Skip to main content

Freeze-Thaw Injury and Cryoprotection of Thylakoid Membranes

  • Conference paper
Water and Life

Abstract

Freeze-thaw injury to plants is a highly complex process. While there is a good understanding of the physics and chemistry associated with the freezing of aqueous solutions (Franks 1981) the physiology and biochemistry of the freezing of whole plants or organs are poorly understood. Cells in plant tissues are, unlike animal cells, encased by a rigid cell wall. Leaf tissue contains large air-filled intercellular spaces (Fig. la,c). When a leaf is slowly frozen, ice crystallizes first in the dilute apoplastic (extracellular) solution (Beck et al. 1984; Pearce and Willison 1985). Since the water potential of ice is lower at the same temperature than that of liquid water, cellular water diffuses from the cells to the extracellular ice crystals (Olien and Smith 1981). The cells are thereby dehydrated, until an equilibrium is reached. During thawing, the water potential gradients are reversed and water diffuses back to the cells, provided that the plasmamembrane has not been injured.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Askman A, Abromeit M, Sarnighausen E, Dörffling K (1990) Formation of polypeptides related to frost tolerance in response to cold hardening and abscisic acid treatment in winter wheat. Physiol Plant 79: A105

    Article  Google Scholar 

  • Bauer H, Kofler R (1987) Photosynthesis in frost-hardened and frost-stressed leaves of Hedera helix L. Plant Cell Environ 10: 339–346

    Article  Google Scholar 

  • Beck E, Schulze ED, Senser M, Scheibe R (1984) Equilibrium freezing of leaf water and extracellular ice formation in afroalpine “giant rosette” plants. Planta 162: 276–282

    Article  Google Scholar 

  • Callow RA, McGrath JJ (1985) Thermodynamic modeling and cryomicroscopy of cell size, unilamellar, and paucilamellar liposomes. Cryobiology 22: 251–267

    Article  PubMed  CAS  Google Scholar 

  • Cloutier Y, Siminovitch D (1982) Correlation between cold-and drought-induced frost hardiness in winter wheat and rye varieties. Plant Physiol 69: 256–258

    Article  PubMed  CAS  Google Scholar 

  • Coughlan SJ, Heber U (1982) The role of glycinebetaine in the protection of spinach thylakoids against freezing stress. Planta 156: 62–69

    Article  CAS  Google Scholar 

  • Coughlan SJ, Pfanz H (1986) The reversibility of freeze/thaw injury to spinach thylakoids, restoration of light-induced proton pumping, membrane-conformational changes and proton gradient formation. Biochim Biophys Acta 849: 32–40

    Article  CAS  Google Scholar 

  • Cox W, Levitt J (1976) Interrelations between environmental factors and freezing resistance of cabbage leaves. Plant Physiol 57: 553–555

    Article  PubMed  CAS  Google Scholar 

  • Demmig B, Winter K (1986) Sodium, potassium, chloride and proline concentrations of chloroplasts isolated from a halophyte, Mesembryanthemum crystallinum L. Planta 168: 421–426

    Article  CAS  Google Scholar 

  • DeVries AL (1971) Glycoproteins as biological antifreeze agents in antarctic fishes. Science 172: 1152–1155

    Article  PubMed  CAS  Google Scholar 

  • Fennel A, Li PH, Markhart III AH (1990) Influence of air and soil temperature on water relations and freezing tolerance of spinach (Spinacia oleracea). Physiol Plant 78: 51–56

    Article  Google Scholar 

  • Franks F (1981) Biophysics and biochemistry of low temperatures and freezing. In: Morris GJ, Clarke A (eds) Effects of low temperatures on biological membranes. Academic Press, Lond New York, pp 3–19

    Google Scholar 

  • Garber MP, Steponkus PL (1976a) Alterations in chloroplast thylakoids during an in vitro freeze-thaw cycle. Plant Physiol 57: 673–680

    Article  PubMed  CAS  Google Scholar 

  • Garber MP, Steponkus PL (1976b) Alterations in chloroplast thylakoids during cold acclimation. Plant Physiol 57: 681–686

    Article  PubMed  CAS  Google Scholar 

  • Gilmour S, Hajela RK, Thomashow MF (1988) Cold acclimation in Arabidopsis thaliana. Plant Physiol 87: 745–750

    Article  PubMed  CAS  Google Scholar 

  • Grafflage S, Krause GH (1986) Simulation of in situ freezing damage of the photosynthetic apparatus by freezing in vitro of thylakoids suspended in complex media. Planta 168: 67–76

    Article  CAS  Google Scholar 

  • Greer DH, Stanley Q (1985) Regulation of the loss of frost hardiness in Pinus radiata by photoperiod and temperature. Plant Cell Environ 8: 111–116

    Article  Google Scholar 

  • Guy CL (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol 41: 187–223

    Article  CAS  Google Scholar 

  • Guy CL, Haskell D (1987) Induction of freezing tolerance in spinach is associated with the synthesis of cold acclimation induced proteins. Plant Physiol 84: 872–878

    Article  PubMed  CAS  Google Scholar 

  • Guy CL, Haskell D (1988) Detection of polypeptides associated with the cold acclimation process in spinach. Electrophoresis 9: 787–796

    Article  PubMed  CAS  Google Scholar 

  • Guy CL, Niemi KJ, Brambl R (1985) Altered gene expression during cold acclimation of spinach. Proc Natl Acad Sci USA 82: 3673–3677

    Article  PubMed  CAS  Google Scholar 

  • Guy CL, Haskell D, Yelenosky G (1988) Changes in freezing tolerance and polypeptide content of spinach and citrus at 5 °C. Cryobiology 25: 264–271

    Article  CAS  Google Scholar 

  • Haehnel W (1984) Photosynthetic electron transport in higher plants. Annu Rev Plant Physiol 35: 659–693

    Article  CAS  Google Scholar 

  • Haehnel W (1986) Plastocyanin. In: Staehelin LA, Arntzen Q (eds) Encyclopedia of plant physiology, New Series. Springer, Berlin Heidelberg New York, 19:547–559

    Google Scholar 

  • Heber U, Kempfle M (1970) Proteine als Schutzstoffe gegenüber dem Gefriertod der Zelle. Z Naturforsch 256: 834–842

    Google Scholar 

  • Heber U, Santarius KA (1964) Loss of adenosine triphosphate synthesis and its relationship to frost hardiness problems. Plant Physiol 39: 712–719

    Article  PubMed  CAS  Google Scholar 

  • Heber U, Schmitt JM, Krause GH, Klosson RJ, Santarius KA (1981) Freezing damage to thylakoid membranes in vitro and in vivo. In: Morris GJ, Clarke A (eds) Effects of low temperatures on biological membranes. Academic Press, Lond New York, pp 264–287

    Google Scholar 

  • Hincha DK (1986) Sucrose influx and mechanical damage by osmotic stress to thylakoid membranes during an in vitro freeze-thaw cycle. Biochim Biophys Acta 861: 152–158

    CAS  Google Scholar 

  • Hincha DK (1989) Low concentrations of trehalose protect isolated thylakoids against mechanical freeze-thaw damage. Biochim Biophys Acta 987: 231–234

    Article  CAS  Google Scholar 

  • Hincha DK (1990) Differential effects of galactose containing saccharides on mechanical freeze-thaw damage to isolated thylakoid membranes. Cryo-Lett 11: 437–444

    Google Scholar 

  • Hincha DK, Schmitt JM (1985) Mechanical and chemical injury to thylakoid membranes during freezing in vitro. Biochim Biophys Acta 812: 173–180

    Article  CAS  Google Scholar 

  • Hincha DK, Schmitt JM (1988a) Mechanical freeze-thaw damage and frost hardening in leaves and isolated thylakoids from spinach. I. Mechanical freeze-thaw damage in an artificial stroma medium. Plant Cell Environ 11: 41–46

    Google Scholar 

  • Hincha DK, Schmitt JM (1988b) Mechanical freeze-thaw damage and frost hardening in leaves and isolated thylakoids from spinach. II. Frost hardening reduces solute permeability and increases extensibility of thylakoid membranes. Plant Cell Environ 11: 47–50

    Google Scholar 

  • Hincha DK, Schmidt JE, Heber U, Schmitt JM (1984) Colligative and non-colligative freezing damage to thylakoid membranes. Biochim Biophys Acta 769: 8–14

    Article  CAS  Google Scholar 

  • Hincha DK, Heber U, Schmitt JM (1985) Antibodies against individual thylakoid membrane proteins as molecular probes to study chemical and mechanical freezing damage in vitro. Biochim Biophys Acta 809: 337–344

    Article  CAS  Google Scholar 

  • Hincha DK, Höfner R, Schwab KB, Heber U, Schmitt JM (1987) Membrane rupture is the common cause of damage to chloroplast membranes in leaves injured by freezing or excessive wilting. Plant Physiol 83: 251–253

    Article  PubMed  CAS  Google Scholar 

  • Hincha DK, Heber U, Schmitt JM (1989a) Freezing ruptures thylakoid membranes in leaves, and rupture can be prevented in vitro by cryoprotective proteins. Plant Physiol Biochem 27: 795–801

    CAS  Google Scholar 

  • Hincha DK, Müller M, Hillmann T, Schmitt JM (1989b) Osmotic stress causes mechanical freeze-thaw damage to thylakoids in vitro and in vivo. In: Cherry JH (ed) Environmental stress in plants. Springer, Berlin Heidelberg New York, pp 303–315

    Chapter  Google Scholar 

  • Hincha DK, Heber U, Schmitt JM (1990) Proteins from frost-hardy leaves protect thylakoids against mechanical freeze-thaw damage in vitro. Planta 180: 416–419

    Article  CAS  Google Scholar 

  • Hirsh AG, Williams RJ, Meryman HT (1985) A novel method of natural cryoprotection. Plant Physiol 79: 41–56

    Article  PubMed  CAS  Google Scholar 

  • Hofmeister F (1888) Zur Lehre von der Wirkung der Salze. Arch Exp Pathol 24: 247–260

    Article  Google Scholar 

  • Holopainen JK, Holopainen T (1988) Cellular responses of Scots pine (Pines sylvestris L.) seedlings to simulated summer frost. Eur J For Pathol 18: 207–216

    Article  Google Scholar 

  • Hughes MA, Pearce RS (1988) Low temperature treatment of barley plants causes altered gene expression in shoot meristems. J Exp Bot 39: 1461–1467

    Article  Google Scholar 

  • Humbel B, Müller M (1986) Freeze substitution and low temperature embedding. In: Science of biological specimen preparation. SEM Inc AMF O’Hare, Chicago, pp 171–183

    Google Scholar 

  • Huner NPA (1988) Low-temperature-induced alterations in photosynthetic membranes. CRC Crit Rev Plant Sci 7: 257–278

    Article  CAS  Google Scholar 

  • Jensen M, Oettmeier W (1984) Effects of freezing on the structure of chloroplast membranes. Cryobiology 21: 465–473

    Article  CAS  Google Scholar 

  • Johnson-Flanagan AM, Singh J (1986) Membrane deletion during plasmolysis in hardened and non-hardened plant cells. Plant Cell Environ 9: 299–305

    Google Scholar 

  • Johnson-Flanagan AM, Singh J (1987) Alteration of gene expression during the induction of freezing tolerance in Brassica nap us suspension cultures. Plant Physiol 85: 699–705

    Article  PubMed  CAS  Google Scholar 

  • Kaiser WM, Weber H, Sauer M (1983) Photosynthetic capacity, osmotic response and solute content of leaves and chloroplasts from Spinacia oleraceae under salt stress. Z Pflanzenphysiol 113: 1527

    Google Scholar 

  • Kandler O, Hopf H (1982) Oligosaccharides based on sucrose (sucrosyl oligosaccharides). In: Loewus FA, Tanner W (eds) Encyclopedia of plant physiol New Series 13A. Springer, Berlin Heidelberg New York, pp 348–382

    Google Scholar 

  • Klosson RJ, Krause GH (1981) Freezing injury in cold-acclimated and unhardened spinach leaves I.Photosynthetic reactions of thylakoids isolated from frost-damaged leaves. Planta 151: 339–346

    Article  CAS  Google Scholar 

  • Körner C, Larcher W (1988) Plant life in cold climates. In: Long SF, Woodward FI (eds) Plants and temperature. Company Biol Ltd, Cambridge, pp 25–57

    Google Scholar 

  • Krause GH, Klosson RJ, Justenhoven A, Ahrer-Steller V (1984) Effects of low temperatures on the photosynthetic system in vivo. In: Sybesma C (ed) Advances in photosynthesis research. Nijhoff, Brussels, pp 349–358

    Google Scholar 

  • Krause GH, Grafflage S, Rumich-Bayer S, Somersalo S (1988) Effects of freezing on plant mesophyll cells. Symp Soc Exp Biol 42: 311–327

    PubMed  CAS  Google Scholar 

  • Kurkela S, Franck M (1990) Cloning and characterization of a cold-and ABA-inducible Arabidopsis gene. Plant Mol Biol 15: 137–144

    Article  PubMed  CAS  Google Scholar 

  • Kurkela S, Franck M, Heino P, Läng V, Palva ET (1988) Cold-induced gene expression in Arabidopsis thaliana L. Plant Cell Rep 7: 495–498

    Article  CAS  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses. Vol I: Chilling, freezing, and high temperature stresses. Academic Press, Orlando

    Google Scholar 

  • Lineberger RD, Steponkus PL (1980) Cryoprotection by glucose, sucrose, and raffinose to chloroplast thylakoids. Plant Physiol 65: 298–304

    Article  PubMed  CAS  Google Scholar 

  • Lovelock JE (1953a) The haemolysis of human red blood-cells by freezing and thawing. Biochim Biophys Acta 10: 414–426

    Article  PubMed  CAS  Google Scholar 

  • Lovelock JE (1953b) Heat mechanism of the protective action of glycerol against haemolysis by freezing and thawing. Biochim Biophys Acta 11: 28–36

    Article  PubMed  CAS  Google Scholar 

  • Lovelock JE (1954) The protective action of neutral solutes against haemolysis by freezing and thawing. Biochem J 56: 265–270

    PubMed  CAS  Google Scholar 

  • Lynch DV, Steponkus PL (1987) Plasma membrane lipid alterations associated with cold acclimation of winter rye seedlings (Secale cereale L. cv Puma). Plant Physiol 83: 761–767

    Article  PubMed  CAS  Google Scholar 

  • Martin B, Öquist G (1979) Seasonal and experimentally induced changes in the ultrastructure of chloroplasts of Pinus silvestris. Physiol Plant 46: 42–49

    Article  Google Scholar 

  • Meryman HT, Williams RJ, Douglas MSJ (1977) Freezing injury from “solution effects” and its prevention by natural or artificial cryoprotection. Cryobiology 14: 287–302

    Article  PubMed  CAS  Google Scholar 

  • Mohapatra SS, Poole RJ, Dhindsa RS (1987a) Cold acclimation, freezing resistance and protein synthesis in alfalfa (Medicago saliva L. cv. Saranac ). J Exp Bot 38: 1697–1703

    Google Scholar 

  • Mohapatra SS, Poole RJ, Dhindsa RS (1987b) Changes in protein patterns and translatable messenger RNA populations during cold acclimation of alfalfa. Plant Physiol 84: 1172–1176

    Article  PubMed  CAS  Google Scholar 

  • Mohapatra SS, Wolfraim L, Poole RJ, Dhindsa RS (1989) Molecular cloning and relationship to freezing tolerance of cold-acclimation specific genes of alfalfa. Plant Physiol 89: 375–380

    Article  PubMed  CAS  Google Scholar 

  • Mollenhauer A, Schmitt JM, Coughlan S, Heber U (1983) Loss of membrane proteins from thylakoids during freezing. Biochim Biophys Acta 728: 331–338

    Article  CAS  Google Scholar 

  • Olien CR, Smith MN (1981) Protective systems that have evolved in plants. In: Olien C R, Smith MN (eds) Analysis and improvement of plant cold hardiness. CRC Press, Cleveland, pp 61–87

    Google Scholar 

  • O’Neill SD (1983) Osmotic adjustment and the development of freezing resistance in Fragaria virginia. Plant Physiol 72: 938–944

    Article  PubMed  Google Scholar 

  • Pearce RS, Willison JHM (1985) Wheat tissues freeze-etched during exposure to extracellular freezing: distribution of ice. Planta 163: 295–303

    Article  Google Scholar 

  • Pegg DE, Diaper MP (1988) On the mechanism of injury to slowly frozen erythrocytes. Biophys J 54: 471–488

    Article  PubMed  CAS  Google Scholar 

  • Pomeroy MK, Andrews CJ, Stanley KP, Ji-Yin-Gao (1985) Physiological and metabolic responses of winter wheat to prolonged freezing stress. Plant Physiol 78: 207–210

    CAS  Google Scholar 

  • Pooler JP (1985a) The kinetics of colloid osmotic hemolysis. I. Nystatin-induced lysis. Biochim Biophys Acta 812: 193–198

    Article  PubMed  CAS  Google Scholar 

  • Pooler JP (1985b) The kinetics of colloid osmotic hemoloysis II. Photohemolysis. Biochim Biophys Acta 812: 199–205

    Article  CAS  Google Scholar 

  • Reaney MJT, Gusta LV (1987) Factors influencing the induction of freezing tolerance by abscisic acid in cell suspension cultures of Bromus inermis Leyss and Medicago saliva L. Plant Physiol 83: 423–427

    Article  PubMed  CAS  Google Scholar 

  • Robertson AJ, Gusta LV, Reaney MJT, Ishikawa M (1988) Identification of proteins correlated with increased freezing tolerance in Bromegrass (Bromus inermis Leyss. cv. Manchar) cell cultures. Plant Physiol 86: 433–447

    Google Scholar 

  • Robinson SP, Downtown WJS (1985) Potassium, sodium and chloride ion concentrations in leaves and isolated chloroplasts of the halophyte Suaeda australis R. Br. Aust J Plant Physiol 12: 471–479

    Google Scholar 

  • Robinson SP, Jones GP (1986) Accumulation of glycinebetaine in chloroplasts provides osmotic adjustment during salt stress. Aust J Plant Physiol 13: 659–668

    Article  CAS  Google Scholar 

  • Robinson SP, Downtown WJS, Millhouse JA (1983) Photosynthesis and ion content of leaves and isolated chloroplasts of salt-stressed spinach. Plant Physiol 73: 238–242

    Article  PubMed  CAS  Google Scholar 

  • Rumich-Bayer S, Krause GH (1986) Freezing damage and frost tolerance of the photosynthetic apparatus studied with isolated mesophyll protoplasts of Valerianella locusta L. Photosynth Res 8: 161–174

    Article  CAS  Google Scholar 

  • Rütten D, Santarius KA (1988) Cold acclimation of Ilex aquifolium under natural conditions with special regard to the photosynthetic apparatus. Physiol Plant 72: 807–815

    Article  Google Scholar 

  • Santarius KA (1973) The protective effect of sugars on chloroplast membranes during temperature and water stress and its relationship to frost desiccation and heat resistance. Planta 113: 105–114

    Article  CAS  Google Scholar 

  • Santarius KA (1984a) The role of the chloroplast coupling factor in the inactivation of thylakoid membranes at low temperatures. Physiol Plant 61: 591–598

    Article  CAS  Google Scholar 

  • Santarius KA (1984b) Effective cryoprotection of thylakoid membranes by ATE. Planta 161: 555–561

    Article  CAS  Google Scholar 

  • Santarius KA (1986a) Freezing of isolated thylakoid membranes in complex media I. The effect of potassium and sodium chloride, nitrate, and sulfate. Cryobiology 23: 168–176

    Article  CAS  Google Scholar 

  • Santarius KA (1986b) Freezing of isolated thylakoid membranes in complex media II. Simulation of the conditions in the chloroplast stroma. Cryo-Lett 7: 31–40

    CAS  Google Scholar 

  • Santarius KA (1986e) Freezing of isolated thylakoid membranes in complex media III. Differences in the pattern of inactivation of photosynthetic reactions. Planta 168: 281–286

    CAS  Google Scholar 

  • Santarius KA (1987a) Freezing of isolated thylakoid membranes in complex media IV. Stabilization of CFI by ATP and sulfate. J Plant Physiol 126: 409–420

    CAS  Google Scholar 

  • Santarius KA (1987b) Relative contribution of inorganic electrolytes to damage and protection of thylakoid membranes during freezing in complex media. In: Li PH (cd) Liss, New York, pp 229–242

    Google Scholar 

  • Santarius KA (1990) Freezing of isolated thylakoid membranes in complex media V. Inactivation and protection of electron transport reactions. Photosynth Res 23: 49–58

    Article  CAS  Google Scholar 

  • Santarius KA, Giersch C (1983) Cryopreservation of spinach chloroplast membranes by lowmolecular-weight carbohydrates II. Discrimination between colligative and noncolligative protection. Cryobiology 20: 90–99

    Google Scholar 

  • Santarius KA, Giersch C (1984) Factors contributing to inactivation of isolated thylakoid membranes during freezing in the presence of variable amounts of glucose and NaCl. Biophys J 46: 129–139

    Article  PubMed  CAS  Google Scholar 

  • Santarius KA, Milde H (1977) Sugar compartmentation in frost-hardy and partially dehardened cabbage leaf cells. Planta 136: 163–166

    Article  CAS  Google Scholar 

  • Schmidt JE, Schmitt JM, Kaiser WM, Hincha DK (1986) Salt treatment induces frost hardiness in leaves and isolated thylakoids from spinach. Planta 168: 50–55

    Article  CAS  Google Scholar 

  • Schmitt JM (1990) Rapid concentration changes of phosphoenolpyuvate carboxylase mRNA in detached leaves of Mesembryanthemum crystaliimum in response to wilting and rehydration. Plant Cell Environ 13: 845–850

    Article  CAS  Google Scholar 

  • Schmitt JM, Schramm MJ, Pfanz H, Coughlan S, Heber U (1985) Damage to chloroplast membranes during dehydration and freezing. Cryobiology 22: 99–104

    Article  Google Scholar 

  • Schmitt JM, Müller M, Hincha DK (1987) Mechanischer Schaden an der Thylakoidmembran beim Tauen gefrorener Spinatblätter. Biomed Tech 32: 53–54

    Article  Google Scholar 

  • Schulteis C, Santarius KA (1989) Effects of prolonged freezing stress on the photosynthetic apparatus of moderately hardy leaves as assayed by chlorophyll fluorescence kinetics. Plant Cell Environ 12: 819–823

    Article  Google Scholar 

  • Siminovitch D, Cloutier Y (1983) Drought and freezing tolerance and adaptation in plants: some evidence of near equivalences. Cryobiology 20: 487–503

    Article  PubMed  CAS  Google Scholar 

  • Singh J (1979) Ultrastructural alterations in cells of hardened and non-hardened winter rye during hyperosmotic and extracellular freezing stresses. Protoplasma 98: 329–341

    Article  Google Scholar 

  • Singh J, Iu B, Johnson-Flanagan AM (1987) Membrane alterations in winter rye and Brassica napus cells during lethal freezing and plasmolysis. Plant Cell Environ 10: 163–168

    Google Scholar 

  • Soikkeli S (1980) Ultrastructure of the mesophyll in Scots pine and Norway spruce: seasonal variation and molarity of the fixative buffer. Protoplasma 103: 241–252

    Article  Google Scholar 

  • Steinbrecht RA, Müller M (1987) Freeze-substitution and freeze-drying. In: Steinbrecht RA, Zierold K (eds) Cryotechniques in biological electron microscopy. Springer, Berlin Heidelberg New York, pp 149–172

    Chapter  Google Scholar 

  • Steponkus PL (1984) Role of the plasma membrane in freezing injury and cold acclimation. Annu Rev Plant Physiol 35: 543–584

    Article  CAS  Google Scholar 

  • Steponkus PL, Lynch DV (1989) The behaviour of large unilamellar vesicles of rye plasma membrane lipids during freeze/thaw-induced osmotic excursions. Cryo-Lett 10: 43–50

    Google Scholar 

  • Steponkus PL, Dowgert MF, Gordon-Kamm WJ (1983) Destabilization of the plasma membrane of isolated plant protoplasts during a freeze-thaw cycle: the influence of cold acclimation. Cryobiology 20: 448–465

    Article  PubMed  CAS  Google Scholar 

  • Steponkus PL, Garber MP, Myers SP, Lineberger DR (1977) Effects of cold acclimation and freezing on structure and function of chloroplast thylakoids. Cryobiology 14: 303–321

    Article  PubMed  CAS  Google Scholar 

  • Strand M, Öquist G (1988) Effects of frost hardening, dehardening and freezing stress on in vivo chlorophyll fluorescence of seedlings of Scots pine (Pima sylvestris L.). Plant Cell Environ 11: 231–238

    Article  CAS  Google Scholar 

  • Strotmann H, Bickel-Sandkötter S (1984) Structure, function, and regulation of chloroplast ATPase. Annu Rev Plant Physiol 35: 97–120

    Article  CAS  Google Scholar 

  • van Swaaij AC, Jacobsen E, Feenstra WJ (1985) Effect of cold hardening, wilting and exogenously applied proline on leaf proline content and frost tolerance of several genotypes of Solanum. Physiol Plant 64: 230–236

    Article  Google Scholar 

  • Vigh L, Horvàth I, van Hasselt PR, Kuiper PJC (1985) Effect of frost hardening on lipid and fatty acid composition of chloroplast thylakoid membranes in two wheat varieties of contrasting hardiness. Plant Physiol 79: 756–759

    Article  PubMed  CAS  Google Scholar 

  • Vigh L, Huitema H, Woltjes J, van Hasselt PR (1986) Drought stress-induced changes in the composition and physical state of phospholipids in wheat. Physiol Plant 67: 92–96

    Article  CAS  Google Scholar 

  • Volger HG, Heber U (1975) Cryoprotective leaf proteins. Biochim Biophys Acta 412: 335–349

    PubMed  CAS  Google Scholar 

  • Volger H, Heber U, Berzborn RJ (1978) Loss of function of biomembranes and solubilization of membrane proteins during freezing. Biochim Biophys Acta 511: 455–469

    Article  PubMed  CAS  Google Scholar 

  • Wiest SC, Steponkus PL (1978) Freeze-thaw injury to isolated spinach protoplasts and its simulation at above freezing temperatures. Plant Physiol 62: 699–705

    Article  PubMed  CAS  Google Scholar 

  • Williams RJ, Meryman HT (1970) Freezing injury and resistance in spinach chloroplast grana. Plant Physiol 45: 752–755

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski M, Ashworth EN (1986) A comparison of seasonal ultrastructural changes in stem tissues of peach (Prunus persica) that exhibit contrasting mechanisms of cold hardiness. Bot Gaz 147: 407–417

    Article  Google Scholar 

  • Wolfe J, Dowgert MF, Steponkus PL (1985) Dynamics of membrane exchange of the plasma membrane and the lysis of isolated protoplasts during rapid expansions in area. J Membr Biol 86: 127–138

    Article  Google Scholar 

  • Wolter FP, Schmitt JM, Bohnert HJ, Tsugita A (1984) Simultaneous isolation of three peripheral proteins — a 32 kDa protein, ferredoxin NADP+ reductase and coupling factor — from spinach thylakoids and partial characterization of a 32 kDa protein. Plant Sci Lett 34: 323–334

    Article  CAS  Google Scholar 

  • Yelenosky G, Guy CL (1989) Freezing tolerance of citrus, spinach, and petunia leaf tissue. Plant Physiol 89: 444–451

    Article  PubMed  CAS  Google Scholar 

  • Zade-Oppen AMM (1968) Posthypertonic hemolysis in sodium chloride systems. Acta Physiol Scand 73: 341–364

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hincha, D.K., Schmitt, J.M. (1992). Freeze-Thaw Injury and Cryoprotection of Thylakoid Membranes. In: Somero, G.N., Osmond, C.B., Bolis, C.L. (eds) Water and Life. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76682-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76682-4_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76684-8

  • Online ISBN: 978-3-642-76682-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics