Skip to main content

On the Computational Testing of Procedures for Interactive Multiple Objective Linear Programming

  • Chapter
Operations Research

Abstract

The problem to be solved is the multiple objective linear program (MOLP)

$$\begin{array}{*{20}{l}} {\max \{ {c^1}x = {z_1}\} } \\ {\begin{array}{*{20}{c}} \vdots \end{array}} \\ {\max \{ {c^k}x = {z_k}\} } \\ {s.t.\,x \in S} \end{array}$$

where S is the feasible region in decision space. Let \(Z \subset {R^k}\) be the feasible region in criterion space. Criterion vector \(\bar z \in Z\) iff there exists an \(\bar x \in S\) such that \(\bar z = ({c^1}\bar x,...,{c^k}\bar x)\). A point \(\bar x \in S\) is efficient iff there does not exist any x∈S such that \({c^i}x \geqslant {c^i}\bar x\) for all i and \({c^i}x > {c^i}\bar x\) for at least one i. A criterion vector is nondominated iff its inverse image is an efficient point. The set of all efficient points is the efficient set E and the set of all nondominated criterion vectors is the nondominated set N. Methods for computing all efficient extreme points and characterizing the entire nondominated set have been developed by Ecker et al. (1980), Fandel (1972), Gal (1977), Gal and Leberling (1981), Isermann (1977), and others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benayoun, R., de Montgolfier, J., Tergny, J., and Larichev, O.: Linear Programming with Multiple Objective Functions: Step Method (STEM), in: Mathematical Programming 1, 1971, pp. 366–375.

    Google Scholar 

  • Ecker, J.G., Hegner, N.S., and Kouada, I.A.: Generating All Maximally Efficient Faces for Multiple Objective Linear Programs, in: Journal of Optimization Theory and Applications 30, 1980, pp. 353–381.

    Article  Google Scholar 

  • Fandel, G.: Optimale Entscheidung bei Mehrfacher Zielsetzung, Lectures Notes in Economics and Mathematical Systems 76, Berlin 1972.

    Google Scholar 

  • Gal, T.: A General Method for Determining the Set of All Efficient Solutions to a Linear Vectormaximum Problem, in: European Journal of Operational Research 1, 1977, pp. 307–322.

    Article  Google Scholar 

  • Gal, T., and Leberling H.: Relaxation Analysis in Linear Vectorvalued Maximization, in: European Journal of Operational Research 8, 1981, pp. 274–282.

    Article  Google Scholar 

  • Geoffrion, A.M., Dyer, J.S., and Feinberg, A.: An Interactive Approach for Multicriterion Optimization, with an Application to the Operation of an Academic Department, in: Management Science 19, 1972, pp. 357–368.

    Article  Google Scholar 

  • Isermann, H.: The Enumeration of the Set of All Efficient Solutions for a Linear Multiple Objective Program, in: Operational Research Quarterly 28, 1977, pp. 711–725.

    Article  Google Scholar 

  • Isermann, H., and Naujoks, G.: Operating Manual for the EFFACET Multiple Objective Linear Programming Package, University of Bielefeld, Bielefeld 1984.

    Google Scholar 

  • Korhonen, P.J., and Laakso, J.: A Visual Interactive Method for Solving the Multiple Criteria Problem, in: European Journal of Operational Research 24, 1986, pp. 277–287.

    Article  Google Scholar 

  • Korhonen, P.J., and Wallenius, J.: A Pareto Race, in: Naval Research Logistics 35, 1988, pp. 615–623.

    Article  Google Scholar 

  • Lasdon, L.S., and Waren, A.D.: GRG2 User’s Guide, School of Business Administration, University of Texas, Austin 1986.

    Google Scholar 

  • Liou, F.H.: A Routine for Generating Grid Point Defined Weighting Vectors. Masters Thesis, Department of Management Science & Information Technology, University of Georgia, Athens, Georgia, 1984.

    Google Scholar 

  • Murtagh, B.A., and Saunders, M.A.: MINOS/AUGMENTED User’s Manual, Report SOL 80- 14, Department of Operations Research, Stanford University, Standord, California, 1980.

    Google Scholar 

  • Nakayama, H., and Sawaragi, Y.: Satisficing Trade-off Method for Multiobjective Programming, Lecture Notes in Economics and Mathematical Systems 229, Berlin 1984, pp. 113–122.

    Google Scholar 

  • Spronk, J.: Interactive Multiple Goal Programming: Applications to Financial Planning, Boston 1980.

    Google Scholar 

  • Steuer, R.E.: Multiple Criteria Optimization: Theory, Computation, and Application, New York, 1986 and Melbourne, Florida, 1986.

    Google Scholar 

  • Steuer, R.E.: ADBASE Operating Manual, Department of Management Science & Information Technology, University of Georgia, Athens, Georgia, 1990.

    Google Scholar 

  • Steuer, R.E., and Choo, E.-U.: An Interactive Weighted Tchebycheff Procedure for Multiple Objective Programming, in: Mathematical Programming 26, 1983, pp. 326–344.

    Article  Google Scholar 

  • Wierzbicki, A.P.: Basic Properties of Scalarizing Functionals for Multiobjective Optimization, in: Mathematische Operationsforschung und Statistik - Series Optimization 8, 1977, pp. 55–60.

    Article  Google Scholar 

  • Wierzbicki, A.P.: A Mathematical Basis for Satisficing Decision Making, in: Mathematical Modelling 3, 1982, pp. 391–405.

    Article  Google Scholar 

  • Wierzbicki, A.P.: On the Completeness and Constructiveness of Parametric Characterizations to Vector Optimization Problems, in: OR Spektrum 8, 1986, pp. 73–87.

    Article  Google Scholar 

  • Yu, P.L.: Multiple Criteria Decision Making: Concepts, Techniques and Extensions, New York 1985.

    Google Scholar 

  • Zionts, S., and Wallenius, J.: An Interactive Programming Method for Solving the Multiple Criteria Problem, in: Management Science 22, 1976, pp. 652–663.

    Article  Google Scholar 

  • Zionts, S., and Wallenius, J.: An Interactive Multiple Objective Linear Programming Method for a Class of Underlying Nonlinear Utility Functions, in: Management Science 29, 1983, pp. 519–529.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Steuer, R., Gardiner, L. (1991). On the Computational Testing of Procedures for Interactive Multiple Objective Linear Programming. In: Fandel, G., Gehring, H. (eds) Operations Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76537-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76537-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76539-1

  • Online ISBN: 978-3-642-76537-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics