Skip to main content

Freeze-Induced Dehydration and Membrane Destabilization in Plants

  • Conference paper
Water and Life

Abstract

A multitude of potentially lethal stresses occurs during a freeze/thaw cycle, including thermal, mechanical, chemical, osmotic, and possibly even electrical perturbations. Nevertheless, there is a general consensus that, in the absence of intracellular ice formation, freeze-induced cell dehydration is a primary cause of freezing injury. Although this was first proposed by Muller-Thurgau in 1886, the cellular and molecular mechanisms responsible for dehydration-induced injury have begun to be elucidated only recently (Steponkus 1984; Steponkus and Lynch 1989b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan WTG, Read ND, Jeffree CE, Steponkus PL (1990) Cryo-scanning electron microscopy of ice formation in rye leaves. Cryobiology 27: 664

    Google Scholar 

  • Arvinte T, Steponkus PL (1988) Characterization of the pH-induced fusion of liposomes with the plasma membrane of rye protoplasts. Biochemistry 27: 5671–5677

    Article  CAS  Google Scholar 

  • Ashworth EN, Echlin P, Pearce RS, Hayes TL (1988) Ice formation and tissue response in apple twigs. Plant Cell Environ 11: 703–710

    Article  Google Scholar 

  • Boggs JM, Koshy KM, Rangaraj G (1988) Interdigitated lipid bilayers of long acyl chain species of cerebroside sulfate. A fatty acid spin label study. Biochim Biophys Acta 938: 373–385

    Google Scholar 

  • Bryant G, Wolfe J (1989) Can hydration forces induce lateral phase separations in lamellar phases? Eur J Biophys 16: 369–372

    Article  CAS  Google Scholar 

  • Bradshaw JP, Edenborough MS, Sizer PJH, Watts A (1989) A description of the phospholipid arrangement intermediate to the humidity produced La and Hit phases in dioleoylphosphatidylcholine and its modification by dioleoylphosphatidylethanolamine as studied by X-ray diffraction. Biochim Biophys Acta 987: 104–110

    Article  CAS  Google Scholar 

  • Cahoon EB, Lynch DV (1988) Molecular species analysis of plasma membrane glucocerebrosides. Plant Physiol 86:S-53

    Google Scholar 

  • Cahoon EB, Steponkus PL, Lynch DV (1989) Temporal changes in plasma membrane lipid composition during cold acclimation of rye (Secale cereale L. cv Puma). Plant Physiol 89:S-28

    Google Scholar 

  • Cevc G, Marsh D (1985) Hydration of noncharged lipid bilayer membranes. Theory and experiments with phosphatidylethanolamines. Biophys J 47: 21–31

    Google Scholar 

  • Chapman D, Williams RM, Ladbrooke BD (1967) Physical studies of phospholipids. VI. Thermotropic and lyotropic mesomorphism of some 1,2-diacyl-phosphatidylcholines (lecithins). Chem Phys Lipids 1: 445–475

    Article  CAS  Google Scholar 

  • Crowe JH, Crowe LM (1984) Effects of dehydration on membranes and membrane stabilization at low water activities. In: Chapman D (ed) Biological membranes, vol 5. Academic Press, Lond New York, pp 57–103

    Google Scholar 

  • Crowe JH, Crowe LM (1986) Stabilization of membranes in anhydrobiotic organisms. In: Leopold AC (ed) Membranes, metabolism and dry organisms. Comstock, Ithaca NY, pp 188–209

    Google Scholar 

  • Crowe JH, Crowe LM, Carpenter JF, Aurell Wistrom C (1987) Stabilization of dry phospholipids bilayers and proteins by sugars. Biochem J 242: 1–10

    PubMed  CAS  Google Scholar 

  • Crowe LM, Crowe JH (1986) Hydration-dependent phase transitions and permeability properties of biological membranes. In: Leopold AC (ed) Membranes, metabolism and dry organisms. Comstock, Ithaca NY, pp 210–230

    Google Scholar 

  • Crowe LM, Mouradian R, Crowe JH, Jackson SA, Womersley C (1984) Effects of carbohydrates on membrane stability at low water activity. Biochim Biophys Acta 769: 141–150

    Article  PubMed  CAS  Google Scholar 

  • Cudd A, Steponkus PL (1988) Lamellar-to-hexagonaltt phase transitions in liposomes of rye plasma membrane lipids after osmotic dehydration. Biochim Biophys Acta 941: 278–286

    Article  CAS  Google Scholar 

  • Cullis PR, de Kruijff B (1979) Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta 559: 399–420

    CAS  Google Scholar 

  • Dowgert ME Steponkus PL (1983) Effect of cold acclimation on intracellular ice formation in isolated protoplasts. Plant Physiol 72: 978–988

    Article  Google Scholar 

  • Dowgert MF Steponkus PL (1984) The behavior of the plasma membrane of isolated plant protoplasts during a freeze-thaw cycle. Plant Physiol 75: 1139–1151

    Article  Google Scholar 

  • Dowgert MF, Wolfe J, Steponkus PL (1987) The mechanics of injury to isolated protoplasts following osmotic contraction. Plant Physiol 83: 1001–1007

    Article  PubMed  CAS  Google Scholar 

  • Eriksson PO, Rilfors L, Lindblom G, Arvidson G (1985) Multicomponent spectra from 31P-NMR studies of the phase equilibria in the system dioleoylphosphatidylcholine-dioleoylphosphatidylethanolamine-water. Chem Phys Lipids 37: 357–371

    Article  CAS  Google Scholar 

  • Fujikawa S, Steponkus PL (1990) Freeze-induced alterations in the ultrastructure of the plasma membrane of rye protoplasts isolated from cold-acclimated leaves. Cryobiology 27: 665–666

    Google Scholar 

  • Gordon-Kamm WJ, Steponkus PL (1984a) The behavior of the plasma membrane following osmotic contraction of isolated protoplasts: implications in freezing injury. Protoplasma 123: 83–94

    Article  Google Scholar 

  • Gordon-Kamm WJ, Steponkus PL (19846) The influence of cold acclimation on the behavior of the plasma membrane following osmotic contraction of isolated protoplasts. Protoplasma 123:161–173

    Google Scholar 

  • Gordon-Kamm WJ, Steponkus PL (1984e) Lamellar-to-hexagonaln phase transitions in the plasma membrane of isolated protoplasts following freeze-induced dehydration. Proc Natl Acad Sci USA 81: 6373–6377

    Article  PubMed  CAS  Google Scholar 

  • Gordon-Kamm WJ, Steponkus PL (1985) Freeze-induced bilayer-to-hexagonaltt phase transitions of the plasma membrane of isolated protoplasts: influence of the composition of the suspending medium. Plant Physiol 77:S-155

    Google Scholar 

  • Gruner SM (1989) Stability of lyotropic phases with curved interfaces. J Phys Chem 93:7562–7570 Gruner SM, Tate MW, Kirk GL, So PTC, Turner DC, Keane DT, Tilcock CPS, Cullis PR (1988) X-ray diffraction study of the polymorphic behavior of N-methylated dioleoylphosphatidylethanol-amine. Biochemistry 27: 2853–2866

    Google Scholar 

  • Hui SW, Huang CH (1986) X-ray diffraction evidence for fully interdigitated bilayers of 1-stearoyllysophosphatidylcholine. Biochemistry 25: 1330–1335

    Article  PubMed  CAS  Google Scholar 

  • Hui SW, Mason JT, Huang CH (1984) Acyl chain interdigitation in saturated mixed-chain phosphatidylcholine bilayer dispersions. Biochemistry 23: 5570–5577

    Article  PubMed  CAS  Google Scholar 

  • Israelachvili JN (1985) Thermodynamic and geometric aspects of amphiphile aggregation into micelles, vesicles and bilayers, and the interactions between them. In: Degiorgio V (ed) Physics of amphiphiles: micelles, vesicles and microemulsions. North Holland, Amsterdam, pp 24–58

    Google Scholar 

  • Jeffree CE, Read ND, Smith JAC, Dale JE (1987) Water droplets and ice deposits in leaf intercellular spaces: redistribution of water during cryofixation for scanning electron microscopy. Planta 172: 20–37

    Article  Google Scholar 

  • Jendrasiak GL, Hasty JH (1974) The hydration of phospholipids. Biochim Biophys Acta 337: 79–91

    PubMed  CAS  Google Scholar 

  • Luzzati V (1968) X-ray diffraction studies of lipid-water systems. In: Chapman D (ed) Biological membranes, vol 1. Academic Press, Lond New York, pp 71–123

    Google Scholar 

  • Lynch DV, Steponkus PL (1987) Plasma membrane lipid alterations associated with cold acclimation of winter rye seedlings (Swale cereale L. cv. Puma ). Plant Physiol 83: 761–767

    Google Scholar 

  • Lynch DV, Steponkus PL (1989a) Lyotropic phase behavior of unsaturated phosphatidylcholine species: relevance to the mechanism of plasma membrane destabilization and freezing injury. Biochim Biophys Acta 984: 267–272

    Article  CAS  Google Scholar 

  • Lynch DV, Steponkus PL (1989b) The behavior of rye plasma membrane lipids at low hydrations. Cryobiology (Abstr) 26: 556

    Article  Google Scholar 

  • Lynch DV, Caffrey M, Hogan J, Steponkus PL (1991) Calorimetric and X-ray diffraction studies of rye cerebroside mesomorphism. Biophys J (in press)

    Google Scholar 

  • MacFarlane DR (1987) Physical aspects of vitrification in aqueous solutions. Cryobiology 24:181–195 Marra J, Israelachvili J (1985) Direct measurements of forces between phosphatidylcholine and phosphatidylethanolamine bilayers in aqueous electrolyte solutions. Biochemistry 24: 4608–4618

    Google Scholar 

  • Marsh D (1989) Water adsorption isotherms and hydration forces for lysolipids and diacyl phospholipids. Biophys J 55: 1093–1100

    Article  PubMed  CAS  Google Scholar 

  • Muller-Thurgau H (1886) Ãœber das Gefrieren und Erfrieren der Pflanzen. Landwirtsch Jahrb 15: 453–610

    Google Scholar 

  • Pihakaski K, Steponkus PL (1987) Freeze-induced phase transitions in the plasma membrane of isolated protoplasts. Physiol Plant 69: 666–674

    Article  CAS  Google Scholar 

  • Pitt RE (1990) Cryobiological implications of different methods of calculating the chemical potential of water in partially frozen suspending media. Cryo-Lett 11: 227–240

    Google Scholar 

  • Quinn PJ (1985) A lipid-phase separation model of low-temperature damage to biological membranes. Cryobiology 22: 128–146

    Article  PubMed  CAS  Google Scholar 

  • Rand RP (1981) Interacting phospholipid bilayers: measured forces and induced structural changes. Annu Rev Biophys Bioeng 10: 277–314

    Article  PubMed  CAS  Google Scholar 

  • Rand RP, Parsegian VA (1989) Hydration forces between phospholipid bilayers. Biochim Biophys Acta 988: 351–376

    CAS  Google Scholar 

  • Rand RP, Fuller N, Parsegian VA, Rau DC (1988) Variation in hydration forces between neutral phospholipid bilayers: evidence for hydration attraction. Biochemistry 27: 7711–7722

    Article  PubMed  CAS  Google Scholar 

  • Rudolph AS, Crowe JH (1985) Membrane stabilization during freezing: the role of two natural cryoprotectants, trehalose and proline. Cryobiology 22: 367–377

    Article  PubMed  CAS  Google Scholar 

  • Rudolph AS, Crowe JH, Crowe LM (1986) Effects of three stabilizing agents — proline, betaine, and trehalose — on membrane phospholipids. Arch Biochem Biophys 245: 134–143

    Article  PubMed  CAS  Google Scholar 

  • Seddon JM (1990) Structure of the inverted hexagonal (Hit) phase, and non-lamellar phase transitions of lipids. Biochim Biophys Acta 1031: 1–69

    PubMed  CAS  Google Scholar 

  • Slater JL, Huang CH (1988) Interdigitated bilayer membranes. Prog Lipid Res 27: 325–359

    Article  PubMed  CAS  Google Scholar 

  • Steponkus PL (1978) Cold hardiness and freezing injury of agronomic crops. Adv Agron 30: 51–98

    Article  CAS  Google Scholar 

  • Steponkus PL (1979) A unified concept of stress in plants? In: Rains DW, Valentine RC, Hollander A (eds) Genetic engineering of osmoregulation. Plenum Press, New York, pp 235–255

    Google Scholar 

  • Steponkus PL (1984) Role of the plasma membrane in freezing injury and cold acclimation. Annu Rev Plant Physiol 35: 543–584

    Article  CAS  Google Scholar 

  • Steponkus PL (1991) Behavior of the plasma membrane during osmotic excursions. In: Hawes C, Coleman J, Evans D (eds) Endocytosis, exocytosis and vesicle traffic. Soc Exp Biol Sem Ser, Cambridge Univ Press, Cambridge (in press)

    Google Scholar 

  • Steponkus PL, Gordon-Kamm WJ (1985) Cryoinjury of isolated protoplasts: a consequence of dehydration or the fraction of the suspending medium that is frozen? Cryo-Lett 6: 217–226

    Google Scholar 

  • Steponkus PL, Lynch DV (1989a) The behavior of large unilamellar vesicles of rye plasma membranes during freeze-induced osmotic excursions. Cryo-Lett 10: 43–50

    Google Scholar 

  • Steponkus PL, Lynch DV (1989b) Freeze/thaw-induced destabilization of the plasma membrane and the effects of cold acclimation. J Bioenerg Biomembr 21: 21–41

    Article  PubMed  CAS  Google Scholar 

  • Steponkus PL, Uemura M (1989) Behavior of the plasma membrane during osmotic excursions: the effect of alterations in the plasma membrane lipid composition. In: Tazawa M, Katsumi M, Masuda Y, Okamoto H (eds) Plant water relations and growth under stress. Proc XXII Yamada Conf, Osaka and Myu KK, Tokyo, pp 75–82

    Google Scholar 

  • Steponkus PL, Wiest SC (1978) Plasma membrane alterations following cold acclimation and freezing. In: Li PH, Sakai A (eds) Plant cold hardiness and freezing stress. Academic Press, Lond New York, pp 75–91

    Google Scholar 

  • Steponkus PL, Wiest SC (1979) Freeze-thaw-induced lesions in the plasma membrane. In: Lyons JM, Graham D, Raison JK (eds) Low temperature stress in crop plants. Academic Press, Lond New York, pp 231–254

    Google Scholar 

  • Steponkus PL, Dowgert MF, Evans RY, Gordon-Kamm WJ (1982) Cryobiology of isolated protoplasts. In: Li PH, Sakai A (eds) Plant cold hardiness and freezing stress. Academic Press, Lond New York, pp 459–474

    Google Scholar 

  • Steponkus PL, Dowgert MF, Ferguson JR, Levin RL (1984) Cryomicroscopy of isolated plant protoplasts. Cryobiology 21: 209–233

    Article  Google Scholar 

  • Steponkus PL, Uemura M, Balsamo RA, Arvinte T, Lynch DV (1988) Transformation of the cryobehavior of rye protoplasts by modification of the plasma membrane lipid composition. Proc Natl Acad Sci USA 85: 9026–9030

    Article  PubMed  CAS  Google Scholar 

  • Steponkus PL, Lynch DV, Uemura M (1990) The influence of cold acclimation on the lipid composition and cryobehavior of the plasma membrane of isolated rye protoplasts. Phil Trans R Soc Lond B 326: 571–583

    Article  CAS  Google Scholar 

  • Sugawara Y, Steponkus PL (1990) Effect of cold acclimation and modification of the plasma membrane lipid composition on lamellar-to-hexagonale phase transitions in rye protoplasts. Cryobiology 27: 667

    Google Scholar 

  • Tamura-Lis W, Reber EJ, Cunningham BA, Collins JM, Lis LJ (1986) Cat+ induced phase separation in phospholipid mixtures. Chem Phys Lipids 39: 119–124

    Article  PubMed  CAS  Google Scholar 

  • Tate MW, Gruner SM (1987) Lipid polymorphism of mixtures of dioleoylphosphatidylethanolamine and saturated and monounsaturated phosphatidylcholines of various chain lengths. Biochemistry 26: 231–236

    Article  PubMed  CAS  Google Scholar 

  • Tilcock CPS (1986) Lipid polymorphism. Chem Phys Lipids 40: 109–125

    Article  PubMed  CAS  Google Scholar 

  • Uemura M, Steponkus PL (1989) Effect of cold acclimation on the incidence of two forms of freezing injury in protoplasts isolated from rye leaves. Plant Physiol 91: 1131–1137

    Article  PubMed  CAS  Google Scholar 

  • Webb MS, Steponkus PL (1990a) Hydration characteristics of phospholipid mixtures. Cryobiology 27: 665

    Google Scholar 

  • Webb MS, Steponkus PL (1990b) Dehydration-induced hexagonalit phase formation in phospholipid bilayers. Cryobiology 27: 666–667

    Google Scholar 

  • Wiest SC, Steponkus PL (1978) Freeze-thaw injury to isolated spinach protoplasts and its simulation at above freezing temperatures. Plant Physiol 62: 699–705

    Article  PubMed  CAS  Google Scholar 

  • Wolfe J, Steponkus PL (1981) The stress-strain relationship of the plasma membrane of isolated plant protoplasts. Biochim Biophys Acta 643: 663–668

    Article  PubMed  CAS  Google Scholar 

  • Wolfe J, Steponkus PL (1983) Mechanical properties of the plasma membrane of isolated protoplasts mechanism of hyperosmotic and extracellular freezing injury. Plant Physiol 71: 276–285

    Article  PubMed  CAS  Google Scholar 

  • Wolfe J, Dowgert MF, Steponkus PL (1985) Dynamics of membrane exchange of the plasma membrane and the lysis of isolated protoplasts during rapid expansions in area. J Membr Biol 86: 127–138

    Article  Google Scholar 

  • Wolfe J, Dowgert MF, Steponkus PL (1986a) Mechanical study of the deformation and rupture of the plasma membranes of protoplasts during osmotic expansions. J Membr Biol 93: 63–74

    Article  Google Scholar 

  • Wolfe J, Dowgert MF, Maier B, Steponkus PL (1986b) Hydration, dehydration and the stresses and strains in membranes. In: Leopold AC (ed) Membranes, metabolism and anhydrous organisms. Comstock, Ithaca, pp 286–305

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Steponkus, P.L., Webb, M.S. (1992). Freeze-Induced Dehydration and Membrane Destabilization in Plants. In: Somero, G.N., Osmond, C.B., Bolis, C.L. (eds) Water and Life. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76682-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76682-4_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76684-8

  • Online ISBN: 978-3-642-76682-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics