Skip to main content

Desiccation and Freezing Phenomena for Plants with Large Water Capacitance — Cacti and Espeletias

  • Conference paper
Water and Life

Abstract

Cacti and espeletias are native to dissimilar habitats, although the two groups must cope with several similar environmental constraints. Cacti, which are succulent plants that utilize crassulacean acid metabolism (CAM), grow in habitats characterized by long periods of drought (Ting 1985; Nobel 1988a). Over 80% of the aboveground plant biomass in parts of the Sonoran Desert can be cacti (Ting and Jennings 1976), and epiphytic CAM species occupying arid microhabitats are common in many lowland tropical forests (Medina et al. 1989). As for cacti, espeletias also have conspicuous stem water storage reservoirs, but they utilize the C3 pathway and grow in tropical high-altitude (alpine) habitats. These habitats are characterized by diurnal rather than seasonal temperature variations that frequently involve nocturnal freezing (Troll 1968; Meiner and Goldstein 1986). In the American tropics the giant rosette species belonging to the genus Espeletia (Compositae) experience air temperatures that even during the daytime tend to be suboptimal for many physiological processes (Goldstein et al. 1989). Studies on plants from cold temperate zones, particularly conifers (Kaufmann 1975, 1977; Running and Reid 1980), as well as on cacti (Lopez and Nobel 1991), indicate that water uptake by roots may be severely impaired by low soil temperatures (0 to 5 °C). In the tropical alpine habitats, such physiological drought is particularly likely during the early morning when soil temperatures in the root zone of espeletias are near freezing and potential transpiration is high due to high solar irradiation leading to relatively high leaf temperatures. Thus, both cacti and espeletias are exposed to drought episodes, the former on a seasonal basis and the latter predominantly on a daily basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Azocar A, Rada F, Goldstein G (1988) Freezing tolerance in Drabn chionophila, a “miniature” caulescent rosette species. Oecologia 75: 156–160

    Article  Google Scholar 

  • Barcikowski W, Nobel PS (1984) Water relations of cacti during desiccation: distribution of water in tissues. Bot Gaz 145: 110–115

    Article  Google Scholar 

  • Gibson AC, Nobel PS (1986) The cactus primer. Harvard Univ Press, Cambridge

    Google Scholar 

  • Goldstein G, Meinzer F (1983) Influence of insulating dead leaves and low temperatures on water balance in an Andean giant rosette plant. Plant Cell Environ 6: 649–656

    Google Scholar 

  • Goldstein G, Meinzer F, Monasterio M (1984) The role of capacitance in the water balance of Andean giant rosette species. Plant Cell Environ 7: 179–186

    Google Scholar 

  • Goldstein G, Meinzer F, Monasterio M (1985a) Physiological and mechanical factors in relation to size-dependent mortality in an Andean giant rosette species. Oecol Plant 6: 263–275

    Google Scholar 

  • Goldstein G, Rada F, Azocar A (1985b) Cold hardiness and supercooling along an altitudinal gradient in Andean giant rosette species. Oecologia 68: 147–152

    Article  Google Scholar 

  • Goldstein G, Rada F, Canales MO, Zabala O (1989) Leaf gas exchange of two giant caulescent rosette species. Oecol Plant 10: 359–370

    Google Scholar 

  • Jordan PW, Nobel PS (1981) Seedling establishment of Ferocactus acanthodes in relation to drought. Ecology 62: 901–906

    Article  Google Scholar 

  • Kaufmann MR (1975) Leaf water stress in Engelmann spruce. Plant Physiol 56: 841–844

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann MR (1977) Soil temperature and drying cycle effects on water relations of Pinus radiata. Can J Bot 55: 2413–2418

    Article  Google Scholar 

  • Kluge M, Ting IP (1978) Crassulacean acid metabolism. Analysis of an ecological adaptation. Ecol Stud Ser 30, Springer, Berlin Heidelberg New York

    Google Scholar 

  • Koch KE, Kennedy RA (1980) Effects of seasonal changes in the Midwest on Crassulacean acid metabolism (CAM) in Opuntia humifusa Raf. Oecologia 45: 390–395

    Article  Google Scholar 

  • Larcher W (1981) Resistenzphysiologische Grundlagen der evolutiven Kalteakklimatisation von Sprosspflanzen. Plant Syst Evo 137: 145–180

    Article  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses, 2nd edn, vol 1, Chilling, freezing, and high temperature stresses. Academic Press, Lond New York

    Google Scholar 

  • Lewis DA, Nobel PS (1977) Thermal energy exchange model and water loss of a barrel cactus, Ferocactus acanthodes. Plant Physiol 60: 609–616

    Article  PubMed  CAS  Google Scholar 

  • Littlejohn RO, Williams GJ (1983) Diurnal and seasonal variations in activity of Crassulacean acid metabolism and plant water status in a northern latitude population of Opuntia erinacea. Oecologia 59: 83–87

    Article  Google Scholar 

  • Lopez FB, Nobel PS (1991) Root hydraulic conductivity of two cactus species in relation to root age, temperature, and soil water status. J Exp Bot 42: 143–149

    Article  Google Scholar 

  • Lüttge U (1986) Nocturnal water storage in plants having Crassulacean acid metabolism. Planta 168: 287–289

    Google Scholar 

  • Lüttge U, Nobel PS (1984) Day-night variations in malate concentration, osmotic pressure, and hydrostatic pressure in Cereus validus. Plant Physiol 75: 195–200

    Article  Google Scholar 

  • McGarvie D, Parolis H (1981) The acid-labile peripheral chains of the mucilage of Opuntia ficus-indica. Carbohydr Res 94: 57–65

    Article  Google Scholar 

  • Medina E, Cram WJ, Lee HSJ, Lüttge U, Popp M, Smith JAC, Diaz M (1989) Ecophysiology of xerophytic and halophytic vegetation of a coastal alluvial plain in northern Venezuela I. Site description and plant communities. New Phytol 111: 233–243

    Google Scholar 

  • Meinzer FC, Goldstein G (1985) Some consequences of leaf pubescence in the Andean giant rosette plant Espeletia timotensis. Ecology 66: 512–520

    Article  Google Scholar 

  • Meinzer FC, Goldstein G (1986) Adaptations for water and thermal balance in Andean giant rosette plants. In: Givnish T (ed) On the economy of plant form and function. Cambridge Univ Press, New York, pp 381–411

    Google Scholar 

  • Meinzer FC, Goldstein G, Rundel PW (1985) Morphological changes along an altitude gradient and their consequences for an Andean giant rosette plant. Oecologia 65: 278–283

    Article  Google Scholar 

  • Modlibowska I (1956) Le problème des gelées printanières et la fruitierie. Rapp Gen Congr Pomol Int, Namur 1956, pp 83–111

    Google Scholar 

  • Molz FJ, Ferrier JM (1982) Mathematical treatment of water movement in plant cells and tissue: a review. Plant Cell Environ 5: 191–206

    Google Scholar 

  • Morse SR (1990) Water balance in Hemizonia luzulifolia: the role of extracellular polysaccharides. Plant Cell Environ 13: 39–48

    Article  CAS  Google Scholar 

  • Nardina NS, Mukhammedov GM (1973) Kul’tura vidov Opuntia Mill. v tsentral’nykh Karakumakh. Probl Osvo Pustyn’ 5: 60–61

    Google Scholar 

  • Nobel PS (1977) Water relations and photosynthesis of a barrel cactus, Ferocactus acanthodes, in the Colorado Desert. Oecologia 27: 117–133

    Article  Google Scholar 

  • Nobel PS (1978) Surface temperatures of cacti — influences of environmental and morphological factors. Ecology 59: 986–996

    Article  Google Scholar 

  • Nobel PS (1980a) Morphology, surface temperatures, and northern limits of columnar cacti in the Sonoran Desert. Ecology 61: 1–7

    Article  Google Scholar 

  • Nobel PS (1980b) Influences of minimum stem temperatures on ranges of cacti in southwestern United States and central Chile. Oecologia 47:10–15

    Article  Google Scholar 

  • Nobel PS (1981) Influence of freezing temperatures on a cactus, Coryphantha vivipara. Oecologia 48: 194–198

    Article  Google Scholar 

  • Nobel PS (1982) Low-temperature tolerance and cold hardening of cacti. Ecology 63: 1650–1656

    Article  Google Scholar 

  • Nobel PS (1984) PAR and temperature influences on CO2 uptake by desert CAM plants. Proc IV Int Congr Photosynth, Adv Photosynth Res IV. 3: 193–200

    Google Scholar 

  • Nobel PS (1988a) Environmental biology of agaves and cacti. Cambridge Univ Press, New York

    Google Scholar 

  • Nobel PS (1988b) Principles underlying the prediction of temperature in plants, with special reference to desert succulents. In: Long SP, Woodward FI (eds) Plants and temperature. Soc Exp Biol, Company Biol, Cambridge, pp 1–23

    Google Scholar 

  • Nobel PS (1990) Low-temperature tolerance and CO2 uptake for platyopuntias — a laboratory assessment. J Arid Environ 18: 313–324

    Google Scholar 

  • Nobel PS (1991) Physicochemical and environmental plant physiology. Academic Press, San Diego

    Google Scholar 

  • Nobel PS, Loik ME (1990) Thermal analysis, cell viability, and CO2 uptake for a widely distributed North American cactus, Opuntia humifusa, at subzero temperatures. Plant Physiol Biochem 28: 429–436

    Google Scholar 

  • Rada F, Goldstein G, Azocar A, Meinzer F (1985) Freezing avoidance in Andean giant rosette plants. Plant Cell Environ 8: 501–507

    Article  Google Scholar 

  • Rada F, Goldstein G, Azocar A, Torres F (1987) Supercooling along an altitudinal gradient in Espeletia schultzii, a caulescent giant rosette species. J Exp Bot 38: 491–497

    Article  Google Scholar 

  • Rajeshekar C, Gusta LV, Burke MJ (1979) Membrane structural transitions: probable relation to frost damage in hardy herbaceous species. In: Lyons JM, Graham D, Raison JK (eds) Low temperature stress in crop plants. Academic Press, Lond New York, pp 255–274

    Google Scholar 

  • Robichaux RH, Morse SR (1990) Extracellular polysaccharide and leaf capacitance in a Hawaiian bog species, Argyroxiphium grayanum ( Compositae-Madiinae ). Am J Bot 77: 134–138

    Google Scholar 

  • Running SW, Reid PC (1980) Soil temperature influences of Pinus contorta seedlings. Plant Physiol 65: 635–640

    Article  PubMed  CAS  Google Scholar 

  • Sakai A, Larcher W (1987) Frost survival of plants: responses and adaptation to freezing stress. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Schulte PJ, Smith JAC, Nobel PS (1989) Water storage and osmotic pressure influences on the water relations of a dicotyledonous desert succulent. Plant Cell Environ 10: 639–648

    Google Scholar 

  • Smith AP (1974) Bud temperature in relation to nyctinastic leaf movement in an Andean giant rosette plant. Biotropica 6: 163–266

    Article  Google Scholar 

  • Smith AP (1979) The function of dead leaves in Espeletia schultzii (Compositae), an Andean giant rosette plant. Biotropica 11: 43–47

    Article  Google Scholar 

  • Smith JAC, Lüttge U (1985) Day-night changes in leaf water relations associated with the rhythm of crassulacean acid metabolism in Kalanchoë daigremontiana. Planta 163: 272–282

    Article  CAS  Google Scholar 

  • Soule OH, Lowe CH (1980) Osmotic characteristics of tissue fluids in the sahuaro giant cactus (Cereus giganteus). Ann MO Bot Garden 57: 265–351

    Article  Google Scholar 

  • Steenbergh WF, Lowe CH (1976) Ecology of the saguaro: I. The role of freezing weather in a warm-desert plant population. In: Research in the parks. National Park Service Monograph Series, Number 1. US Gov Printing Office, Washington DC, pp 49–92

    Google Scholar 

  • Steudle E, Smith JAC, Lüttge U (1980) Water relation parameters of individual mesophyll cells of the crassulacean acid metabolism plant Kalanchoë daigremontiana. Plant Physiol 66: 1155–1163

    Article  PubMed  CAS  Google Scholar 

  • Ting IP (1985) Crassulacean acid metabolism. Annu Rev Plant Physiol 36: 595–622

    Article  CAS  Google Scholar 

  • Ting IP, Jennings W (1976) Deep canyon, a desert wilderness for science. Boyd Deep Canyon Desert Res Cent, Univ California, Riverside

    Google Scholar 

  • Trachtenberg S, Mayer AM (1982) Composition and properties of Opuntia ficus-indica (L.) Mill. mucilage. Phytochemistry 21: 2835–2843

    Google Scholar 

  • Troll C (1968) The cordilleras of the tropical Americas. Aspects of climate, phytogeography and agrarian ecology. In: Troll C (ed) Geo-ecology of the mountain regions of the tropical Americas. UNESCO, New York, pp 13–56

    Google Scholar 

  • Tyree MT, Jarvis PG (1982) Water in tissues and cells. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology, New Series, vol 12B, Physiological plant ecology II. Springer, Berlin Heidelberg New York, pp 36–77

    Google Scholar 

  • Uphof JCTh (1916) Cold-resistance in spineless cacti. Bull 79, Univ Arizona Agric Exp Stat, Tucson

    Google Scholar 

  • van den Honert TH (1948) Water transport as a catenary process. Disc Faraday Soc 3: 146–153

    Article  Google Scholar 

  • Zimmermann U, Steudle E (1978) Physical aspects of water relations of plant cells. Adv Bot Res 6: 45–117

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nobel, P.S., Goldstein, G. (1992). Desiccation and Freezing Phenomena for Plants with Large Water Capacitance — Cacti and Espeletias. In: Somero, G.N., Osmond, C.B., Bolis, C.L. (eds) Water and Life. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76682-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76682-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76684-8

  • Online ISBN: 978-3-642-76682-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics