Skip to main content

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 10))

Abstract

If we define ears as any structure that can detect sound waves, then a review of auditory receptors in arthropods is faced with the problem of treating a great diversity of sound waves employed in this large taxon, either for social communication, or for the detection of predators or prey. Hearing may then include the detection of sound waves in air or water, the various kinds of waves in solids, at the water/air interface etc. At the same time, there is an enormous variety of mechanoreceptors involved in the detection of sound, and some of these are not even specialized for detecting a particular kind of sound. For example, any arthropod sensillum that usually monitors stress or strain in the cuticle may in addition respond to substrate vibrations. The sensory organ in the second segment of the antenna (Johnston’s organ) may function in the near-field as a displacement sound receptor in mosquitoes and Drosophila (Ewing 1978), as a device for autocommunicative echolocation in gyrinid beetles using water surface waves (Rudolph 1967; Tucker 1969) or as a sense organ involved in the regulation of insect flight or the control of swimming behaviour (Burkhardt and Schneider 1957; Gewecke et al. 1974; Gewecke 1980), to mention only a few. Considerations of space prevent us from reviewing the great variety of receptor types in arthropods, and we will focus here on receptors responding to airborne sound and to substrate vibrations. However, at the end of this chapter we offer the reader a list of articles dealing with aspects of hearing in arthropods that are not covered in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adams WB (1972) Mechanical tuning of the acoustic receptor of Prodenia eridania (Cra- mer)(Noctuidae) J Exp Biol 57:297–304

    Google Scholar 

  • Aicher B, Tautz J (1990) Vibrational communication in the fiddler crab, XJca pugilator. I. Signal transmission through the substratum. J Comp Physiol 166:345–353

    Google Scholar 

  • Aicher B, Markl H, Masters WM, Kirschenlohr HL (1983) Vibration transmission through the walking legs of the fiddler crab, Uca pugilator (Brachyura, Ocypodidae) as measured by Laser Doppler Vibrometry. J Comp Physiol 150:483–491

    Google Scholar 

  • Autrum H (1936) Über Lautäußerungen und Schallwahrnehmung bei Arthropoden. I. Untersuchungen an Ameisen. Eine allgemeine Theorie der Schallwahrnehmung bei Arthropoden. Z Vergl Physiol 23:332–373

    Google Scholar 

  • Autrum H (1940) Über Lautäußerungen und Schallwahrnehmung bei Arthropoden. II. Das Richtungshören von Locusta und der Versuch einer Hörtheorie für Tympanalorgane vom Locustidentyp. Z Vergl Physiol 28:326–352

    Google Scholar 

  • Autrum H (1941) Über Gehör und Erschütterungssinn bei Locustiden. Z Vergl Physiol 28:580–637

    Google Scholar 

  • Autrum H, Schneider W (1948) Vergleichende Untersuchungen über den Erschütterungssinn der Insekten. Z Vergl Physiol 31:77–88

    CAS  Google Scholar 

  • Bailey WJ (1990) The ear of the bushcricket. In: Bailey WJ, Rentz DCF (eds) The Tettigoniidae: biology, systematica and evolution. Crawford House Press, Bathhurst, pp 217–247

    Google Scholar 

  • Ball EE, Hill KG (1978) Functional development of the auditory system of the cricket, Teleogryllus commodus. J Comp Physiol 127:131–138

    Google Scholar 

  • Barth FG (1971) Der sensorische Apparat der Spaltsinnesorgane (Cupiennius salei Keys. Araneae). Z Zellforsch 112:212–246

    PubMed  CAS  Google Scholar 

  • Barth FG (1972) Die Physiologie der Spaltsinnesorgane. II. Funktionelle Morphologie eines Mechanoreceptors. J Comp Physiol 81:159–186

    Google Scholar 

  • Barth FG (1985) Neuroethology of the spider vibration sense. In: Barth FG (ed) Neurobiology of arachnids. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Barth FG, Geethabali (1982) Spider vibration receptors: threshold curves of individual slits in the metatarsal lyriform organ. J Comp Physiol 148:175–185

    Google Scholar 

  • Barth FG, Libera W (1970) Ein Atlas der Spaltsinnesorgane von Cupiennius salei Keys. (Chelicerata, Araneae). Z Morphol Ökol Tiere 68:343–369

    Google Scholar 

  • Barth FG, Wadepuhl M (1975) Slit sense organs in the scorpion leg (Androctonus australis L., Buthidae). J Morphol 145:209–228

    Google Scholar 

  • Belton P (1974) An analysis of direction finding in male mosquitoes. In: Barton Brown L (ed) Experimental analysis of insect behaviour. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Bennet-Clark HC (1971) Acoustics of insect song. Nature (Lond) 234:255–259

    Google Scholar 

  • Bennet-Clark HC (1984) Insect hearing: acoustics and transduction. In: Lewis T (ed) Insect communication. Academic Press, London, pp 49–82

    Google Scholar 

  • Bleckmann H (1988) Perception of water surface waves: how surface waves are used for prey identification, prey localization, and intraspecific communication. In: Ottosen D (ed) Progress in sensory physiology 5. Springer, Berlin Heidelberg New York Tokyo, pp 147–166

    Google Scholar 

  • Bleckmann H, Barth FG (1984) Sensory ecology of the semiaquatic spider Dolometes triton. II. Release of predatory behavior by water surface waves. Behav Ecol Sociobiol 14:303–312

    Google Scholar 

  • Boyan GS (1979) Directional responses to sound in the central nervous system of the cricket Teleogryllus commodus (Orthoptera: Gryllidae). J Comp Physiol 130:137–150

    Google Scholar 

  • Breckow J, Sippel M (1985) Mechanics of the transduction of sound in the tympanal organ of adults and larvae of locusts. J Comp Physiol 157:619–629

    CAS  Google Scholar 

  • Brownell PH (1977) Compressional and surface waves in sand: used by desert scorpions to locate prey. Science 197:479–482

    PubMed  CAS  Google Scholar 

  • Brownell PH, Farley RD (1979a) Prey-localizing behaviour of the nocturnal desert scorpion, Paruroctonus mesaensis: orientation to substrate vibrations. Anim Behav 27:185–193

    Google Scholar 

  • Brownell PH, Farley RD (1979b) Detection of vibrations in sand by tarsal sense organs of the nocturnal scorpion, Paruroctonus mesaensis. J Comp Physiol 131:23–30

    Google Scholar 

  • Brownell PH, Farley RD (1979c) Orientation to vibrations in sand by the nocturnal scorpion Paruroctonus mesaensis: mechanism of target localization. J Comp Physiol 131:31–38

    Google Scholar 

  • Budelmann B (1990) Hearing of non-arthropod invertebrates. In: Fay RR, Popper AN, Webster DB (eds) Evolutionary biology of hearing. Springer, Berlin Heidelberg New York (in press)

    Google Scholar 

  • Bullock TH (1984) Comparative neuroethology of startle, rapid escape, and giant fibre-mediated responses. In: Eaton RC (ed) Neural mechanisms of startle behavior. Plenum Press, New York, ppi-ii

    Google Scholar 

  • Burkhardt D (1960) Die Eigenschaften und Funktionstypen der Sinnesorgane. Ergeb Biol 22:226–267

    Google Scholar 

  • Burkhardt D, Schneider G (1957) Die Antennen von Calliphora als Anzeiger der Fluggeschwindigkeit. Z Naturforsch 12:139–143

    Google Scholar 

  • Camhi J (1980) The escape system of the cockroach. Sci Am 243:158–172

    Google Scholar 

  • Camhi J, Tom W (1978) The escape behaviour of the cockroach Periplaneta americana I. Turning response to wind puffs. J Comp Physiol 128:193–201

    Google Scholar 

  • Clements AN (1963) The physiology of mosquitoes. Pergamon Press, New York

    Google Scholar 

  • Crawford AC, Fettiplace R (1981) An electrical tuning mechanism in turtle cochlea hair cells. J Physiol 312:377–422

    PubMed  CAS  Google Scholar 

  • Dambach M (1972) Vibrationssinn der Grillen. I. Schwellenmessungen an Beinen freibeweglicher Here. II. Antworten von Neuronen im Bauchmark. J Comp Physiol 79:281–324

    Google Scholar 

  • Dambach M, Lichtenstein L (1978) Zur Ethologie der afrikanischen Grille Phaeophilacris spectrum Saussure. Z Tierpsychol 46:14–29

    Google Scholar 

  • Dragsten PR, Webb WW, Paton JA, Capranica RR (1974) Auditory membrane vibrations: measurements at sub-Angstrom levels by optical heterodyne spectroscopy. Science 185:55–57

    PubMed  CAS  Google Scholar 

  • Doolan JM, Young D (1989) Relative importance of song parameters during flight phonotaxis and courtship in the bladder cicada Cystosoma saundersii. J Exp Biol 141:113–131

    Google Scholar 

  • Edwards JS, Palka J (1974) The cerci and abdominal giant fibres of the house cricket, Acheata domesticus. Anatomy and physiology of normal adults. Proc R Soc Lond B 185:83–103

    PubMed  CAS  Google Scholar 

  • Eggers F (1928) Die stiftführenden Sinnesorgane. Zool Bausteine 2:354

    Google Scholar 

  • Erler G, Thurm U (1981) Dendritic impulse initiation in an epithelial sensory neuron. J Comp Physiol 142:237–249

    Google Scholar 

  • Ewing AW (1978) The antenna of Drosophila as a “love song” receptor. Physiol Entomol 3:33–36

    Google Scholar 

  • Fletcher NH, Thwaites S (1979) Acoustical analysis of the auditory system of the cricket Teleogryllus commodus (Walker). J Acoust Soc Am 62:350–357

    Google Scholar 

  • Gaffal KP, Hchy H, Theiss J, Seelinger G (1975) Structural polarities in mechanosensitive sensilla and their influence on stimulus transmission (Arthropoda). Zoomorphologie 82:79–103

    Google Scholar 

  • Gewecke M (1980) Steuerung des Schwimmverhaltens durch die Antennen beim Teichschwimmer (Colymbetes fuscus L., Dytiscidae, Coleoptera). Verh Dtsch Zool Ges 1980:336

    Google Scholar 

  • Gewecke M, Heinzel H-G, Philippen J (1974) Role of antennae of the dragonfly Orthetrum cancellarum in flight control. Nature (Lond) 249:584–585

    Google Scholar 

  • Gnatzy W, Schmidt K (1971) Die Feinstruktur der Sinneshaare auf den Cerci von Gryllus bimaculatus Deg. (Saltatoria, Gryllidae). I. Faden- und Keulenhaare. Z Zellforsch 122:190–209

    PubMed  CAS  Google Scholar 

  • Gnatzy W, Tautz J (1980) Ultrastructure and mechanical properties of an insect mechanoreceptor: stimulus-transmitting structures and sensory apparatus of the cercal filiform hairs in Gryllus. Cell Tissue Res 213:441–463

    PubMed  CAS  Google Scholar 

  • Gray EG (1960) The fine structure of the insect ear. Philos Trans R Soc B 243:75–94

    Google Scholar 

  • Grosch A, Callender F, Petersen M, Cokl A, Kalmring K (1985) Vibration receptors of larvae and of imagines in locusts: location on the legs, central projections and physiology. In: Kalmring K, Eisner N (eds) Acoustic and vibrational communication in insects. Parey, Hamburg, pp 151–161

    Google Scholar 

  • Hardin BO, Richard FE (1963) Elastic wave velocities in granular soils. J Mech Found Div, Proc Am Soc Civil Eng SMI 3407:33–65

    Google Scholar 

  • Harrison L, Horseman G, Lewis B (1988) The coding of the courtship song by an identified auditory neurone in the cricket Teleogryttus oceanicus (Le guillou). J Comp Physiol 163:215–225

    Google Scholar 

  • Hedwig B (1986) On the role of stridulation of plurisegmental interneurons of the acridid grasshopper Omocestus viridulus L. II. Anatomy and physiology of ascending and T-shaped interneurons. J Comp Physiol 158:429–444

    Google Scholar 

  • Hedwig B (1988) Activation and modulation of auditory receptors in Locusta migratoria by respiratory movements. J Comp Physiol 162:237–246

    Google Scholar 

  • Hedwig B (1989) Modulation of auditory information processing in tethered flying locusts. J Comp Physiol 164:409–422

    Google Scholar 

  • Hedwig B, Land F, Eisner N (1988) The interference of sound and movement stimuli in tympanal receptors of Locusta migratoria. J Comp Physiol 163:243–252

    Google Scholar 

  • Heinzel H-G, Dambach M (1987) Travelling air vortex rings as potential communication signals in a cricket. J Comp Physiol 160:79–88

    Google Scholar 

  • Hill KG (1983a) The physiology of locust auditory receptors. I. Discrete depolarizations of receptor cells. J Comp Physiol 152:475–482

    Google Scholar 

  • Hill KG (1983b) The physiology of locust auditory receptors. II. Membrane potentials associated with the response of the receptor cell. J Comp Physiol 152:483–493

    Google Scholar 

  • Hill KG, Boyan GS (1977) Sensitivity to frequency and direction of sound in the auditory system of crickets (Gryllidae). J Comp Physiol 121:79–97

    Google Scholar 

  • Hill KG, Oldfield BP (1981) Auditory function in Tettigoniidae (Orthoptera: Ensifera). J Comp Physiol 142:169–180

    Google Scholar 

  • Horridge GA (1960) Pitch discrimination in Orthoptera (Insecta) demonstrated by responses of central auditory neurons. Nature (Lond) 185:623–624

    CAS  Google Scholar 

  • Hoy RR (1989) Startle, categorial response, and attention in acoustic behavior in crickets. Annu Rev Neurosci 12:355–375

    PubMed  CAS  Google Scholar 

  • Huber F (1983) Neural correlates of orthopteran and cicada phonotaxis. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer, Berlin Heidelberg New York, pp 108–135

    Google Scholar 

  • Huber F, Wohlers D, Moore TE (1980) Auditory nerve and interneurone responses to natural sounds in several species of cicadas. Physiol Entomol 5:25–45

    Google Scholar 

  • Inglis M, Oldfield BP (1988) Tonotopic organisation of the auditory organ of the locust Valanga irregularis (Walker). J Comp Physiol 164:49–53

    Google Scholar 

  • Kämper G (1984) Abdominal ascending interneurons in crickets: responses to sound at the 30-Hz calling song frequency. J Comp Physiol 155:507–520

    Google Scholar 

  • Keppler E (1958) Uber das Richtungshören von Stechmücken. Z Naturforsch 13:280–284

    Google Scholar 

  • Kleindienst HU, Koch UT, Wohlers DW (1981) Analysis of the cricket auditory system by acoustic stimulation using a closed sound field. J Comp Physiol 141:283–296

    Google Scholar 

  • Larsen ON (1981) Mechanical time resolution in some insect ears. II. Impulse sound transmission in acoustic tracheal tubes. J Comp Physiol 143:297–304

    Google Scholar 

  • Larsen ON, Michelsen A (1978) Biophysics of the ensiferan ear. III. The cricket ear as a four-input system. J Comp Physiol 123:217–227

    Google Scholar 

  • Lee WB, Solomon SC (1975) Inversion schemes for surface wave attenuation and Q in the crust and the mantle. Geophys J R Astr Soc 43:47–71

    Google Scholar 

  • Lewis B (1974) The physiology of the tettigoniid ear, I-IV. J Exp Biol 60:821–869

    PubMed  CAS  Google Scholar 

  • Lewis B (1983) Directional cues for auditory location. In: Lewis DB (ed) Bioacoustics: a comparative approach. Academic Press, London, pp 233–260

    Google Scholar 

  • Markl H (1978) Adaptive radiation of mechanoreception. In: Ali MA (ed) Sensory ecology. Review and perspectives. Plenum Press, New York, pp 319–344

    Google Scholar 

  • Markl H (1983) Vibrational communication. In: Huber F, Markl H (eds) Neuroethology and behavioural physiology. Springer, Berlin Heidelberg New York, pp 332–353

    Google Scholar 

  • Markl H, Tautz J (1975) The sensitivity of hair receptors in caterpillars of Barathra brassicae L. (Lepidoptera, Noctuidae) to particle movement in a sound field. J Comp Physiol 99:79–87

    Google Scholar 

  • Meier T, Reichert H (1990) Embryonic development and evolutionary origin of the orthopteran auditory organs. J Neurobiol 21:592–610

    PubMed  CAS  Google Scholar 

  • Michel K (1974) Das Tympanalorgan von Gryllus bimaculatus deGeer (Saltatoria, Gryllidae). Z Morphol Tiere 77:285–315

    Google Scholar 

  • Michelsen A (1966) Pitch discrimination in the locust ear: observations on single sense cells. J Insect Physiol 12:1119–1131

    PubMed  CAS  Google Scholar 

  • Michelsen A (1971) The physiology of the locust ear. I Frequency sensitivity of single cells in the isolated ear. II Frequency discrimination based on resonances in the tympanum. Ill Acoustical properties of the intact ear. Z Vergl Pysiol 71:49–128

    Google Scholar 

  • Michelsen A (1985) Time resolution in auditory systems. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Michelsen A, Larsen ON (1978) Biophysics of the ensiferan ear. I. Tympanal vibrations in bushcrickets (Tettigoniidae) studied with laser vibrometry. J Comp Physiol 123:193–203

    Google Scholar 

  • Michelsen A, Larsen ON (1983) Strategies for acoustic communication in complex environments. In: Huber F, Markl H (eds) Neuroethology and behavioural physiology. Springer, Berlin Heidelberg New York, pp 321–332

    Google Scholar 

  • Michelsen A, Larsen ON (1985) Hearing and sound. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 6. Pergamon Press, Oxford, pp 496–556

    Google Scholar 

  • Michelsen A, Fink F, Gogala M, Traue D (1982) Plants as transmission channels for insect vibrational songs. Behav Ecol Sociobiol 11:269–281

    Google Scholar 

  • Michelsen A, Kirchner WH, Lindauer M (1986) Sound and vibrational signals in the dance language of the honeybee, Apis mellifera. Behav Ecol Sociobiol 18:207–212

    Google Scholar 

  • Michelsen A, Towne WF, Kirchner WH, Kryger P (1987) The acoustic near field of a dancing honeybee. J Comp Physiol 161:633–643

    Google Scholar 

  • Miller LA (1970) Structure of the green lacewing tympanal organ (Chrysopa carnea, Neuroptera). J Morphol 131:359–382

    Google Scholar 

  • Miller LA (1971) Physiological responses of green lacewings (Chrysopa, Neuroptera) to ultrasound. J Insect Physiol 17:491–506

    Google Scholar 

  • Miller LA (1977) Directional hearing in the locust Schistocerca gregaria Forskal (Acrididae, Orthoptera). J Comp Physiol 119:85–98

    Google Scholar 

  • Moiseff A, Pollack GS, Hoy RR (1978) Steering responses of flying crickets to sound and ultrasound: mate attraction and predator avoidance. Proc Natl Acad Sci USA 75:4052–4056

    PubMed  CAS  Google Scholar 

  • Mörchen A, Rheinlaender J, Schwartzkopff J (1978) Latency shift in insect auditory nerve fibers. Naturwissenschaften 65:656

    Google Scholar 

  • Moran DT, Rowley III C (1975) High voltage and scanning electron microscopy of the site of stimulus reception of an insect mechanoreceptor. J Ultrastruct Res 50:38–46

    PubMed  CAS  Google Scholar 

  • Murphey RK (1971) Sensory aspects of the control of orientation to prey by the waterstrider, Gerris remigis. Z Vergl Physiol 72:168–185

    Google Scholar 

  • Oldfield BP (1980) Accuracy of orientation in female crickets, Teleogryllus oceanicus (Gryllidae): dependence on song spectrum. J Comp Physiol 141:93–100

    Google Scholar 

  • Oldfield BP (1982) Tonotopic organisation of auditory receptors in Tettigoniidae (Orthoptera: Ensifera). J Comp Physiol 147:461–469

    Google Scholar 

  • Oldfield BP (1985) The tuning of auditory receptors in bushcrickets. Hearing Res 17:27–35

    CAS  Google Scholar 

  • Oldfield BP, Hill KG (1986) Functional organization of insect auditory sensilla. J Comp Physiol 158:27–34

    Google Scholar 

  • Payne RS, Roeder KD, Wallman J (1966) Directional sensitivity of the ears of noctuid moths. J Exp Biol 44:17–31

    PubMed  CAS  Google Scholar 

  • Pringle JWS (1938) Proprioreception in insects. II. The action of the campaniform sensilla on the legs. J Exp Biol 15:114–131

    Google Scholar 

  • Pumphrey RJ (1940) Hearing in insects. Biol Rev Camb Philos Soc 15:107–132

    Google Scholar 

  • Ramspeck A, Schultze GA (1938) Die Dispersion elastischer Wellen im Boden. Veröff Inst Dsch Forschungsges Bodenmechanik (Degebo) Techn Hochschule Berlin 6:1–28

    Google Scholar 

  • Rheinlaender J (1975) Transmission of acoustic information at three neuronal levels in the auditory system of Decticus verrucivorus (Tettigoniidae: Orthoptera). J Comp Physiol 97:1–53

    Google Scholar 

  • Rheinlaender J (1984) Das akustische Orientierungsverhalten von Heuschrecken, Grillen und Fröschen: eine vergleichende neuro- und verhaltensphysiologische Untersuchung. Habilitationsschrift, Bochum

    Google Scholar 

  • Rheinlaender J, Mörchen A (1979) Time-intensity trading’ in locust auditory interneurons. Nature (Lond) 281:672–674

    Google Scholar 

  • Robert D (1989) The auditory behaviour of flying locusts. J Exp Biol 147:279–301

    Google Scholar 

  • Roeder KD (1972) Acoustic and mechanical sensitivity of the distal lobe of the pilifer in certain Choerocampine hawkmoths. J Insect Physiol 18:1249–1264

    Google Scholar 

  • Roeder KD, Treat AE (1957) Ultrasonic reception by the tympanic organs of noctuid moths. J Exp Zool 134:127–157

    PubMed  CAS  Google Scholar 

  • Römer H (1976) Die Informationsverarbeitung tympanaler Rezeptorelemente von Locusta migratoria (Acrididae, Orthoptera). J Comp Physiol 109:101–122

    Google Scholar 

  • Römer H (1987) Representation of auditory distance within a central neuropil of the bushcricket Mygalopsis marki. J Comp Physiol 161:33–42

    Google Scholar 

  • Römer H, Bailey WJ (1990) Insect hearing in the field. J Comp Biochem Physiol 97A:443–447

    Google Scholar 

  • Römer H, Marquart V (1984) Morphology and physiology of auditory interneurons in the metathoracic ganglion of the locust. J Comp Physiol 155:249–262

    Google Scholar 

  • Römer H, Rheinlaender J (1983) Electrical stimulation of the tympanal nerve as a tool for analysing the responses of auditory interneurons in the locust. J Comp Physiol 152:289–296

    Google Scholar 

  • Ronacher B, Römer H (1985) Spike synchronization of tympanic receptor fibres in a grasshopper (Chorthippus biguttulus L., Acrididae). J Comp Physiol 157:631–642

    CAS  Google Scholar 

  • Rovner JS, Barth FG (1981) Vibratory communication through living plants by a tropical wandering spider. Science 214:464–466

    PubMed  CAS  Google Scholar 

  • Rudolph P (1967) Zum Ortungsverfahren von Gyrinus substriatus Steph. (Taumelkäfer). Z Vergl Physiol 56:341–375

    Google Scholar 

  • Schildberger K, Milde JJ, Hörner M (1988) The function of auditory neurons in cricket phonotaxis. II Modulation of auditory responses during locomotion. J Comp Physiol 163:633–640

    Google Scholar 

  • Schiolten P, Larsen ON, Michelsen A (1981) Mechanical time resolution in some insect ears. I. Impulse responses and time constants. J Comp Physiol 143:289–295

    Google Scholar 

  • Schmidt H (1954) Die Schallausbreitung in körnigen Substanzen. Acustica 4:639–652

    Google Scholar 

  • Schmidt M, Gnatzy W (1984) Are the funnel-canal organs the “campaniform sensilla” of the shore crab, Carduus maenas (Decapoda, Crustacea) Cell Tissue Res 237:81–93

    PubMed  CAS  Google Scholar 

  • Schmitz B, Scharstein H, Wendler G (1982) Phonotaxis in Gryllus campestris L. (Orthoptera, Gryllidae). I. Mechanism of acoustic orientation in intact female crickets. J Comp Physiol 148:431–444

    Google Scholar 

  • Schnorbus H (1971) Die subgenualen Sinnesapparate von Periplaneta americana: Histologie und Vibrationsschwellen. Z Vergl Physiol 71:14–48

    Google Scholar 

  • Schwabe J (1906) Beiträge zur Morphologie und Histologie der tympanalen Sinnesapparate der Orthopteren. Zoologica 20:1–154

    Google Scholar 

  • Schwartzkopff J (1974) Mechanoreception. In: Rockstein M (ed) The physiology of Insecta. Academic Press, New York, pp 273–352

    Google Scholar 

  • Shimozawa T, Kanou M (1984a) Varieties of filiform hairs: range fractionation by sensory afferents and cercal interneurons of a cricket. J Comp Physiol 155:485–493

    Google Scholar 

  • Shimozawa T, Kanou M (1984b) The aerodynamics and sensory physiology of range fractionation in the cercal filiform sensilla of the cricket Gryllus bimaculatus. J Comp Physiol 155:495–505

    Google Scholar 

  • Skudrzyk E (1971) The foundations of acoustics. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Spangler HG (1988) Moth hearing, defense, and communication. Ann Rev Entomol 33:59–81

    Google Scholar 

  • Stephen RO, Bennet-Clark HC (1982) The anatomical and mechanical basis of stimulation and frequency analysis in the locust ear. J Exp Biol 99:279–314

    Google Scholar 

  • Surlykke A, Larsen ON, Michelsen A (1988) Temporal coding in the auditory receptor of the moth ear. J Comp Physiol 162:367–374

    Google Scholar 

  • Tautz J (1977) Reception of medium vibration by thoracal hairs of caterpillars of Barathra brassicae L. (Lepidoptera, Noctuidae). I. Mechanical properties of the receptor hairs. J Comp Physiol 118:13–31

    Google Scholar 

  • Tautz J (1979) Reception of particle displacement in a medium — an unorthodox sensory capacity. Naturwissenschaften 66:452–461

    Google Scholar 

  • Tautz J (1989) Medienbewegung in der Sinneswelt der Arthropoden. Fallstudien zu einer Sinnesökologie. In: Lindauer M (ed) Information processing in animals. Fischer, Stuttgart, pp 7–59

    Google Scholar 

  • Tautz J, Markl H (1978) Caterpillars detect flying wasps by hairs sensitive to airborne vibration. Behav Ecol Sociobiol 4:101–110

    Google Scholar 

  • Thorson J, Weber T, Huber F (1982) Auditory behaviour of the cricket. II. Simplicity of calling song recognition in Gryllus, and anomalous phonotaxis at abnormal carrier frequencies. J Comp Physiol 146:361–378

    Google Scholar 

  • Thurm U (1969) General organization of sensory receptors. Rend Scuola Intern Fisica “E. Fermi”. XLIIICorsopp 44–68

    Google Scholar 

  • Thurm U (1982) Biophysik sensorischer Mechanismen. In: Hoppe W, Lohmann W, Markl H, Ziegler H (eds) Biophysik. Springer, Berlin Heidelberg New York Tokyo, pp 681–696

    Google Scholar 

  • Thurm U, Stedtler A, Foelix R (1975) Reizwirksame Verformungen der Terminalstrukturen eines Mechanorezeptors. Verh Dtsch Zool Ges, Stuttgart pp 37–41

    Google Scholar 

  • Tischner H, Schief A (1954) Fluggeräusche und Schallwahrnehmung bei Aedes aegypti (Culicidae). Verh Dtsch Zool Ges 1954:453–460

    Google Scholar 

  • T\icker VA (1969) Wave-making by whirligig beetles (Gyrinidae). Science 166:897–899

    Google Scholar 

  • von Heiversen D (1972) Gesang des Männchens und Lautschema des Weibchens bei der Feldheuschrecke Chorthippus biguttulus (Orthoptera, Acrididae). J Comp Physiol 81:381–422

    Google Scholar 

  • von Heiversen D, Rheinlaender J (1988) Interaural intensity and time discrimination in an unrestrained grasshopper: a tentative behavioural approach. J Comp Physiol 162:333–340

    Google Scholar 

  • Wales W, Clarac F, Dando MR, Laverack MS (1970) Innervation of the receptors present at the various joints of the pereiopods and third maxilliped of Homarus gammarus (L.) and other macruran decapods (Crustacea). Z Vergl Physiol 68:345–384

    Google Scholar 

  • Wiese K (1974) The mechanoreceptive system of prey localization in Notonecta. II. The principle of prey localization. J Comp Physiol 92:317–325

    Google Scholar 

  • Yager DD, Hoy RR (1986) The cyclopean ear: a new sense for the praying mantis. Science 231:727–729

    PubMed  CAS  Google Scholar 

  • Yager DD, Hoy RR (1987) The midline metathoracic ear of the preying mantis, Mantis religiosa. Cell Tissue Res 250:531–541

    Google Scholar 

  • Young D, Ball E (1974) Structure and development of the auditory system in the prothoracic leg of the cricket Teleogryllus commodus (Walker). I. Adult structure. Z Zellforsch 147:293–312

    Google Scholar 

  • Young D, Hill KG (1977) Structure and function of the auditory system of the cicada, Cystosoma saundersii. J Comp Physiol 117:23–45

    Google Scholar 

  • Zhantiev RD, Kalinkina IN, Tshukanov VS (1975) The characteristics of the directional sensitivity of tympanal organs of Gryllus bimaculatus Deg. (Orthoptera, Gryllidae). Rev Ent USSR 54:249–257 (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Römer, H., Tautz, J. (1992). Invertebrate Auditory Receptors. In: Ito, F. (eds) Comparative Aspects of Mechanoreceptor Systems. Advances in Comparative and Environmental Physiology, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76690-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76690-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76692-3

  • Online ISBN: 978-3-642-76690-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics