG, Baue AE (1985) The impact of a traum service in a University Hospital. Am J Surg 149:453–458.

    PubMed  CAS  Google Scholar 

  20. Border JR, Bone LB (1987) Multiple trauma: major extremity wounds; their immediate management and its consequences. Adv Surg 21:263–291.

    Google Scholar 

  21. Deitch EA, Dobke M, Baxter CR (1985) Failure of local immunity. Arch Surg 120:78–84.

    PubMed  CAS  Google Scholar 

  22. Howard RJ (1979) Effect of burn injury, mechanical trauma, and operation on immune defenses. Surg Clin North Am 59:199–211.

    PubMed  CAS  Google Scholar 

  23. Shires GT (1985) Principles and management of hemorrhagic shock. In: Shires GT (ed) Principles of trauma care. McGraw-Hill, New York, pp 3–42.

    Google Scholar 

  24. Casson P, Gesner BM, Converse JM, Rapaport FT (1968) Immunosuppressive sequelae of thermal injury. Surg Forum 19:509–511.

    PubMed  CAS  Google Scholar 

  25. Casson P, Solowey AC, Converse JM, Rapaport FT (1966) Delayed hypersensitivity status of burned patients. Surg Forum 17:268–270.

    PubMed  CAS  Google Scholar 

  26. Grogan JB, Miller RC (1973) Impaired function of polymorphonuclear leukocytes in patients with burns and other trauma. Surg Gynecol Obstet 137:784–788.

    PubMed  CAS  Google Scholar 

  27. Paul WE (1989) Fundamental immunology, 2nd edn. Raven, New York.

    Google Scholar 

  28. Klein J (1982) Immunology: the science of self-nonself discrimination. Wiley, New York, pp 417–444.

    Google Scholar 

  29. Roitt IM (1988) Essential immunology. Blackwell, Oxford, pp 1–286.

    Google Scholar 

  30. Feldbush TL, Hobbs MV, Severson CD, Ballas ZF, Weiler JM (1984) Role of complement in the immune response. Fed Proc 43:2548–2552.

    PubMed  CAS  Google Scholar 

  31. Rosenstreich DL, Oppenheim JJ (1976) The role of macrophages in the activation of T and B lymphocytes in vitro. In: Nelson DS (ed) Immunobiology of the macrophage. Academic, New York, pp 162–199.

    Google Scholar 

  32. Male D, Champion B, Cooke A (1987) Inflammation. In: Male D (ed) Advanced immunology. Lippincott, Philadelphia, pp 15.1–15.12.

    Google Scholar 

  33. Ledbetter JA, Herzenberg LA (1979) Xenogeneic monoclonal antibodies in mouse lymphoid differentiation antigens. Immunol Rev 47:63–90.

    PubMed  CAS  Google Scholar 

  34. Holmes KL, Morse III HC (1988) Murine hematopoietic cell surface antigen expression. Immunol Today 9:344–350.

    PubMed  CAS  Google Scholar 

  35. Shevach EM (1984) Macrophages and other accessory cells. In: Paul WE (ed) Fundamental immunology. Raven, New York, pp 71–107.

    Google Scholar 

  36. Waldron JA, Horn RG, Rosenthal AS (1973) Antigen-induced proliferation of guinea pig lymphocytes in vitro: obligatory role of macrophages in the recognition of antigen by immune T-lymphocytes. J Immunol 111:58–64.

    PubMed  CAS  Google Scholar 

  37. Ahmann GB, Sachs DH, Hodes RJ (1978) Requirement for an la-bearing accessory cell in Con A-induced T cell proliferation. J Immunol 121:1981–1989.

    PubMed  CAS  Google Scholar 

  38. Van Furth R (1980) Cells of the mononuclear phagocyte system. Nomenclature in terms of sites and conditions. In: Van Furth R (ed) Mononuclear phagocytes: functional aspects. Nijhoff, The Hague, pp 1–40.

    Google Scholar 

  39. Van Furth R (1982) Current view on the mononuclear phagocyte system. Immunobiology 161:178–185.

    PubMed  Google Scholar 

  40. Unanue ER, Cerottini JC (1989) Antigen presentation. FASEB J 3:2496–2502.

    PubMed  CAS  Google Scholar 

  41. Grey HM, Chesnut R (1985) Antigen processing and presentation to T cells. Immunol Today 3:101–106.

    Google Scholar 

  42. Ashwell JD, Schwartz RH (1986) T-cell recognition of antigen and the Ia molecule as a tenary complex. Nature 320:176–179.

    PubMed  CAS  Google Scholar 

  43. Baumhüter S, Bron C, Corradin G (1985) Different antigen-presenting cells differ in their capacity to induce lymphokine production and proliferation of an.

    Google Scholar 

  44. Miyajima A, Miyatake S, Schreurs J, DeVries J, Arai N, Yokota T, Arai K-I (1988) Coordinate regulation of immune and inflammatory responses by T cell-derived lymphokines. FASEB J 2:2462–2473.

    PubMed  CAS  Google Scholar 

  45. Meuer SC, Acuto O, Hercend T, Schlossmann SF, Reinherz EL (1984) The human T-cell receptor. Annu Rev Immunol 2:23–50.

    PubMed  CAS  Google Scholar 

  46. Hood L, Kronenberg M, Hunkapiller T (1985) T cell antigen receptors and the immunoglobulin supergene family. Cell 40:225–229.

    PubMed  CAS  Google Scholar 

  47. Chan MM, Tada N, Kimura S, Hoffmann M, Miller R, Stutman O, Hammerling U (1983) Characterization of T-lymphocyte subsets with monoclonal antibodies: discovery of a distinct marker, ly-2, of Tsuppressor cells. J Immunol 130:2075–2078.

    PubMed  CAS  Google Scholar 

  48. Claman HN (1972) Corticosteroid and lymphoid cells. N Engl J Med 287:388–397.

    PubMed  CAS  Google Scholar 

  49. Nabholz M, MacDonald HR (1983) Cytolytic T lymphocytes. Annu Rev Immunol 1:273–306.

    PubMed  CAS  Google Scholar 

  50. Asherson GL, Colizzi V, Zembala M (1986) An overview of T-suppressor cell circuits. Annu Rev Immunol 4:37–68.

    PubMed  CAS  Google Scholar 

  51. Tada T (1984) Help, suppression and specific factors. In: Paul WE (ed) Fundamental immunology. Raven, New York, pp 481–517.

    Google Scholar 

  52. Cooper MD, Kearney JF, Gathings WE, Lawton AR (1980) Effects of anti-Ig antibodies on the development and differentiation of B cells. In: Moller G (ed) Immunological reviews. Munksgaard, Copenhagen, pp 29–53.

    Google Scholar 

  53. Wall R, Kuehl M (1983) Biosynthesis and regulation of immunoglobulins. Annu Rev Immunol 1:393–422.

    PubMed  CAS  Google Scholar 

  54. Howard M, Paul WE (1983) Regulation of B-cell growth and differentiation by soluble factors. Annu Rev Immunol 1:307–333.

    PubMed  CAS  Google Scholar 

  55. Antonacci AC, Good RA, Gupta S (1982) T cell subpopulations following thermal injury. Surg Gynecol Obstet 155:1–8.

    PubMed  CAS  Google Scholar 

  56. Antonacci AC, Calvano SE, Reaves LE, Prajapati A, Bockman R, Weite K, Mertelsmann R, Gupta S, Good RA, Shires GT (1984) Autologus and allogenic mixed-lymphocyte responses following thermal injury in man: the immunomodulatory effects of interleukin-1, interleukin-2 and a prostaglandin inhibitor, WY-18251. Clin Immunol Immunopathol 30:304–320.

    PubMed  CAS  Google Scholar 

  57. Ertel W, Faist E (1989) The influence of mechanical trauma on the B-cell system: phenotypes, terminal B-cell maturation, immunoglobulin synthesis and influence of lymphokines. In: Faist E, Ninnemann J, Green D (eds) Immune consequences of trauma, shock and sepsis. Springer, Berlin Heidelberg New York, pp 143–156.

    Google Scholar 

  58. Park SK, Brody JI, Wallace HA, Blakemore WS (1971) Immunosuppressive effect of surgery. Lancet i:53–55.

    Google Scholar 

  59. Salo M (1982) Effects of anaesthesia and surgery on the immune response. In: Watkins J, Salo M (eds) Trauma, stress and immunity in anaesthesia and surgery. Butterworth, London, pp 211–253.

    Google Scholar 

  60. Slade MS, Simmons RL, Yunis E, Greenberg LJ (1975) Immunodepression after major surgery in normal patients. Surgery 78:363–372.

    PubMed  CAS  Google Scholar 

  61. Berenbaum MC, Fluck PA, Hurst NP (1973) Depression of lymphocyte response after surgical trauma. Br J Exp Pathol 54:597–607.

    PubMed  CAS  Google Scholar 

  62. Bruce DL (1972) Halothane inhibition of phytohemagglutinin-induced transformation of lymphocytes. Anesthesiology 36:201–205.

    PubMed  CAS  Google Scholar 

  63. Riddle PR, Berenbaum MC (1967) Postoperative depression of the lymphocyte response to phytohaemagglutinin. Lancet i:746–748.

    Google Scholar 

  64. O’Mahony JB, Palder Sb, Wood JJ, McIrvine A, Rodrick ML, Demling RH, Mannick JA (1984) Depression of cellular immunity after multiple trauma in the absence of sepsis. J Trauma 24:869–875.

    PubMed  Google Scholar 

  65. Daniels JC, Sakai H, Cobb EK, Lewis SR, Larson DL, Ritzmann SE (1971) Evaluation of lymphocyte reactivity studies in patients with thermal burns. J Trauma 11:595–607.

    PubMed  CAS  Google Scholar 

  66. Sakai H, Daniels JC, Lewis SR, Lynch JB, Watson DL, Ritzmann SE (1972) Reversible alterations of nucleic acid synthesis in lymphocytes after thermal burns. J Reticuloendothelial Soc 11:19–28.

    CAS  Google Scholar 

  67. Stephan RN, Kupper TS, Geha AS, Baue AS, Chaudry IH (1987) Hemorrhage without tissue trauma produces immunosuppression and enhances susceptibility to sepsis. Arch Surg 122:62–68.

    PubMed  CAS  Google Scholar 

  68. Keane RM, Birmingham W, Shatney CM, Winchurch RA, Munster AM (1983) Prediction of sepsis in the multitraumatic patient by assays of lymphocyte responsiveness. Surg Gynecol Obstet 156:163–167.

    PubMed  CAS  Google Scholar 

  69. Munster AM (1976) Post-traumatic immunosuppression is due to activation of suppressor T cells. Lancet i:1329–1330.

    Google Scholar 

  70. Kupper TS, Green DR, Chaudry IH, Fox A, Baue AE (1984) A cyclophosphamide-sensitive suppressor T-cell circuit induced by thermal trauma. Surgery 95:699–706.

    PubMed  CAS  Google Scholar 

  71. Gadd MA, Hansbrough JF, Hoyt DB, Ozkan N (1989) Defective T-cell surface antigen expression after mitogen stimulation. An index of lymphocyte dysfunction after controlled murine injury. Ann Surg 209:112–118.

    PubMed  CAS  Google Scholar 

  72. Miller CL, Baker CB (1979) Changes in lymphocyte activity after thermal injury: the role of suppressor cells. J Clin Invest 63:202–210.

    PubMed  CAS  Google Scholar 

  73. O’Mahony JB, Wood JJ, Rodrick ML, Mannick JA (1985) Changes in T cell subsets following major injury: assessment by flow cytometry and relationship to sepsis. Ann Surg 202:48–54.

    Google Scholar 

  74. Stephan RN, Poo WJ, Janeway CA, Zoghbi SS, Dean RE, Geha AS, Chaudry IH (1987) Prolonged impairment of natural killer cell activity following simple hemorrhage. Circ Shock 21:312–313 (abstract).

    Google Scholar 

  75. Uchida A, Kolb R, Micksche M (1982) Generation of suppressor cells for natural killer activity in cancer patients after surgery. J Natl Cancer Inst 68:735–740.

    PubMed  CAS  Google Scholar 

  76. Griffith CD, Rees RC, Platts A, Jermy A, Peel J, Rogers K (1984) The nature of enhanced natural killer lymphocyte cytotoxicity during anesthesia and surgery in patients with benign desease and cancer. Ann Surg 200:753–758.

    PubMed  CAS  Google Scholar 

  77. Pollock RE, Babcock GF, Romsdahl MM, Nishioka K (1984) Surgical stress-mediated suppression of murine natural killer cell cytotoxicity. Cancer Res 44:3888–3891.

    PubMed  CAS  Google Scholar 

  78. Tarkkanen J, Saxen H, Nurminen M, Makela PH, Saksela E (1986) Bacterial induction of human activated lymphocyte killing and its inhibition by lipopolysaccharide (LPS). J Immunol 136:2662–2669.

    PubMed  CAS  Google Scholar 

  79. Blazer BA, Rodrick ML, Wood JJ, O’Mahony JB, Bessey PQ, Wilmore DW, Mannick JA (1986) Suppression of natural killer cell function in man following thermal and traumatic injury. J Clin Immunol 6:26–36.

    Google Scholar 

  80. Polk HC, George CD, Wellhausen SR, Cost K, Davidson PR, Regan MP, Borzotta AP (1986) A systemic study of host defense in badly injured patients. Ann Surg 204:282–299.

    PubMed  Google Scholar 

  81. Stephan RN, Ayala A, Harkema JM, Dean RE, Border JR, Chaudry IH (1989) Mechanisms of immunosuppression following hemorrhage: defective antigen presentation by macrophages. J Surg Res 46:553–556.

    PubMed  CAS  Google Scholar 

  82. Faist E, Mewes A, Strasser T, Walz A, Alkan SS, Baker CC, Ertel W, Heberer G (1988) Alteration of monocyte function following major injury. Arch Surg 123:287–292.

    PubMed  CAS  Google Scholar 

  83. Altura BM, Hershey SG (1968) RES phagocytic function in trauma and adaptation to experimental shock. Am J Physiol 215:1414–1419.

    PubMed  CAS  Google Scholar 

  84. Fine J, Rutenberg S, Schweinburg FB (1959) The role of the reticuloendothelial system in haemorrhagic shock. J Exp Med 110:547–559.

    PubMed  CAS  Google Scholar 

  85. Loegering DJ (1977) Humoral factor depletion and reticuloendothelial depression during hemorrhagic shock. Am J Physiol 232:H283–H287.

    PubMed  CAS  Google Scholar 

  86. Saba TM (1986) Organ failure with sepsis after trauma or burn: support of the reticuloendothelial hostdefense system. In: Sibbald WJ, Sprung CL (eds) Perspectives on sepsis and septic shock. Soc Crit Care Med, San Francisco, pp 77–95.

    Google Scholar 

  87. Kupper TS, Green DR, Durum SK, Baker CC (1985) Defective antigen presentation to a cloned T-helper cell by macrophages from burned mice can be restored with interleukin-1. Surgery 98:199–206.

    PubMed  CAS  Google Scholar 

  88. Ayala A, Perrin MM, Chaudry IH (1990) Defective macrophage antigen presentation following hemorrhage is associated with the loss of MHC class II (Ia) antigens. Immunology 70:33–39.

    PubMed  CAS  Google Scholar 

  89. Hamilton TA, Adams DO (1987) Molecular mechanisms of signal transduction in macrophages. Immunol Today 8:151–158.

    CAS  Google Scholar 

  90. Ertel W, Morrison MH, Ayala A, Dean RE, Chaudry IH (1992) Interferon-gamma attenuates hemorrhage induced suppression of macrophage and splenocyte functions and decreases susceptibility to sepsis. Surgery 111:177–187.

    PubMed  CAS  Google Scholar 

  91. Ayala A, Perrin MM, Chaudry IH (1989) Increased susceptibility to sepsis following hemorrhage: defective Kupffer cell mediated antigen presentation. Surg Forum 40:102–104.

    Google Scholar 

  92. Ayala A, Perrin MM, Ertel W, Chaudry IH (1992) Differential effects of hemorrhage on Kupffer cells: decreased antigen presentation despite increased inflammatory cytokine (IL-1, IL-6 and TNF) release. Cytokine 4:66–75.

    PubMed  CAS  Google Scholar 

  93. Ertel W, Meldrum DR, Morrison MH, Ayala A, Chaudry IH (1990) Immunoprotective effect of a calcium channel blocker on macrophage antigen presentation function, major histocompatibility class II antigen expression and interleukin-1 synthesis after hemorrhage. Surgery 108:154–160.

    PubMed  CAS  Google Scholar 

  94. Ertel W, Morrison MH, Ayala A, Perrin MM, Chaudry IH (1990) Passive immunization against cachectin (TNF-alpha) prevents hemorrhage induced suppression of Kupffer cell functions. Surg Forum 41:91–93.

    Google Scholar 

  95. Ertel W, Morrison MH, Ayala A, Perrin MM, Chaudry IH (1991) Blockade of prostaglandin production increases cachectin synthesis and prevents depression of macrophage functions following hemorrhagic shock. Ann Surg 213:265–271.

    PubMed  CAS  Google Scholar 

  96. Ertel W, Morrison MH, Ayala A, Chaudry IH (1991) Insights into the mechanisms of defective antigen presentation following hemorrhage. Surgery 110:440–447.

    PubMed  CAS  Google Scholar 

  97. Ertel W, Morrison MH, Ayala A, Perrin MM, Chaudry IH (1991) Anti-TNF monoclonal antibodies prevent haemorrhage induced suppression of Kupffer cell antigen presentation and MHC class II antigen expression. Immunology 74:290–297.

    PubMed  CAS  Google Scholar 

  98. Ayala A, Perrin MM, Meldrum DR, Ertel W, Chaudry IH (1990) Hemorrhage induces an increase inserum TNF which is not associated with elevated levels of endotoxin. Cytokine 2:170–174.

    PubMed  CAS  Google Scholar 

  99. Okusawa S, Gelfand JA, Ikejima T, Connolly RJ, Dinarello CA (1988) Interleukin-1 induces a shock like state in rabbits. Synergism with tumor necrosis factor and the effects of cyclooxygenase inhibition. J Clin Invest 81:1162–1172.

    PubMed  CAS  Google Scholar 

  100. Ayala A, Wang P, Ba ZF, Perrin MM, Ertel W, Chaudry IH (1991) Differential alterations in plasma IL-6 and TNF levels following trauma and hemorrhage. Am J Physiol 260:R167–R171.

    PubMed  CAS  Google Scholar 

  101. Ertel W, Morrison MH, Wang P, Ba ZF, Ayala A, Chaudry IH (1991) The complex pattern of cytokines in sepsis — association between prostaglandins, cachectin and interleukins. Ann Surg 214:141–148.

    PubMed  CAS  Google Scholar 

  102. Ayala A, Kisala JM, Felt JA, Perrin MM, Chaudry IH (1992) Does endotoxin tolerance prevent the release of inflammatory monokines (IL-1, IL-6, or TNF) during sepsis? Arch Surg 127:191–197.

    PubMed  CAS  Google Scholar 

  103. Scuderi P, Lam KS, Ryan KJ (1986) Raised levels of tumor necrosis factor in parasitic infections. Lancet ii:1364–1365.

    Google Scholar 

  104. Hesse DG, Tracey KJ, Fong Y, Manogue KR, Palladino MA Jr, Cerami A, Shires GT, Lowry SF (1988) Cytokine appearance in human endotoxemia and primate bacteremia. Surg Gynecol Obstet 166:147–153.

    PubMed  CAS  Google Scholar 

  105. Waage A, Halstensen A, Espevik T (1987) Association between tumor necrosis factor in serum and fatal outcome in patients with meningococcal disease. Lancet i:355–357.

    Google Scholar 

  106. Stephan RN, Conrad PJ, Janeway CA, Geha S, Baue AE, Chaudry IH (1986) Decreased interleukin-2 production following simple hemorrhage. Surg Forum 37:73–75.

    CAS  Google Scholar 

  107. Meldrum DR, Ayala A, Perrin MM, Ertel W, Chaudry IH (1991) Diltiazem restores IL-2, IL-3, IL-6 and IFN-gamma synthesis and decreases susceptibility to sepsis following hemorrhage. J Surg Res 51:158–164.

    PubMed  CAS  Google Scholar 

  108. Suzuki F, Pollard RB (1982) Alterations of interferon production in a mouse model of thermal injury. J Immunol 129:1806–1810.

    PubMed  CAS  Google Scholar 

  109. Suzuki F, Pollard RB (1982) Mechanism for the suppression of interferon responsiveness in mice after thermal injury. J Immunol 129:1811–1815.

    PubMed  CAS  Google Scholar 

  110. Livingston DH, Apel SH, Wellhausen SR, Sonnenfeld G, Polk HC (1988) Depressed interferon-gamma production and monocyte HLA-DR expression after severe injury. Arch Surg 123:1309–1312.

    PubMed  CAS  Google Scholar 

  111. Livingston DH, Malangoni MA (1988) Interferongamma restores immune competence after hemorrhagic shock. J Surg Res 45:37–43.

    PubMed  CAS  Google Scholar 

  112. Waage A, Brandtzaeg P, Halstensen A, Kierulf P, Espevik T (1989) The complex pattern of cytokines in serum from patients with menigococcal septic shock. Association between interleukin 6, interleukin 1, and fatal outcome. J Exp Med 169:333–338.

    PubMed  CAS  Google Scholar 

  113. Girardin E, Grau JM, Dayer JM, Roux-Lombard P, Lambert PH (1988) Tumor necrosis factor and interleukin-1 in the serum of children with severe infectious purpura. N Engl J Med 319:397–400.

    PubMed  CAS  Google Scholar 

  114. Prieur AM, Kaufmann MT, Griscelli C, Dayer JM (1987) Specific interleukin-1 inhibitor in serum and urine of children with systemic juvenile chronic arthritis. Lancet ii:1240–1242.

    Google Scholar 

  115. Maury CP, Salo E, Pelkonen P (1988) Circulating interleukin-1 beta in patients with Kawasaki disease. N Engl J Med 319:1670–1671.

    PubMed  CAS  Google Scholar 

  116. Goldblum SE, Cohen DA, Gillespie MN, McClain DJ (1987) Interleukin-1-induced granulocytopenia and pulmonary leukostasis in rabbits. J Appl Physiol 62:122–128.

    PubMed  CAS  Google Scholar 

  117. Tredget EE, Yu YM, Zhong S, Burin R, Okusawa S, Gelfand JA, Dinarello CA, Young VR, Burke JF (1988) Role of interleukin 1 and tumor necrosis factor on energy metabolism in rabbits. Am J Physiol 255:E760–E768.

    PubMed  CAS  Google Scholar 

  118. Dinarello CA (1991) The proinflammatory cytokines interleukin-1 and tumor necrosis factor and treatment of the septic shock syndrome. J Infect Dis 163:1177–1184.

    PubMed  CAS  Google Scholar 

  119. Smith J, Urba W, Steis R et al. (1990) Interleukin-1 alpha: results of a phase I toxicity and immunomodulatory trial. Am Soc Clin Oncol 9:717.

    Google Scholar 

  120. Fong Y, Moldawer LL, Marano M, Wei H, Tatter SB, Ciarick RH, Santhanam U, Sherris D, May LT, Sehgal PB, Lowry SF (1989) Endotoxemia elicits increased circulating beta 2-IFN/IL-6 in man. J Immunol 142:2321–2324.

    PubMed  CAS  Google Scholar 

  121. Smith KA (1988) Interleukin-2; inception, impact, and implications. Science 240:1169–1176.

    PubMed  CAS  Google Scholar 

  122. Glassman AB (1989) Interleukin-2 and lmyphokine activated killer cells: promises and cautions. Ann Clin Lab Sci 19:51–55.

    PubMed  CAS  Google Scholar 

  123. Goronzy J, Weyand C, Quan J, Fathman CG, O’Hanley P (1989) Enhanced cell-mediated protection against fatal Escherichia coli septicemia induced by treatment with recombinant IL-2. J Immunol 142:1134–1138.

    PubMed  CAS  Google Scholar 

  124. Wood JJ, O’Mahony JB, Rodrick ML, Eaton R, Demling RH, Mannick JA (1986) Abnormalities of antibody production after thermal injury. An association with reduced interleukin 2 production. Arch Surg 121:108–115.

    PubMed  CAS  Google Scholar 

  125. Teodorczyk-Injeyan JA, Sparkes BG, Peters WJ (1989) Serum interleukin 2 receptor as a possible mediator of immunosuppression after burn injury. J Burn Care Rehabil 10:112–118.

    PubMed  CAS  Google Scholar 

  126. May LT, Ghrayeb J, Santhanam U, Tatter SB, Sthoeger Z, Helfgott DC, Chiorazzi N, Grieninger G, Sehgal PB (1989) Synthesis and secretion of multiple forms of “β2-interferon/B-cell differentiation factor BSF-2/hepatocyte stimulating factor” by human fibroblasts and monocytes. J Biol Chem 263:7760–7766.

    Google Scholar 

  127. May DC, Santhanam U, Tatter SB, Bhardwaj N, Ghrayeb J, Sehgal PB (1988) Phosphorylation of secreted forms of human β2-interferon/hepatocyte stimulating factor/interleukin-6. Biochim Biophys Acta 152:1144–1150.

    CAS  Google Scholar 

  128. Kohase M, Henriksen DeStefano D, May LT, Vilcek J, Sehgal PB (1986) Induction of beta 2-interferon by tumor necrosis factor: a homeostatic mechanism in control of cell proliferation. Cell 45:659–666.

    PubMed  CAS  Google Scholar 

  129. Vaquero C, Sanceau J, Weissenbach J, Beranger F, Falcoff R (1986) Regulation of human gamma-interferon and beta-interferon gene expression in PHA-activated lymphocytes. J Interferon Res 6:161–170.

    PubMed  CAS  Google Scholar 

  130. Shenkin A, Fraser WD, Seris J, Winstanley FP, McCartney AC, Burns HJ, Van Damme J (1989) The serum interleukin-6 responses to elective surgery. Lymphokine Res 8:123–127.

    PubMed  CAS  Google Scholar 

  131. Nijsten MW, DeGroot ER, Ten Duis HJ, Klasen HJ, Hack CE, Aarden LA (1987) Serum levels of interleukin-6 and acute phase repsonse. Lancet ii:921.

    Google Scholar 

  132. Guo Y, Dickerson C, Chrest FJ, Adler WH, Munster AM, Winchurch RA (1990) Increased levels of circulating interleukin 6 in burn patients. Clin Immunol Immunopathol 54:361–371.

    PubMed  CAS  Google Scholar 

  133. Pullicino EA, Carli F, Poole S, Rafferty B, Malik STA, Elia M (1990) The relationship between the circulating concentrations of interleukin 6 (IL-6), tumor necrosis factor (TNF) and the acute phase response to elective surgery and accidental injury. Lymphokine Res 9:231–238.

    PubMed  CAS  Google Scholar 

  134. Tosato G, Seamon KB, Goldman ND, Sehgal PB, May LT, Washington GC, Jones KD, Pike SE (1988) Monocyte-derived human B-cell growth factor identified as interferon-β2 (BSF-2, IL-6). Science 239:502–504.

    PubMed  CAS  Google Scholar 

  135. Castell JV, Gomez-Lechon MJ, David M, Andus T, Geiger T, Trullenque R, Fabra R, Heinrich PC (1989) Interleukin-6 is the major regulator of acute phase protein synthesis in adult human hepatocytes. FEBS Lett 242:237–239.

    PubMed  CAS  Google Scholar 

  136. Hesse D, Davatelis G, Felsen D, Senuik S, Fong Y, Tracey K, Moldawer L, Cerami A, Lowry S (1987) Cachectin/tumor necrosis factor gene expression in Kupffer cells. J Leukoc Biol 42:422.

    Google Scholar 

  137. Beutler B, Korchin N, Milsark IW, Leudke C, Cerami A (1986) Control of cachectin (tumor necrosis factor) synthesis: mechanism of endotoxin resistance. Science 232:977–980.

    PubMed  CAS  Google Scholar 

  138. Beutler B, Cerami A (1987) Cachectin: more than a tumor necrosis factor. N Engl J Med 316:379–385.

    PubMed  CAS  Google Scholar 

  139. Michie HR, Manogue KR, Spriggs DR, Revhaug A, O’Dwyer S, Dinarello CA, Cerami A, Wolff SM, Wilmore DW (1988) Detection of circulating tumor necrosis factor after endotoxin administration. N Engl J Med 318:1481–1486.

    PubMed  CAS  Google Scholar 

  140. Hotez PJ, Le Trang N, Fairlamb AH, Cerami A (1984) Lipoprotein lipase suppression in 3T3-L1 cells by hematoprotozoan induced mediator from peritoneal exudate cells. Parasite Immunol 6:203–209.

    PubMed  CAS  Google Scholar 

  141. Dinarello CA, Cannon JG, Wolff SM, Bernheim HA, Beutler B, Cerami A, Figari IS, Palladino MA, O’Connor JV (1986) Tumor necrosis factor (cachectin) is an endogenous pyrogen and induces production of interleukin 1. J Exp Med 163:1433–1450.

    PubMed  CAS  Google Scholar 

  142. Lee DM, Zentella A, Pekala PH, Cerami A (1987) Effect of endotoxin induced monokines on glucose metabolism in the muscle cell line L-6. Proc Natl Acad Sci USA 84:2590–2594.

    PubMed  CAS  Google Scholar 

  143. Marano MA, Fong Y, Moldawer LL, Wei H, Calvano SE, Tracey KJ, Barie PS, Manogue K, Cerami A, Shires GT, Lowry SF (1990) Serum cachectin/tumor necrosis factor in critically ill patients with burns correlates with infection and mortality. Surg Gynecol Obstet 170:32–38.

    PubMed  CAS  Google Scholar 

  144. Beutler BA, Milsark IW, Cerami A (1985) Cachectin/tumor necrosis factor: production, distribution and metabolic fate in vivo. J Immunol 135:3972–3977.

    PubMed  CAS  Google Scholar 

  145. Schirmer WJ, Schirmer JM, Fry DE (1989) Recombinant human tumor necrosis factor produces hemodynamic changes characteristic of sepsis and endotoxemia. Arch Surg 124:445–448.

    PubMed  CAS  Google Scholar 

  146. Beutler B, Milsark IW, Cerami A (1985) Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science 229:869–871.

    PubMed  CAS  Google Scholar 

  147. Tracey KJ, Fong Y, Hesse DG, Manogue KR, Lee AT, Kuo GC, Lowry SF, Cerami A (1987) Anticachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteremia. Nature 330:662–664.

    PubMed  CAS  Google Scholar 

  148. Lefer AM (1983) Role of prostaglandins and thromboxanes in shock. In: Altura BM, Lefer SM, Schumer W (eds) The handbook on shock and trauma. Raven, New York, pp 355.

    Google Scholar 

  149. Bonta IL, Parnham MJ (1982) Immunomodulatory-antiinflammatory functions of E-type prostaglandins. Minireview with emphasis on macrophage mediated effects. Int J Immunopharmacol 4:103–109.

    PubMed  CAS  Google Scholar 

  150. Constantian MB, Menzoian JO, Nimberg RB, Schmid K, Mannick JA (1977) Association of a circulating immunosuppressive polypeptide with operative and accidental trauma. Ann Surg 185:73–79.

    PubMed  CAS  Google Scholar 

  151. Ozkan AN, Pinney E, Hoyt DB, Ninnemann J, Hansbrough J (1988) Elastase and suppressor active peptide activity following burn injury. J Trauma 28:207–210.

    PubMed  CAS  Google Scholar 

  152. Grbic JT, Mannick JA, Gough DB, Rodrick ML (1991) The role of prostaglandin E2 in immune suppression following injury. Ann Surg 214:253–263.

    PubMed  CAS  Google Scholar 

  153. Arturson MG (1983) Arachadonic acid metabolism and prostaglandin activity following burn injury. In: Ninneman JL (ed) Traumatic injury. University Press, Baltimore, pp 57–79.

    Google Scholar 

  154. Faist E, Kupper TS, Baker CC, Chaudry IH, Dwyer J, Baue AE (1986) Depression of cellular immunity after major injury: its association with post traumatic complications and its restoration with immunomodulatory agents. Arch Surg 121:1000–1005.

    PubMed  CAS  Google Scholar 

  155. Miller CL, Fink MP, Wu JY, Sabo G, Kodys (1988) Mechanisms of altered monocyte prostaglandin E2 production in severely injured patients. Arch Surg 123.293–299.

    Google Scholar 

  156. Miller CL, Szabo G, Takayama T, Wu JY (1989) Alterations of monocyte function following major injury. In: Faist E, Ninnemann J, Green D (eds) Immune consequences of trauma, shock and sepsis. Springer, Berlin Heidelberg New York, pp 95–108.

    Google Scholar 

  157. Ninnemann JL, Stockland AE (1984) Participation of prostaglandin E2 in immunosuppression following thermal injury. J Trauma 24:201–207.

    PubMed  CAS  Google Scholar 

  158. Anggard E, Arturson G, Jonsson CE (1970) Efflux of prostaglandin in lymph from scalded tissues. Acta Physiol Scand 80:46 (abstract).

    Google Scholar 

  159. Stephan RN, Conrad PH, Saizawa J, Dean RE, Chaudry IH (1988) Prostaglandin E2 depresses antigen presenting cell function of peritoneal macrophages. J Surg Res 44:733–739.

    PubMed  CAS  Google Scholar 

  160. Kurt-Jones EA, Beller DI, Mizel SB, Unanue ER (1985) Identification of a membrane-associated interleukin 1 in macrophages. Proc Natl Acad Sci USA 82:1204–1208.

    PubMed  CAS  Google Scholar 

  161. Knudsen PJ, Dinarello CA, Strom TB (1986) Prostaglandins post-transcriptionally inhibit monocyte expression of interleukin 1 activity by increasing intracellular c-AMP. J Immunol 137:3189–3194.

    PubMed  CAS  Google Scholar 

  162. Mendelsohn J, Multer MM, Boone RF (1973) Enhanced effects of prostaglandin E1 and dibutyryl cyclic AMP upon lymphocytes in the presence of Cortisol. J Clin Invest 52:2129–2137.

    PubMed  CAS  Google Scholar 

  163. Hoyt DB, Ozkan AN, Easter DW (1988) Isolation of an immunosuppressive trauma peptide and its relationship to fibronectin. J Trauma 28:907–913.

    PubMed  CAS  Google Scholar 

  164. Gelfand JA, Donelan M, Burke JF (1983) Preferential activation and depletion of the alternative complement pathway by burn injury. Ann Surg 198:58–62.

    PubMed  CAS  Google Scholar 

  165. Remick DG, Scales WE, Kunkel SL, Chensue SW (1989) The pathophysiology of interleukins and tumor necrosis factors. In: Sayeed M (ed) Focus on cellular pathophysiology. CRC Press, Boca Raton, p 41–83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stephan, R., Ayala, A., Chaudry, I.H. (1993). Monocyte and Lymphocyte Responses Following Trauma. In: Schlag, G., Redl, H. (eds) Pathophysiology of Shock, Sepsis, and Organ Failure. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76736-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76736-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76738-8

  • Online ISBN: 978-3-642-76736-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics