Skip to main content

Respiratory and Cardiovascular Adaptations in Hemoglobin-Free Fish: Resolved and Unresolved Problems

  • Conference paper
Biology of Antarctic Fish

Abstract

Due to the low solubility which oxygen has in aqueous solutions, the presence of an oxygen-carrying pigment in the blood has been regarded as a necessity in all but the simplest types of animals. Yet, all species of the antarctic and subantarctic fish family Channichthyidae lack such a pigment. The family is comprised of 16 known species among 10 genera, with adult sizes ranging from about 20 to about 60 cm. The distribution is circumpolar, with some species extending north to such areas as Patagonia, the Falkland Islands, and the South Georgia, Bouvet and Kerguelen Islands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anthony EH (1961) Survival of goldfish in presence of carbon monoxide. J Exp Biol 38:109–125

    CAS  Google Scholar 

  • Barber DL, Westermann JEM (1981) The blood cells of the antarctic icefish Chaenocephalus aceratus Lonnberg: light and electron microscopic observations. J Fish Biol 19:11–28

    Article  Google Scholar 

  • Booth JH (1978) The distribution of blood flow in the gills of fish: application of a new technique to rainbow trout (Salmo gairdneri). J Exp Biol 73:119–129

    Google Scholar 

  • Cameron JN, Wohlschlag DE (1969) Respiratory response to experimentally induced anemia in the pinfish (Lagodon rhomboides). J Exp Biol 50:307–317

    PubMed  CAS  Google Scholar 

  • Douglas EL, Chapman DJ, Hemmingsen EA (1973) Absence of porphyrin respiratory pigments in the blood in the antarctic icefish Chaenocephalus aceratus. Cryobiology 10:260–261

    Article  PubMed  CAS  Google Scholar 

  • Douglas EL Peterson KS, Gysi JR, Chapman DJ (1985) Myoglobin in the heart tissue of fishes lacking hemoglobin. Comp Biochem Physiol 81A:855–888

    Google Scholar 

  • Dunn JF (1988) Muscle metabolism in antarctic fish. Comp Biochem Physiol 90B:539–545

    CAS  Google Scholar 

  • Edwards RRC (1971) An assessment of the energy cost of gill ventilation in the plaice (Pleuronectes platessa L.). Comp Biochem Physiol 40A:391–398

    Article  Google Scholar 

  • Farrell AP (1982) Cardiovascular changes in the unanaesthetized lingcod (Ophiodon elongatus) during the short-term, progressive hypoxia and spontaneous activity. Can J Zool 60:933–941

    Article  Google Scholar 

  • Febry R, Lutz P (1987) Energy partitioning in fish: the activity-related cost of osmoregulation in a euryhaline ciclid. J Exp Biol 128:63–85

    Google Scholar 

  • Fitch NA, Johnston IA, Wood RE (1984) Skeletal muscle capillary supply in a fish that lacks respiratory pigments. Respir Physiol 57:201–211

    Article  PubMed  CAS  Google Scholar 

  • Garey W (1970) Cardiac output of the carp (Cyprinus carpio). Comp Biochem Physiol 33:181–189

    Article  PubMed  CAS  Google Scholar 

  • Grigg GC (1967) Some respiratory properties of the blood of four species of antarctic fishes. Comp Biochem Physiol 23:139–148

    Article  PubMed  CAS  Google Scholar 

  • Hamoir G, Gerardin-Otthiers N (1980) Differentiation of the sarcoplasmic proteins of white, yellowish and cardiac muscles of an antarctic hemoglobin-free fish, Champsocephalus gunnari. Comp Biochem Physiol 65B:199–206

    CAS  Google Scholar 

  • Haschemeyer AEV (1983) A comparative study of protein synthesis in nototheniids and icefish at Palmer Station, Antarctica. Comp Biochem Physiol 76B:541–544

    CAS  Google Scholar 

  • Hemmingsen EA, Douglas EL (1970) Respiratory characteristics of the hemoglobin-free fish Chaenocephalus aceratus. Comp Biochem Physiol 33:733–744

    Article  PubMed  CAS  Google Scholar 

  • Hemmingsen EA, Douglas EL (1972) Respiratory and circulatory responses in a hemoglobin-free fish, Chaenocephalus aceratus, to changes in temperature and oxygen tension. Comp Biochem Physiol 43A:1031–1043

    Article  Google Scholar 

  • Hemmingsen EA, Douglas EL (1977) Respiratory and circulatory adaptations to the absence of hemoglobin in chaenichthyid fishes. In: Llano GA (ed) Adaptations within antarctic ecosystems. Smithsonian Inst, Washington, DC, 479–487 pp

    Google Scholar 

  • Hemmingsen EA, Douglas EL, Grigg GC (1969) Oxygen consumption in an antarctic hemoglobin-free fish, Pagetopsis macropterus, and in three species of Notothenia. Comp Biochem Physiol 29:467–470

    Article  PubMed  CAS  Google Scholar 

  • Hemmingsen EA, Douglas EL, Johansen K, Millard RW (1972) Aortic blood flow and cardiac output in the hemoglobin-free fish, Chaenocephalus aceratus. Comp Biochem Physiol 43A:1045–1051

    Article  Google Scholar 

  • Holeton GF (1970) Oxygen uptake and circulation by a hemoglobinless antarctic fish (Chaenocephalus aceratus Lonnberg) compared with three red-blooded antarctic fish. Comp Biochem Physiol 34:457–471

    Article  PubMed  CAS  Google Scholar 

  • Holeton GF (1972) Gas exchange in fish with and without hemoglobin. Resp Physiol 14:142–150

    Article  CAS  Google Scholar 

  • Holeton GF (1974) Metabolic cold adaptation of polar fish: fact or artefact? Physiol Zool 47:137–152

    Google Scholar 

  • Holeton GF (1976) Respiratory morphometrics of white and red blooded antarctic fish. Comp Biochem Physiol 54A:215–220

    Article  Google Scholar 

  • Hureau JC (1966) Biologie de Chaenichthys rhinoceratus Richardson et problemes du sang incolore des Chaenichthyidae, poissons des mers australes. Bull Soc Zool Fr 91:735–751

    Google Scholar 

  • Hureau JC, Petit D, Fine JM, Marneux M (1977) New cytologicai, biochemical, and physiological data on the colorless blood of the Channichthyidae (Pisces, Teleosteans, Perciformes). In: Llano GA (ed) Adaptations within antarctic ecosystems. Smithsonian Inst, Washington, DC, 459–477 pp

    Google Scholar 

  • Jakubowski M (1982) Dimensions of respiratory surfaces of the gills and skin in the antarctic white-blooded fish Chaenocephalus aceratus, Lönnberg (Chaenichthyidae). Z Mikiosk — Anat Forch 96:145–156

    CAS  Google Scholar 

  • Jakubowski M, Byczkowska-Smyk (1970) Respiratory surfaces of the white-blooded fish Chaenichthys rugosus, Regan (Perciformes). Polish Arch Hydrobiol 17:273–281

    Google Scholar 

  • Johansen K, Martin AW (1965) Comparative aspects of carsiovascular function in vertebrates. In: Hamilton WF (ed) Circulation, vol 3, Handbook of physiology. Am Physiol Soc, Washington, DC, 2583–2613 pp

    Google Scholar 

  • Johnston IA, Fitch N, Zummo G, Wood RE, Harrison P, Tota B (1983) Morphometric and ultra-structural features of the ventricular myocardium of the haemoglobin-less icefish Chaenocephalus aceratus. Comp Biochem Physiol 76A:475–480

    Article  Google Scholar 

  • Jones DR, Langille BL, Randall DJ, Shelton G (1974) Blood flow in dorsal and ventral aortas of the cod, Gadus morhua. Am J Physiol 226:90–95

    PubMed  CAS  Google Scholar 

  • Kiceniuk JW, Jones DR (1977) The oxygen transport system in trout (Salmo gairdneri) during sustained exercise. J Exp Biol 69:247–260

    Google Scholar 

  • Macdonald JA, Montgomery JC, Wells RMG (1987) Comparative physiology of antarctic fishes. In: Blaxter JHS, Southward AJ (eds) Advances in marine biology, vol 24. Academic Press, London, 321–388 pp

    Google Scholar 

  • Martsinkevich LD (1958) Cellular makeup of the blood of white-blooded fish (Chaenichthyidae) from the Antarctic. Inform Byul Sov Antarkt Eksp 3:67–68

    Google Scholar 

  • Morris DJ, North AW (1984) Oxygen consumption of five species of fish from the South Georgia. J Exp Mar Biol Ecol 78:75–86

    Article  Google Scholar 

  • Nicloux M (1923) Action de l’oxyde de carbone sur les poissons et capacite respiratoire du sang de ces animaux. C R Seances Soc Biol 89:1328–1331

    CAS  Google Scholar 

  • Nonnotte G, Kirsch R (1978) Cutaneous respiration in seven sea-water teleosts. Resp Physiol 35:111–118

    Article  CAS  Google Scholar 

  • Olsen S (1955) A contribution to the systematics and biology of chaenichthyid fishes from South Georgia. Nytt Mag Zool 3:79–93

    Google Scholar 

  • Permitin YY (1970) The consumption of krill by antartic fishes. In: Holdgate M (ed) Antarctic ecology, vol 1. Academic Press, London, 177 pp

    Google Scholar 

  • Pettersson K, Nilsson S (1980) Drug induced changes in cardio-vascular parameters in the Atlantic cod, Gadus morhua. J Comp Physiol 137:131–138

    CAS  Google Scholar 

  • Ralph R, Everson I (1968) The respiratory metabolism of some antarctic fish. Comp Biochem Physiol 27: 299–307

    Article  Google Scholar 

  • Randall DJ, Daxboeck C (1982) Cardiovascular changes in the rainbow trout (Salmo gairdneri Richardson) during exercise. Can J Zool 60 :1135–1140

    Article  Google Scholar 

  • Rao GMM (1968) Oxygen consumption of rainbow trout (Salmo gairdneri) in relation to activity and salinity. Can J Zool 46:781–786

    Article  PubMed  CAS  Google Scholar 

  • Robertson OH, Krupp MA, Thompson N, Thomas SF, Hane S (1966) Blood pressure and heart weight in immature and spawning Pacific salmon. Am J Physiol 210:957–964

    PubMed  CAS  Google Scholar 

  • Ruud JT (1954) Vertebrates without erythrocytes and blood pigment. Nature (Lond) 173:848–850

    Article  CAS  Google Scholar 

  • Ruud JT (1965) The icefish. Sci Am 213:108–114

    Article  PubMed  CAS  Google Scholar 

  • Scholander PF, Van Dam L (1957) The concentration of hemoglobin in some cold water arctic fishes. J Cell Comp Physiol 49:1–4

    Article  CAS  Google Scholar 

  • Schumann D, Piiper J (1966) Der Sauerstoffbedarf der Atmung bei Fischen nach Messungen an der narkotisierten Schleie (Tinca tinca). Arch Ges Physiol 288:15–26

    Article  CAS  Google Scholar 

  • Smith LS (1966) Blood volumes of three salmonids. Fish Res Bd Canada 23: 1439–1446

    Article  Google Scholar 

  • Smith MAK, Haschemeyer AEV (1980) Protein metabolism and cold adaptation in antarctic fishes. Physiol Zool 53:373–382

    CAS  Google Scholar 

  • Steen JB, Berg T (1966) The gills of two species of haemoglobin-free fishes compared to those of other teleosts–with a note on severe anaemia in an ell. comp Biochem Physiol 18:517–526

    Article  PubMed  CAS  Google Scholar 

  • Steen JB, Kruysse A (1964) The respiratory function of teleostean gills. Comp Biochem Physiol 12:221–241

    Google Scholar 

  • Stevens ED, Randall DJ (1967) Changes in blood pressure, heart rate and breathing rate during moderate swimming activity in rainbow trout. J Exp Biol 46:307–315

    PubMed  CAS  Google Scholar 

  • Takeda T (1989) Cutaneous and gill O2 uptake in the carp Cyprinus carpio, as a function of ambient PO2. Comp Biochem Physiol 94A:205–208

    Article  Google Scholar 

  • Thorson TB (1961) The partitioning of body water in Osteichthyes: phylogenetic and ecological implications in aquatic vertebrates. Biol Bull 120:238–254

    Article  Google Scholar 

  • Tota B, Farina F, Zummo G (1988) Ultrastructural aspects of functional interest in the ventricular myocardial wall of the antarctic icefish Chaenocephalus aceratus. Comp Biochem Physiol 90B:561–566

    Google Scholar 

  • Twelves EL (1972) Blood volumes of two antarctic fishes. Bull Br Antarct Surv 31:85–92

    Google Scholar 

  • Vogel W, Kock K-H (1981) Morphology of gill vessels in icefish. Arch Fisch Wiss 31:139–150

    Google Scholar 

  • Walvig F (1960) The integument of the icefish Chaenocephalus aceratus (Lonnberg). Nytt Mag Zool 9:31–36

    Google Scholar 

  • Weiss RF (1970) The solubility of nitrogen, oxygen and argon in water and seawater. Deep-sea Research 12:721–735

    Google Scholar 

  • Wells RMG (1986) Cutaneous oxygen uptake in the antarctic icequab, Rhigophila dearborni (Pisces: Zoarcidae. Polar Biol 5:175–179

    Article  Google Scholar 

  • Wells RMG (1987) Respiration of antarctic fish from McMurdo Sound. Comp Biochem Physiol 88A:417–424

    Article  Google Scholar 

  • Wohlschlag DE (1964) Respiratory metabolism and growth of some antarctic fishes. In: Carrick R, Holdgate MW, Prevost J (eds) Biologie antarctique. Proc 1st Symp on Antarctic Biology, Paris. Hermann, Paris, 489–502 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hemmingsen, E.A. (1991). Respiratory and Cardiovascular Adaptations in Hemoglobin-Free Fish: Resolved and Unresolved Problems. In: di Prisco, G., Maresca, B., Tota, B. (eds) Biology of Antarctic Fish. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76217-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76217-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76219-2

  • Online ISBN: 978-3-642-76217-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics