Skip to main content

Regulation of Brain Volume Under Isosmotic and Anisosmotic Conditions

  • Chapter
Advances in Comparative and Environmental Physiology

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 9))

Abstract

The incompressibility of the contents of the skull — brain, blood, and cerebrospinal fluid (CSF) — implies that their total volume must remain constant; changes in the volume of one compartment must be accompanied by reciprocal changes in the others. This relationship, known as the Monro-Kellie doctrine, makes the central nervous system especially vulnerable to increases in tissue volume. Small increases in brain bulk may be “buffered” by decreases in CSF volume; however, larger changes will progressively reduce cerebral blood flow, cause mechanical damage, and lead to herniation of brain tissue through the foramen magnum and to death. The importance of volume regulation at the cellular level, apart from its contribution to brain bulk, has not been studied extensively. However, analyses of neuronal activity in invertebrate systems provide indirect evidence that maintenance of normal cell volume is essential for a variety of functions, including generation of axonal action potentials (Pichon and Treherne 1976) and synaptic activity (Prior and Pierce 1981).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arieff AI, Guisado R (1976) Effects on the central nervous system of hypernatremic and hyponatremic states. Kidney Int 10:104–116

    Article  PubMed  CAS  Google Scholar 

  • Arieff AI, Kleeman CR, Keushkerian A, Bagdoyan H (1972) Brain tissue osmolality: method of determination and variations in hyper- and hypoosmolar states. J Lab Clin Med 79:334–343

    PubMed  CAS  Google Scholar 

  • Arieff AI, Guisado R, Lazarowitz VC (1977) Pathophysiology of hyperosmolar states. In: Andreoli TE, Grantham JJ, Rector FC (eds) Disturbances in body fluid osmolality. Am Physiol Soc, Bethesda, MD, pp 227–250

    Google Scholar 

  • Betz AL (1983) Sodium transport from blood to brain: inhibition by furosemide and amiloride. J Neurochem 41:1158–1164

    Article  PubMed  CAS  Google Scholar 

  • Bradbury MWB (1979) The concept of a blood-brain barrier. John Wiley & Sons, New York Chichester, pp 253–257

    Google Scholar 

  • Bradbury MWB, Cserr HF (1985) Drainage of cerebral interstitial fluid and of cerebrospinal fluid into lymphatics. In: Johnston MG (ed) Experimental biology of the lymphatic circulation. Elsevier, Amsterdam, pp 355–394

    Google Scholar 

  • Brodersen P, Hojgaard K, Lassen NA (1972) Measurement of “interstitial fluid” pressure in the brain in dogs. In: Brock M, Dietz H (eds) Intracracial pressure. Springer, Berlin Heidelberg New York, pp 185–187

    Chapter  Google Scholar 

  • Brownfield MS, Kozlowski GP (1977) The hypothalamochoroidal tract. I. Immunohistochemical demonstration of neurophysin pathways to telencephalic choroid plexuses and cerebrospinal fluid. Cell Tissue Res 178:111–127

    Article  PubMed  CAS  Google Scholar 

  • Buijs RM, Swaab DF, Dogterom J, Van Leeuwen FW (1978) Intra- and extrahypothalamic vasopressin and oxytocin pathways in the cat. Cell Tissue Res 186:423–433

    Article  PubMed  CAS  Google Scholar 

  • Chan PH, Pollack E, Fishman RA (1981) Differential effects of hypertonic mannitol and glycerol on rat brain metabolism and amino acids. Brain Res 225:143–153

    Article  PubMed  CAS  Google Scholar 

  • Crone C (1965) Facilitated transfer of glucose from blood into brain. J Physiol 181:103–113

    PubMed  CAS  Google Scholar 

  • Crone C (1986) The blood-brain barrier as a tight epithelium: where is information lacking? The neuronal microenvironment. Ann NY Acad Sci 481:174–185

    Article  PubMed  CAS  Google Scholar 

  • Crone C, Olesen SP (1982) Electrical resistance of brain capillary endothelium. Brain Res 241:49–55

    Article  PubMed  CAS  Google Scholar 

  • Cserr HF (1981) Convection of brain interstitial fluid. In: Kovach AGB, Hamar J, Szabo L (eds) Advances in physiological science, vol 7. Pergamon, Budapest, pp 1219–1226

    Google Scholar 

  • Cserr HF (1984) Convection of brain interstitial fluid. In: Shapiro K, Marmarou A, Portnoy H (eds) Hydrocephalus. Raven, New York, pp 59–68

    Google Scholar 

  • Cserr HF, Berman BJ (1978) Iodide and thiocyanate efflux from brain following injection into rat caudate nucleus. Am J Physiol 235:F331-F337

    PubMed  CAS  Google Scholar 

  • Cserr HF, Bundgaard M (1984) Blood-brain interfaces in vertebrates: a comparative approach. Am J Physiol 246:R277-R288

    PubMed  CAS  Google Scholar 

  • Cserr HF, Ostrach LH (1974) Bulk flow of interstitial fluid after intracranial injection of Blue Dextran 2000. Exp Nuerol 45:50–60

    Article  CAS  Google Scholar 

  • Cserr HF, Cooper DN, Milhorat TH (1977) Flow of cerebral interstitial fluid as indicated by the removal of extracellular markers from rat caudate nucleus. Exp Eye Res Suppl 25:461–473

    Article  Google Scholar 

  • Cserr HF, Bundgaard M, Ashby JK, Murray M (1980) On the anatomic relation of choroid plexus to brain: a comparative study. Am J Physiol 238:R76-R81

    PubMed  CAS  Google Scholar 

  • Cserr HF, Cooper DN, Suri PK, Patlak CS (1981) Efflux of radiolabeled polyethylene glycols and albumin from rat brain. Am J Physiol 240:F319-F328

    PubMed  CAS  Google Scholar 

  • Cserr HF, Bradbury MWB, Mackie K, Moody EJ (1983) Control of extracellular ions in skate brain during osmotic disturbances. Am J Physiol 245:R853-R859

    PubMed  CAS  Google Scholar 

  • Cserr HF, DePasquale M, Patlak CS (1987a) Regulation of brain water and electrolytes during acute hyperosmolality in rats. Am J Physiol 253:F522-F529

    PubMed  CAS  Google Scholar 

  • Cserr HF, DePasquale M, Patlak CS (1987b) Volume regulatory influx of electrolytes from plasma to brain during acute hyperosmolality. Am J Physiol 253:F530-F537

    PubMed  CAS  Google Scholar 

  • Cserr HF, Harling-Berg C, Ichimura T, Knopf PM, Yamada S (1990) Drainage of cerebral extracellular fluids into cervical lymph: an afferent limb in brain/immune system interactions. In: Johansson BB, Owman C, Widner H (eds) Pathophysiology of the blood-brain barrier. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Davson H (1956) Physiology of the ocular and cerebrospinal fluids. Churchill, London, p 50

    Google Scholar 

  • Demotes-Mainard J, Chauveau J, Rodriguez F, Vincent JD, Poulain DA (1986) Septal release of vasopressin in response to osmotic, hypovolemic and electrical stimulation in rats. Brain Res 381:314–321

    Article  PubMed  CAS  Google Scholar 

  • DePasquale M, Patlak CS, Cserr HF (1989) Brain ion and volume regulation during acute hypernatremia in Brattleboro rats. Am J Physiol 256:F1059–1066

    PubMed  CAS  Google Scholar 

  • Doczi T, Szerdahelyi P, Gulya K, Kiss J (1982) Brain water accumulation after the central administration of vasopressin. Neurosurgery 11:402–407

    Article  PubMed  CAS  Google Scholar 

  • Doczi T, Laszlo FA, Szerdahelyi P, Joo F (1984) Involvement of vasopressin in brain edema formation: further evidence obtained from the Brattleboro diabetes insipidus rat with experimental subarachnoid hemorrhage. Neurosurgery 14:436–441

    Article  PubMed  CAS  Google Scholar 

  • Doczi T, Joo F, Szerdahelyi P, Bodosi M (1987) Regulation of brain water and electrolyte contents: the possible involvement of central atrial natriuretic factor. Neurosurgery 21:454–458

    Article  PubMed  CAS  Google Scholar 

  • Doczi T, Joo F, Vecsernyes M, Bodosi M (1988) Increased concentration of atrial natriuretic factor in the cerebrospinal fluid of patients with aneurysmal subarachnoid hemorrhage and raised intracranial pressure. Neurosurgery 23:16–19

    Article  PubMed  CAS  Google Scholar 

  • Dytko G, Kinter LB (1986) Prevention of hyponatremia in experimental Schwartz-Bartter syndrome with the vasopressin antagonist SK&F 101926 The neuronal microenvironment. Ann NY Acad Sci 481:369–371

    Article  Google Scholar 

  • Fenstermacher JD (1984) Volume regulation of the central nervous system. In: Staub NC, Taylor AE (eds) Edema. Raven, New York, pp 383–404

    Google Scholar 

  • Fenstermacher JD, Patlak CS (1976) The movements of water and solutes in the brains of mammals. In: Pappius HM, Feindel W (eds) Dynamics of brain edema. Springer, Berlin Heidelberg New York, pp 87–94

    Chapter  Google Scholar 

  • Finberg L, Luttreil C, Redd H (1959) Pathogenesis of lesions in the nervous system in hypernatremic states. Pediatrics 23:46–53

    PubMed  CAS  Google Scholar 

  • Firth JA (1977) Cytochemical localization of the K+ regulation interface between blood and brain. Experientia 33:1093–1094

    Article  PubMed  CAS  Google Scholar 

  • Gardner DG, Vlasuk GP, Baxter JD, Fiddes, Lewicki JA (1987) Identification of atrial natriuretic factor gene transcripts in the central nervous system of the rat. Proc Natl Acad Sci USA 84:2175–2179

    Article  PubMed  CAS  Google Scholar 

  • His W (1865) Über ein perivasculares Kanalsystem in den nervösen central-Organen und über dessen Beziehungen zum Lymphsystem. Z Wiss Zool 15:127–141

    Google Scholar 

  • Holliday MA, Kalayci MN, Harrah J (1968) Factors that limit brain volume changes in response to acute hyper- and hyponatraemia. J Clin Invest 47:1916–1922

    Article  PubMed  CAS  Google Scholar 

  • Jojart I, Joo F, Siklos L, Laszlo FA (1984) Immunoelectronhistochemical evidence for innervation of brain microvessels by vasopressin-immunoreactive neurons in the rat. Neurosci Lett 51:259–264

    Article  PubMed  CAS  Google Scholar 

  • Kadern O, Katchalsky A (1958) Thermodynamic analysis of the permeability of biological membranes to nonelectrolytes. Biochim Biophys Acta 27:229–246

    Article  Google Scholar 

  • Katzman R, Pappius HM (1973) Brain electrolytes and fluid metabolism. Williams & Wilkins, Baltimore, p 125

    Google Scholar 

  • Levin VA, Fenstermacher JD, Patlak CS (1970) Sucrose and inulin space measurements of cerebral cortex in four mammalian species. Am J Physiol 219:1528–1533

    PubMed  CAS  Google Scholar 

  • Lohr JW, McReynolds J, Grimaldi T, Acara M (1988) Effect of acute and chronic hypernatremia on myoinositol and sorbitol concentration in rat brain and kidney. Life Sci 43:271–276

    Article  PubMed  CAS  Google Scholar 

  • Maffly RH, Leaf A (1959) The potential of water in mammalian tissues. J Gen Physiol 42:1257–1275

    Article  PubMed  CAS  Google Scholar 

  • McDowell ME, Wolff AV, Steer O (1955) Osmotic volumes of distribution: idiogenic changes in osmotic pressure associated with administration of hypertonic solutions. Am J Physiol 180:545–558

    PubMed  CAS  Google Scholar 

  • McGeer PE, Eccles JC, McGeer EG (1986) Molecular neurobiology of the mammalian brain. Plenum, New York

    Google Scholar 

  • Melton JE, Patlak CS, Pettigrew KD, Cserr HF (1987) Volume regulatory loss of Na, CI, and K from rat brain during acute hyponatremia. Am J Physiol 252:F661-F669

    PubMed  CAS  Google Scholar 

  • Morre TJ, Lione AP, Sugda MC, Regen DM (1976) Beta-hydroxybutyrate transport in rat brain: developmental and dietary modulations. Am J Physiol 230:619–630

    Google Scholar 

  • Nicholson C, Phillips JM (1981) Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J Physiol 321:225–257

    PubMed  CAS  Google Scholar 

  • Nicholson C, Rice ME (1986) The migration of substances in the neuronal microenvironment. The neuronal microenvironment. Ann NY Acad Sci 481:55–68

    Article  PubMed  CAS  Google Scholar 

  • Nicholson C, Rice ME (1988) Use of ion-selective microelectrodes and voltammetric microsensors to study brain cell microenvironment. In: Boulton A A, Baker GB, Walz W (eds) Neuromethods: the neuronal microenvironment. Humana, Clifton, NJ, pp 247–361

    Chapter  Google Scholar 

  • Nicholson C, Cserr HF, DePasquale M, Patlak CS, Rice ME (1988) Selective control of cell water during acute hypernatremia in rat cerebral cortex. Society for Neuroscience Abstracts 14:1037

    Google Scholar 

  • Niwa M, Ibaragi M, Tsutsumi K, Kurihara M, Himeno A, Mori K, Ozaki M (1988) Specific atrial natriuretic peptide binding sites in rat cerebral capillaries. Neurosci Lett 91:89–94

    Article  PubMed  CAS  Google Scholar 

  • Oldendorf WH, Cornford ME, Brown WJ (1977) The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol 1:409–417

    Article  PubMed  CAS  Google Scholar 

  • Pichon Y, Treherne JE (1976) Effects of osmotic stress on the electrical properties of the axons of a marine osmoconformer (Maia squinaldo: Brachyura, Crustacea). J Exp Biol 65:553–563

    PubMed  CAS  Google Scholar 

  • Pollock AS, Arieff A J (1980) Abnormalities of cell volume regulation and their functional consequences. Am J Physiol 239:F195-F205

    PubMed  CAS  Google Scholar 

  • Prior DJ, Pierce SK (1981) Adaptation and tolerance of invertebrate nervous systems to osmotic stress. J Exp Zool 215:237–245

    Article  CAS  Google Scholar 

  • Pullen RGL, Cserr HF (1984) Pressure dependent penetration of CSF into brain. Fed Proc 43:2521

    Google Scholar 

  • Pullen RGL, DePasquale M, Cserr HF (1987) Bulk flow of cerebrospinal fluid into brain in response to acute hyperosmolality. Am J Physiol 253:F538-F545

    PubMed  CAS  Google Scholar 

  • Raichle ME (1981) Hypothesis: a central neuroendocrine system regulates brain ion homeostasis and volume. In: Martin JB, Reichlin S, Bick KL (eds) Neurosecretion and brain peptides. Raven, New York pp 329–336

    Google Scholar 

  • Reeder RF, Nattie EE, North WG (1986) Effect of vasopressin on cold-induced brain edema in cats. J Neurosurg 64:941–950

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg GA, Kyner WT, Estrada E (1980) Bulk flow of brain interstitial fluid under normal and hyperosmolar conditions. Am J Physiol 238:F42-F49

    PubMed  CAS  Google Scholar 

  • Rosenberg GA, Kyner WT, Estrada E (1982) The effect of increased CSF pressure on interstitial fluid flow during ventriculocisteraal perfusion in the cat. Brain Res 232:141–150

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg GA, Estrada E, Kyner WT (1988) The effect of arginine vasopressin and Vi receptor antagonist on brain water in cat. Neurosci Lett 95:241–245

    Article  PubMed  CAS  Google Scholar 

  • Steardo L, Nathanson JA (1987) Brain barrier tissues: end organs for atriopeptins. Science 235:470–473

    Article  PubMed  CAS  Google Scholar 

  • Sudoh T, Kangawa K, Minamino N, Matsuo H (1988) Identification in porcine brain of a novel natriuretic peptide distinct from atrial natriuretic peptide. Nature (London) 332:78–81

    Article  CAS  Google Scholar 

  • Szentistvanyi I, Patlak CS, Ellis RA, Cserr HF (1984) Drainage of interstitial fluid from different regions of rat brain. Am J Physiol 246:F835-F844

    PubMed  CAS  Google Scholar 

  • Tsutsumi K, Niwa M, Himeno A, Kurihara M, Kawano T, Ibaragi M, Ozaki M, Mori K (1988) Alpha-atrial natriuretic peptide binding sites in the rat choroid plexus are increased in the presence of hydrocephalus. Neurosci Lett 87:93–98

    Article  PubMed  CAS  Google Scholar 

  • Van Harreveld A, Hooper NK, Cusick JT (1961) Brain electrolytes and cortical impedance. Am J Physiol 201:139–143

    Google Scholar 

  • Van Leeuwen FW (1987) Vasopressin receptors in the brain and pituitary. In: Gash DM, Boer GJ (eds) Vasopressin, principles and properties. Plenum, New York, pp 477–496

    Google Scholar 

  • Verbalis JG, Drutarosky MD (1988) Adaptation to chronic hyposmolality in rats. Kidney Int 34:351–360

    Article  PubMed  CAS  Google Scholar 

  • Weed LH (1923) The absorption of cererospinal fluid into the venous system. Am J Anat 31:191–221

    Article  CAS  Google Scholar 

  • Weinand M, O’Boynick P, Overman J (1987) The effect of central antidiuretic hormone (ADH) inhibition on vasogenic brain edema (Abstr). In: Proc 37th Congr Neurol Surg, Baltimore, MD, p 90

    Google Scholar 

  • Wiig H, Reed RK (1983) Rat brain interstitial fluid pressure measured with micropipettes. Am J Physiol 244: H239-H246

    PubMed  CAS  Google Scholar 

  • Yamada S, Cserr HF (1989) Drainage of interstitial fluid (ISF) into deep cervical lymph from different regions of rabbit brain. Soc Neurosci Abstr 15(1):721

    Google Scholar 

  • Yannet H (1940) Changes in the brain resulting from depletion of extracellular electrolytes. Am J Physiol 128:683–689

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cserr, H.F., Patlak, C.S. (1991). Regulation of Brain Volume Under Isosmotic and Anisosmotic Conditions. In: Gilles, R., Hoffmann, E.K., Bolis, L. (eds) Advances in Comparative and Environmental Physiology. Advances in Comparative and Environmental Physiology, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76226-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76226-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76228-4

  • Online ISBN: 978-3-642-76226-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics