Skip to main content

Abstract

Successfully negotiating any spatial environment requires two distinct but related forms of visual information. The first is absolute distance information, which allows an animal to “know” its position with respect to other objects or points in space (e.g. D in Fig. 3.1). This is sometimes referred to as egocentric (self-centred) distance perception. It allows visual information to be used for precise motor action. The second form of spatial perception, depth perception, provides information regarding the relative position of two or more objects (e.g. d in Fig. 3.1). It is distinct from absolute distance perception in that it gives no information regarding the distance of the comparison points from the observer. What then is its use? It is argued in this chapter that such relative distance or depth perception is essential for complex object detection, but can only be used to guide reaching motor movements in the limiting case where one of the reference points (e.g. F or P in Fig. 3.1) is always at some predetermined absolute distance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bagnoli P, Fontanesi G, Casini G, Porciatti V (1990) Binocularity in the little owl, Athene noctua. Brain Behav Evol 35: 31–39

    Article  PubMed  CAS  Google Scholar 

  • Bishop PO, Henry GH (1971) Spatial vision. Annu Rev Psychol 22: 119–160

    Article  PubMed  CAS  Google Scholar 

  • Blake R, Wilson HR (1991) Neural models of stereoscopic vision. Trends Neurosci 14: 445–452

    Article  PubMed  CAS  Google Scholar 

  • Bloch S, Rivaud S, Martinoya C (1984) Comparing frontal and lateral viewing in the pigeon. III Different patterns of eye movements for binocular and monocular fixation. Behav Brain Res 12: 173–182

    Article  Google Scholar 

  • Bloch S, Lemeignan M, Martinoya C (1987) Coordinated vergence for frontal fixation, but independent eye movements for lateral viewing, in the pigeon. In: O’Regan JK, Levy-Schoen A (eds) Eye movements: from physiology to cognition. Elsevier, Amsterdam, pp 47–56

    Google Scholar 

  • Collett TS (1977) Stereopsis in toads. Nature 267: 349–351

    Article  PubMed  CAS  Google Scholar 

  • Davies MNO, Green PR (1990) Optic flow-field variables trigger landing in hawk but not in pigeons. Naturwissenschaften 77: 142–144

    Article  PubMed  CAS  Google Scholar 

  • Davies MNO, Green PR (1991) The adaptability of visuomotor control in the pigeon during landing flight. Zool Jahrb Physiol 95: 331–338

    Google Scholar 

  • Fitzke FW, Hayes BP, Hodos W, Holden AL, Low J (1985) Refractive sectors in the visual field of the pigeon eye. J Physiol 369: 33–44

    PubMed  CAS  Google Scholar 

  • Fox R (1978) Binocularity and stereopsis in the evolution of vertebrate vision. In: Cool S J, Smith EL (eds) Frontiers in visual science, vol 3. Springer Berlin Heidelberg New York, pp 316–327

    Google Scholar 

  • Fox R, Lehmkuhle SW, Westendorf DH (1976) Falcon visual acuity. Science 192: 263–265

    Article  PubMed  CAS  Google Scholar 

  • Fox R, Lehmkuhle SW, Bush RC (1977) Stereopsis in the falcon. Science 197: 79–81

    Article  PubMed  CAS  Google Scholar 

  • Frost BJ, Goodale MA, Pettigrew JD (1983) A search for functional binocularity in the pigeon. Proc Soc Neurosci 9: 823

    Google Scholar 

  • Galifret Y (1968) Les diverses aires fonctionelles de la rétine du pigeon. Z Zellforsch 86: 535–545

    Article  PubMed  CAS  Google Scholar 

  • Goodale MA (1983) Visually guided pecking in the pigeon (Columba livia). Brain Behav Evol 22: 22–41

    Article  PubMed  CAS  Google Scholar 

  • Harkness L (1977) Chameleons use accommodation cues to judge distance. Nature 267: 346–349

    Article  PubMed  CAS  Google Scholar 

  • Hayes BP, Holden AL (1983) The distribution of displaced ganglion cells in the retina of the pigeon. Exp Brain Res 49: 181–188

    PubMed  CAS  Google Scholar 

  • Hershberger W (1970) Attached shadow orientation perceived as depth by chickens reared in an environment illuminated from below. J Comp Physiol Psychol 73: 407–411

    Article  PubMed  CAS  Google Scholar 

  • Hess EH (1950) Development of chick’s responses to light and shade cues of depth. J Comp Physiol Psychol 43: 112–122

    Article  PubMed  CAS  Google Scholar 

  • Hess EH (1956) Space perception in the chick. Sci Am 195: 71–80

    Article  Google Scholar 

  • Hirsch J (1982) Falcon visual sensitivity to grating contrasts. Nature 300: 57–58

    Article  Google Scholar 

  • Hodos W, Leibowitz RW, Bonbright JC Jr (1976) Near-field visual acuity of pigeons: Effects of head location and stimulus luminance. J Exp Anal Behav 25: 129–141

    Article  PubMed  CAS  Google Scholar 

  • Hodos W, Bessette BB, Macko KA, Weiss SRB (1985) Normative data for pigeon vision. Vision Res 25: 1525–1527

    Article  PubMed  CAS  Google Scholar 

  • Hughes A (1977) The topography of vision in mammals of contrasting lifestyle: Comparative optics and retinal organisation. In: Cresticelli F (ed) Handbook of sensory physiology, vol VII/5. The visual system in vertebrates. Springer, Berlin Heidelberg New York, pp 614–642

    Google Scholar 

  • Ingle D (1976) Spatial vision in anurans. In: Fite K (ed) The amphibian visual system: a multidisciplinary approach. Academic Press, New York, pp 119–140

    Google Scholar 

  • Jager R, Zeigler HP (1991) Visual field organization and peck localization in the pigeon (Columba livia). Behav Brain Res 45: 65–69

    Article  PubMed  CAS  Google Scholar 

  • Julesz B (1960) Binocular depth perception of computer generated patterns. Bell System Tech J 39: 1125

    Google Scholar 

  • Julesz B (1971) Foundations of cyclopean perception. University of Chicago Press, Chicago

    Google Scholar 

  • Julesz B (1978) Global stereopsis: Cooperative phenomena in stereoscopic depth perception. In: Held R, Leibowitz HW, Teuber H-L (eds) Handbook of sensory physiology, vol 8. Perception. Springer, Berlin Heidelberg New York, pp 215–256

    Google Scholar 

  • Julesz B, Miller JE (1975) Independent spatial-frequency-tuned channels in binocular fusion and rivalry. Perception 4: 125–143

    Article  Google Scholar 

  • Karten HJ, Hodos W, Nauta WJH, Revzin AM (1973) Neural connections of the ‘visual Wulst’ of the avian telencephalon: Experimental studies in the pigeon (Columba livia) and owl (Speotyto cunicularia). J Comp Neurol 150: 253–278

    Article  PubMed  CAS  Google Scholar 

  • Longuet-Higgins C (1981) A computer algorithm for reconstructing a scene from two projections. Nature 293: 4133–4135

    Article  Google Scholar 

  • Martin GR (1986) The eye of a passeriform bird, the European starling (Sturnus vulgaris): eye movement amplitude, visual fields and schematic optics. J Comp Physiol 159: 545–557

    Article  Google Scholar 

  • Martinoya C, Bloch S (1980) Depth perception in the pigeon: looking for the participation of binocular cues. In: Grastyan E, Molnar P (eds) Sensory functions: advances in physiological sciences, vol 16. Pergamon Press, Oxford, pp 477–482

    Google Scholar 

  • Martinoya C, Le Houezec J. Bloch S (1984a) Pigeons’ eyes converge during feeding: Evidence for frontal binocular fixation in a lateral eyed bird. Neurosci Lett 45: 335–339

    Article  PubMed  CAS  Google Scholar 

  • Martinoya C, Palacios A, Bloch S (1984b) Participation of eye convergence and frontal accommodation in programming grain pecking in pigeons. Abstr 8th Eur Neuroscience Congr, The Hague, The Netherlands, Sept 11–15. Neurosci Lett Suppl 18

    Google Scholar 

  • Martinoya C, Le Houezec J, Bloch S (1988) Depth resolution in the pigeon. J Comp Physiol 163: 33–42

    Article  CAS  Google Scholar 

  • Mayhew JEW, Longuet-Higgins C (1982) A computational model of binocular depth perception. Nature 297: 376–378

    Article  PubMed  CAS  Google Scholar 

  • McFadden SA (1984) Depth perception in the pigeon. Thesis, The Australian National University, Canberra, Australia

    Google Scholar 

  • McFadden SA (1987) The binocular stereoacuity of the pigeon and its relation to the anatomical resolving power of the eye. Vision Res 27: 1741–1746

    Article  Google Scholar 

  • McFadden SA (1990) Eye design for depth and distance perception in birds: an observer orientated perspective. J Comp Psychol: Comp Stud Perception Cognition 3: 1–31

    Google Scholar 

  • McFadden SA (1992) Depth constancy in the pigeon. Proc 6th Biennial Meet Int Soc Comp Psychol, 20–24 July, Brussels, S1

    Google Scholar 

  • McFadden SA (1993) Constructing the 3 D image. In: Zeigler HP, Bischof H-J (eds) Vision, brain and behaviour in birds. MIT Press, Cambridge, Mass (in press)

    Google Scholar 

  • McFadden SA, Reymond L (1985) A further look at the binocular visual field of the pigeon (Columba livia). Vision Res 25: 1741–1746

    Article  PubMed  CAS  Google Scholar 

  • McFadden SA, Wild JM (1986) Binocular depth perception in the pigeon (Columba livia). J Exp Anal Behav 45: 149–160

    Article  PubMed  CAS  Google Scholar 

  • McFadden SA, Lemeignan M, Martinoya C, Bloch S (1986) Effect of commissurotomy on pecking and eye convergence in the pigeon. Neurosci Lett 26: 572

    Google Scholar 

  • Micheli D, Reperant J (1982) Thalmo-hyperstriatal projections in the pigeon (Columba livia) as demonstrated with retrograde double-labelling with fluorescent tracers. Brain Res 245: 365–371

    Article  Google Scholar 

  • Millodot M, Blough P (1971) The refractive state of the pigeon eye. Vision Res 11: 1019–1022

    Article  PubMed  CAS  Google Scholar 

  • Mitchell DE (1966) A review of the concept of “Panum’s fusional areas”. Am J Optom Physiol Opt 43: 387

    CAS  Google Scholar 

  • Moroney MK, Pettigrew JD (1987) Some observations on the visual optics of kingfishers (Aves, Coraciformes, Alcedinidae). J Comp Physiol 160: 137–149

    Article  Google Scholar 

  • Mulhearn JT, McFadden SA (1993) Comparison of accommodation during coordinated and independent eye movements in the pigeon. Proc Aust Soc Neurosci 4: 130

    Google Scholar 

  • Nelson JI (1975) Globality and stereoscopic fusion in binocular vision. J Theor Biol 49: 1–88

    Article  PubMed  CAS  Google Scholar 

  • Ogle KN (1950) Disparity limits of stereopsis. Arch Ophthalmol 48: 50

    Article  Google Scholar 

  • Ogle KN (1962) Spatial localisation through binocular vision. In: Davson H (ed) The eye, vol 4. Academic Press, New York, pp 271–320

    Google Scholar 

  • Perisic M, Mihailovic J, Cuenod M (1971) Electrophysiology of contralateral and ipsilateral projections to the Wulst in the pigeon (Columba livia). Int J Neurosci 2: 7–14

    Article  PubMed  CAS  Google Scholar 

  • Pettigrew JD (1979a) Comparison of the retinotopic organisation of the visual Wulst in nocturnal and diurnal raptors, with a note on the evolution of frontal vision. In: Cool SJ, Smith EL (eds) Frontiers of visual science, vol III. Springer, Berlin Heidelberg New York, pp 328–335

    Google Scholar 

  • Pettigrew JD (1979b) Binocular visual processing in the owl’s telencephalon. Proc R Soc Lond B 204: 435–454

    Article  PubMed  CAS  Google Scholar 

  • Pettigrew JD, Konishi M (1976) Neurones selective for orientation and binocular disparity in the visual Wulst of the barn owl (Tyto alba). Science 193: 675–678

    Article  PubMed  CAS  Google Scholar 

  • Poggio GF, Poggio T (1984) The analysis of stereopsis. Annu Rev Neurosci 7: 379–412

    Article  PubMed  CAS  Google Scholar 

  • Powell RW, Smith JC (1968) Critical-flicker-fusion thresholds as a function of very small pulse-to-cycle fractions. Psychol Rec 18: 35–40

    Google Scholar 

  • Ptito A, Zatorre RJ, Larson WL, Tosoni C (1991) Stereopsis after unilateral anterior temporal lobectomy. Brain 114: 1323–1333

    Article  PubMed  Google Scholar 

  • Reymond E (1985) Spatial visual acuity of the eagle Aquila audax: A behavioural, optical and anatomical investigation. Vision Res 25: 1477–1491

    Article  PubMed  CAS  Google Scholar 

  • Richards W (1970) Stereopsis and stereoblindness. Exp Brain Res 10: 380–388

    Article  PubMed  CAS  Google Scholar 

  • Rossel S (1983) Binocular stereopsis in an insect. Nature 302: 821–822

    Article  Google Scholar 

  • Rounsley R, Watson T, McFadden SA (1993) Variation in visual acuity as a function of absolute distance in the frontal field of the pigeon eye. Proc Aust Neurosci Soc 4: 130

    Google Scholar 

  • Shipley T, Rawlings SC (1970) The nonius horopter. I. History and theory. Vision Res 10: 1225

    Article  PubMed  CAS  Google Scholar 

  • Smith RF (1974) Topography of food-reinforced key peck and the source of the 30-millisecond interresponse time. J Exp Anal Behav 21: 541–551

    Article  PubMed  CAS  Google Scholar 

  • Wagner H, Schaeffel F (1991) Barn owls (Tyto alba) use accommodation as a distance cue. J Comp Physiol 169: 515–521

    Google Scholar 

  • Wallman J, Pettigrew JD (1985) Conjugate and disjunctive saccades in two avian species with contrasting oculomotor strategies. J Neurosci 5: 1418–1428

    PubMed  CAS  Google Scholar 

  • Walls GL (1942) The vertebrate eye and its adaptive radiation. Hanfer, New York

    Book  Google Scholar 

  • Westheimer G (1975) Visual acuity and hyperacuity. Invest Ophthalmol Visual Sci 14: 570

    CAS  Google Scholar 

  • Westheimer G (1979) Cooperative neural processes involved in stereoscopic acuity. Exp Brain Res 36: 585–597

    Article  PubMed  CAS  Google Scholar 

  • Wheatstone C (1838) Contributions to the physiology of vision. I. On some remarkable, and hitherto unobserved, phenomena of binocular vision. Philos Trans R Soc Lond 128: 371–394

    Article  Google Scholar 

  • Wilson P (1980) The organisation of the visual hyperstriatum in the domestic chick: Topology and topography of the visual projection. Brain Res 188: 319–332

    Article  PubMed  CAS  Google Scholar 

  • Yazulla S (1974) Intraretinal differentiation in the synaptic organisation of the inner plexiform layer of the pigeon retina. J Comp Neurol 153: 309–324

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McFadden, S.A. (1994). Binocular Depth Perception. In: Davies, M.N.O., Green, P.R. (eds) Perception and Motor Control in Birds. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75869-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75869-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75871-3

  • Online ISBN: 978-3-642-75869-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics