Skip to main content

Radioactive Heat Production in the Continental Crust and Its Depth Dependence

  • Chapter
Terrestrial Heat Flow and the Lithosphere Structure

Part of the book series: Exploration of the Deep Continental Crust ((EXPLORATION))

Abstract

The depth dependence of radioactive heat production in the continental crust was investigated by converting seismic velocity profiles into heat production by means of an experimentally established relationship between heat production (A) and compressional wave velocity (vp). In converting vp to A, the pressure (P) and temperature (T) dependence of wave velocity were considered by an integral approach, based on the P and T dependences of the derivatives: dvp/dP = f(P), dvp/dT = f(T). The data set (one-dimensional vp-profiles as determined by longrange seismic refraction measurements along five geotraverses in Central and Eastern Europe) was subdivided into four subsets, depending on the geologic age and tectonic/heat flow setting.

The data were fitted to three different heat production/depth models: (1) linear, A(z) = Ao(1 — x/D), (2) exponential, A(z) = Ao exp(—x/D), and (3) hyperbolic, A(z) = Ao/(1 + x/D), where x = z — 10 (in km). The uppermost 10 km of the crust with geochemical irregularities and highly variable derivatives was excluded. In processing the data, least squares fitting techniques (iterative conjugate gradient method) and statistical criteria (Fischer test) were applied.

The results disclose models (1) and (3) and point towards model (2) to be best suited for fitting the data. The mean D value for this model amounts to 15–20 km in Precambrian units and to about 10–15 km in the Phanerozoic realm. In the latter, D decreases with increasing surface heat flow. The value of Ao (= heat production at 10 km depth) is 0.5–0.7 μW m − 3 in the Precambrian in contrast to > 1.5 μW m − 3 in Phanerozoic units. D values calculated for individual crustal layers decrease with depth, less pronouncedly in ancient shields than in younger terrains. In general, a positive correlation exists between D values and the crustal thickness (r = 0.96), a negative correlation exists between D and the surface heat flow (r = — 0.87).

In order to generalize these findings the analysis of crustal vp(z) profiles and their conversion to heat production distributions has been extended to a worldwide data set, including 156 additional profiles from Europe, North America, Australia, India and Africa. These results are given in the Appendix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References to Table A1

  1. Bamford D, Nunn K, Prodehl C, Jacob B (1978) LISPB-IV. Crustal structure in northern Britain. Geophys JR Astron Soc 54:43–60.

    Article  Google Scholar 

  2. Berg E (1973) Crustal structure in Alaska. Tectonophysics 20:165–182.

    Article  Google Scholar 

  3. Berry MJ (1973) Structure of the crust and upper mantle in Canada. Tectonophysics 20:183–201.

    Article  Google Scholar 

  4. Berry MJ, Forsyth DA (1975) Structure of the Canadian Cordillera from seismic refraction and other data. Can J Earth Sci 12:182–208.

    Article  Google Scholar 

  5. Bodell JM, Chapman DS (1982) Heat flow in the north-central Colorado Plateau. J Geophys Res 87:2869–2884.

    Article  Google Scholar 

  6. Bodmer P (1982) Beiträge zur Geothermie der Schweiz. PhD Thesis, Inst für Geophysik, ETH, Zürich.

    Google Scholar 

  7. Braile LW, Smith RB, Keller GR, Welch RM, Meyer RP (1974) Crustal structure across the Wasatch Front from detailed seismic refraction studies. J Geophys Res 79:2669–2677.

    Article  Google Scholar 

  8. Bridwell RJ, Potzick C (1981) Thermal regimes, mantle diapirs and crustal stresses of continental rifts. Tectonophysics 73:15–32.

    Article  Google Scholar 

  9. Brott CA, Black well DD, Ziagos JP (1978) Tectonic implications of heat flow in the western Snake River Plain, Idaho, Geol Soc Am Bull 89:1697–1707.

    Article  Google Scholar 

  10. Brott CA, Blackwell DD, Ziagos JP (1981) Thermal and tectonic implications of heat flow in the eastern Snake River Plain, Idaho. J Geophys Res 86:11709–11734.

    Article  Google Scholar 

  11. Brune J, Dorman J (1963) Scismic waves and earth structure in the Canadian shield. Bull Scism Soc Am 53:167–210.

    Google Scholar 

  12. Čermák V (1979) Heat flow map of Europe. In Čermák V, Rybach L (eds) Terrestrial heat flow in Europe. Springer, Berlin Heidelberg New York, pp 3–40.

    Chapter  Google Scholar 

  13. Čermák V, Hurtig E (eds) (1979) Heat flow map of Europe, 1:5,000,000. In: Čermák V, Rybach L (eds) Terrestrial heat flow in Europe. Springer, Berlin Heidelberg New York

    Google Scholar 

  14. Chandra NN, Cumming GL (1972) Scismic refraction studies in western Canada. Can J Earth Sci 9:1099–1109.

    Article  Google Scholar 

  15. Cleary J (1973) Australian crustal structure. Tectonophysics 20:241–248.

    Article  Google Scholar 

  16. Cram IH Jr (1961) A crustal structure refraction survey in south Texas. Geophysics 26:560–573.

    Article  Google Scholar 

  17. Cumming WB, Clowes RM, Ellis RM (1979) Crustal structure from a seismic refraction profile across southern British Columbia. Can J Earth Sci 16:1024–1040.

    Article  Google Scholar 

  18. Decker ER, Baker KR, Bucher GJ, Heasler HP (1980) Preliminary heat flow and radioactivity studies in Wyoming. J Geophys Res 85:311–321.

    Article  Google Scholar 

  19. Dorman J, Lamer Worzel J, Leyden R, Crook TN, Hatziemmanuel M (1972) Crustal section from seismic refraction measurements near Victoria, Texas. Geophysics 37:325–336.

    Article  Google Scholar 

  20. Erickson AJ (1970) Heat flow measurements in the Mediterranean, Black and Red Seas. PhD Thesis, Univ Cambridge Mass Rep 70-5:272 pp.

    Google Scholar 

  21. Eriksson KG, Malmquist D (1979) A review of the past and the present investigations of heat flow in Sweden. In: Čermák V, Rybach L (eds) Terrestrial heat flow in Europe. Springer, Berlin Heidelberg New York, pp 267–277.

    Chapter  Google Scholar 

  22. Evans JR (1982) Compressional wave velocity structure of the upper 350 km under the eastern Snake River Plain near Rexburg, Idaho. J Geophys Res 87:2654–2670.

    Article  Google Scholar 

  23. Finckh P, Ansorge J, Mueller S, Sprecher C, (1984) Deep crustal reflactions from a vibroseis survey in northern Switzerland. Tectonophysics 109:1–14.

    Article  Google Scholar 

  24. Finlayson DM, Collins CDN, Denham D (1980) Crustal structure under the Lachlan fold belt, southeastern Australia. Phys Earth Planet Inter 21:321–342.

    Article  Google Scholar 

  25. Forsyth DA, Berry MJ, Ellis RM (1974) A refraction survey across the Canadian Cordillera at 54°N. Can J Earth Sci 11:533–548.

    Article  Google Scholar 

  26. Forsyth DA, Mair JA (1979) Crustal structure of the central Sverdrup Basin. Can J Earth Sci 16:1581–1598.

    Article  Google Scholar 

  27. Fytikas MD, Kolios NP (1979) Preliminary heat flow map of Greece. In: Čermák V, Rybach L (eds) Terrestrial heat flow in Europe. Springer, Berlin Heidelberg New York, pp 197–205.

    Chapter  Google Scholar 

  28. Gish DM, Keller GR, Sbar ML (1981) A refraction study of deep crustal structure in the basin and range: Colorado Plateau of eastern Arizona. J Geophys Res 86:6029–6038.

    Article  Google Scholar 

  29. Green AG (1978) An upper mantle P-wave velocity model for eastern and southern Africa. Pageoph 116:1262–1273.

    Article  Google Scholar 

  30. Green AG, Hall DH, Stephenson OG (1978) A subcrustal seismic reflection survey over the Aulneau batholith, Kenora region, Ontario. Can J Earth Sci 15:301–315.

    Article  Google Scholar 

  31. Green AG, Anderson NL, Stephenson OG (1979) An expanding spread seismic reflection survey across the Snake Bay — Kakagi Lake greenstone belt, northwestern Ontario. Can J Earth Sci 16:1599–1612.

    Article  Google Scholar 

  32. Green AG, Stephenson OG, Mann GD, Kanasewich ER, Cumming GL, Hajnal Z, Hair JA, West GF (1980) Cooperative seismic surveys across the Superior-Churchill boundary zone in southern Canada. Can J Earth Sci 17:617–632

    Article  Google Scholar 

  33. Greenhalgh SA (1981) Scismic investigations of crustal structure in east-central Minnesota. Phys Earth Planet Inter 25:289–372.

    Article  Google Scholar 

  34. Gregersen S (1970) Surface wave dispersion and crust structure in Greenland. Geophys J R Astron Soc 22:29–39.

    Google Scholar 

  35. Grönlie G, Heier KS, Swanberg CA (1977) Terrestrial heat flow determinations from Norway. Norsk Geologisk Tidskrift 57:153–162.

    Google Scholar 

  36. Gupta ML (1982) Heat flow in the Indian peninsula — its geological and geophysical implications. Tectonophysics 83:71–90.

    Article  Google Scholar 

  37. Haenel R, Grönlie G, Heier KS (1979) Terrestrial heat flow determinations in Norway and an attempted interpretation. In Čermák V, Rybach L (eds) Terrestrial heat flow in Europe. Springer, Berlin Heidelberg New York, pp 232–239.

    Chapter  Google Scholar 

  38. Hajnal Z, Fowler CMR, Mereu RF, Kanasewitch ER, Cumming GL, Green AG, Mair A (1984) An initial analysis of the earth’s crust under the Williston basin: 1979 COCRUST experiment. J Geophys Res 89:9381–9400.

    Article  Google Scholar 

  39. Hales AL, Nation JB (1973) A seismic refraction survey in the northern Rocky Mountains: more evidence for an intermediate crustal layer. Geophys J R Astron Soc 35:381–399.

    Article  Google Scholar 

  40. Hall DH, Hajnal Z (1969) Crustal structure of north-western Ontario: refraction seismology. Can J Earth Sci 6:81–99

    Article  Google Scholar 

  41. Helmberger D, Wiggins RA (1971) Upper mantle structure of midwestern United States. J Geophys Res 76:3229–3245.

    Article  Google Scholar 

  42. Herrmann RB, Fischer GW (1978) Theoretical seismogram constraints on some crustal velocity models in the central United States. Pageoph 116:1250–1261

    Article  Google Scholar 

  43. Holder AP, Bott MHP (1971) Crustal structure in the vicinity of south-west England. Geophys J R Astron Soc 23:465–489.

    Article  Google Scholar 

  44. Ilchenko TV (1984) Skorostnaya model zemnoy kori po profilyu GSZ Vinnica-Manevitchi (Ukrainskiy shchit). Geofiz Zhurnal 6(4): 78–83 (in Russian)

    Google Scholar 

  45. Ilchenko TV (1987) Skorostnaya model zemnoy kori Ukrainskogo shchita vdol’ geotraversa VIII (Reni-Krivoy Rog). Geofiz Zhurnal 9(1):44–51 (in Russian)

    Google Scholar 

  46. Jackson WH, Stewart SW, Pakiser LC (1963) Crustal structure in eastern Colorado from seismic-refraction measurements J Geophys Res 68:5767–5776.

    Google Scholar 

  47. Jessop AM, Hobarth MA, Sclater JG (1976) The world heat flow data collection — 1975. Geothermal Ser No 5, Geothermal Service of Canada, Ottawa, 125 pp.

    Google Scholar 

  48. Jessop AM, Lewis TJ, Judge AS, Taylor AE, Drury MJ (1984) Terrestrial heat flow in Canada. Tectonophysics, 103:239–261.

    Article  Google Scholar 

  49. Jones FW, Majorowicz JA, Lam HL (1985) The variation of heat flow density with depth in the Praries Basin of western Canada. Tectonophysics 121:35–44.

    Article  Google Scholar 

  50. Jordan TH, Frazer NL (1975) Crustal and upper mantle structure from SP-phases. J Geophys Res 80:1504–1518.

    Article  Google Scholar 

  51. Kaila KL, Murty PRK, Rao VK, Kharetchko GE (1981) Crustal structure from deep seismic soundings along the Koyna II (Kelsi-Loni) profile in the Deccan Trap area, India. Tectonophysics 73:365–384.

    Article  Google Scholar 

  52. Kanasewich ER, Hajnal Z, Green AG, Cumming GL, Mereu RF, Clowes RM, Morel-A-L’Huisser P, Chiu S, Macrides CG, Shahriar M (1987) Scismic studies of the crust under the Williston Basin. Can J Earth Sci 24:2160–2171.

    Article  Google Scholar 

  53. Keller GR, Smith RB, Braile LW (1975) Crustal structure along the Great Basin — Colorado Plateau transition from seismic refraction studies. J Geophys Res 80:1093–1098.

    Article  Google Scholar 

  54. Keller GR, Braile LW, Morgan P (1979) Crustal structure, geophysical models and contemporary tectonism of the Colorado plateau. Tectonophysics 61:131–147.

    Article  Google Scholar 

  55. Kryuchenko VA, Polovinkin BV, Tripolskiy AA (1981) Glubinnoye stroyeniye zemnoy kori centralnoy chasti Ukrainskogo shchita po profilyu GSZ Nikolayev-Kanev. Geofiz Zhurnal 3(2): 82–88 (in Russian)

    Google Scholar 

  56. Kutas RI (1978) Polye teplovikh potokov i termicheskaya model’ zemnoy kori. Naukova Dumka, Kiev, 148 pp (in Russian)

    Google Scholar 

  57. Lachenbruch AH, Sass JH (1977) Heat flow in the United States and the thermal regime of the crust. In: Heacock JG, (ed) The Earth’s crust, its nature and physical properties. Geophys Monogr Ser 20. AGU, Washington, DC, pp 626–675.

    Google Scholar 

  58. Landström D, Larson SA, Lind G, Malmqvist D (1980) Geothermal investigations in the Bohus granite area in south-western Sweden. Tectonophysics 64:131–162.

    Article  Google Scholar 

  59. Lewis TJ, Jessop AM, Judge AS (1985) Heat flux measurements in southwestern British Columbia: the thermal consequences of plate tectonics. Can J Earth Sci 22:1262–1273.

    Article  Google Scholar 

  60. Lilley F, Sloane N, Sass JH (1978) Australian heat flow measurements. J Geol Soc Aust 24:439–445.

    Article  Google Scholar 

  61. Lindqvist JG (1984) Heat flow density measurements in the sediments of three lakes in northern Sweden. Tectonophysics 103:121–140.

    Article  Google Scholar 

  62. Lucazeau F, Vasseur G, Bayer R (1984) Interpretation of the heat flow data in the French Massif Central. Tectonophysics 103:99–119.

    Article  Google Scholar 

  63. Majorowicz JA, Jones FW, Jessop AM (1986) Geothermics of the Williston basin in Canada in relation to hydrodynamics and hydrocarbon occurrence. Geophysics 51:767–779.

    Article  Google Scholar 

  64. Makris J (1978) The crust and upper mantle of the Aegean region from deep seismic soundings. Tectonophysics 46:269–284.

    Article  Google Scholar 

  65. Masse RP (1974) Compressional velocity distribution beneath central and eastern North America in the depth range 450–800 km. Geophys J R Astron Soc 36:705–716.

    Article  Google Scholar 

  66. Masse RP, Landisman M, Jenkins JB (1972) An investigation of the upper mantle compressional velocity distribution beneath the Basin and Range Province. Geophys J R Astron Soc 30:19–36.

    Article  Google Scholar 

  67. Masse RP, Alexander SS (1974) Compressional velocity distribution beneath Scandinavia and western Russia. Geophys J R Astron Soc 39:587–602.

    Article  Google Scholar 

  68. Mathur SP (1974) Crustal structure in southwestern Australia from seismic and gravity data. Tectonophysics 24:151–182.

    Article  Google Scholar 

  69. Mereu RF, Majumdar SC, White RE (1977) The structure of the crust and upper mantle under the highest ranges of the Canadian Rockies from a seismic refraction survey. Can J Earth Sci 14:196–208.

    Article  Google Scholar 

  70. Mueller S, Bonjer KP (1973) Average structure of the crust and upper mantle in East Africa. Tectonophysics 20:283–293.

    Article  Google Scholar 

  71. Nolet G, Panza GF, Wortel R (1978) An averaged model of the Adriatic Subplate. Pageoph 116:1284–1298.

    Article  Google Scholar 

  72. Noponen I (1977) The Blue Road geotraverse: the relative residual of the teleseismic P-wave — application to the study of deep structure in Fennoscandia. Geol Foren Stockh Foerh. 99(1), no 568, pp 32–36

    Article  Google Scholar 

  73. Ocola LC, Meyer RP (1973) Central North American Rift System, I. Structure of the axial zone from seismic and gravimetric data. J Geophys Res 78:5173–5194.

    Article  Google Scholar 

  74. Overton A (1970) Scismic refraction surveys, western Queen Elizabeth Islands and Polar continental margin. Can J Earth Sci 7:346–365

    Article  Google Scholar 

  75. Oxburgh ER, Richardson SW, Bloomer JR, Martin A, Wright S (1977) Sub-surface temperatures from heat flow studies in the United Kingdom. Semin Geotherm Energy (Commission of the European Communities) 1:155–173.

    Google Scholar 

  76. Papazachos BC, Comminakis PE (1978) Deep structure and tectonics of the eastern Mediterranean. Tectonophysics 46:285–296.

    Article  Google Scholar 

  77. Parasnis DS (1975) Temperature phenomena and heat flow estimates in two Precambrian ore bearing areas in north Sweden. Geophys J R Astron Soc 43:531–544.

    Article  Google Scholar 

  78. Perrier G, Ruegg JG (1973) Structure profonde du Massif Central francais. Ann Geophys 29:435–502.

    Google Scholar 

  79. Priestley K, Brune JN (1978) Surface waves and the structure of the Great Basin of Nevada and western Utah. J Geophys Res 83:2265–2272.

    Article  Google Scholar 

  80. Priestley K, Brune JN (1982) Shear wave structure of the southern Volcanic Plateau of Oregon and Idaho and the Northern Great Basin of Nevada from surface wave dispersion. J Geophys Res 87:2671–2675.

    Article  Google Scholar 

  81. Prodehl C, Schlittenhardt J, Stewart SW (1984) Crustal structure of the Appalachian highlands in Tennessee. Tectonophysics 109:61-76

    Google Scholar 

  82. Reiter M, Mansure AJ, Shearer (1979) Geothermal characteristics of the Colorado Plateau. Tectonophysics 61:183–195.

    Article  Google Scholar 

  83. Richardson SW, Oxburgh ER (1978) Heat flow, radiogenic heat production and crustal temperatures in England and Wales J Geol Soc London 135:323–337.

    Article  Google Scholar 

  84. Roller JG, Jackson WH (1966) Scismic wave propagation in the upper mantle: Lake Superior, Wisconsin, to Denver, Colorado. In: Smith TJ, Steinhart JS (eds) The Earth beneath the continents. Am Geophys Union Monogr 10:270–275.

    Google Scholar 

  85. Rybach L, Werner D, Mueller S, Berset G (1977) Heat flow, heat production and crustal dynamics in the central Alps, Switzerland. Tectonophysics 41:113–126

    Article  Google Scholar 

  86. Sapin M, Prodehl C (1973) Long range profiles in western Europe, I. Crustal structure between the Bretagne and the Central Massif of France. Ann Geophys 29:127–145

    Google Scholar 

  87. Sellevoll MA (1973) Mohorovicic discontinuity beneath Fennoscandia and adjacent parts of the Norwegian Sea and North Sea. Tectonophysics 20:359–366

    Article  Google Scholar 

  88. Shearer C, Reiter M (1981) Terrestrial heat flow in Arizona. J Geophys Res 86:6249–6260.

    Article  Google Scholar 

  89. Sinno YA, Keller GR, Sbar ML (1981) A crustal seismic refraction study in west-central Arizona. J Geophys Res 86:5023–5038

    Article  Google Scholar 

  90. Smith TJ, Steinhart JS, Aldrich LT (1966) Lake Superior crustal structure. J Geophys Res 71:1141–1172

    Google Scholar 

  91. Smith RB, Schilly MM, Braile LW, Ansorge J, Lehman JL, Baker MR, Prodehl C, Healy JH, Mueller S, Greensfelder RW (1982) The 1978 Yellowstone — eastern Snake River Plain seismic profiling experiment: crustal structure of the Yellowstone region and experiment design. J Geophys Res 87:2583–2596.

    Article  Google Scholar 

  92. Sollogub VB, Guterch A, Prosen D (eds) (1980) Struktura zemony kori i verkhney mantiyi po dannim geofizicheskikh issledovaniyi. Naukova Dumka, Kiev, 208 pp (in Russian).

    Google Scholar 

  93. Sparlin MA (1981) Crustal structure of the eastern Snake River Plain determined from ray-trace modeling of seismic refraction data. MS Thesis, Purdue Univ, W Lafayette, Indiana, 62 pp

    Google Scholar 

  94. Subbotin SI, Sollogub VB, Chekunov AV, Kharechko GE, Lazarenko MA, Ilchenko TV, Kaila KL, Roy K, Chowdhury PR, Reddy PR, Krishna VG, Narain H (1979) Glubinniye seismicheskoie issledovaniya Indiyiskogo shchita. Geofiz Zhurnal 1(1): 3–18 (in Russian)

    Google Scholar 

  95. Swanberg CA, Chessman MS, Simmons G, Smithson SB, Grönlie G, Heier KS (1974) Heat flow — heat generation studies in Norway. Tectonophysics 23:31–48.

    Article  Google Scholar 

  96. Swanberg CA, Morgan P (1978) The linear relation between temperatures based on the silica content of groundwater and regional heat flow: a new heat flow map of the United States. Pageoph 117:227–241.

    Article  Google Scholar 

  97. Tammenagi HY, Wheildon J (1977) Further data on the south-west England heat flow anomaly. Geophys J Astron Soc 49:531–539.

    Article  Google Scholar 

  98. Thompson GA, Zoback ML (1979) Regional geophysics of the Colorado Plateau. Tectonophysics 61:149–181.

    Article  Google Scholar 

  99. Tryggvason E, Quails BR (1967) Scismic refraction measurements of crustal structure in Oklahoma. J Geophys Res 72:3738–3740.

    Article  Google Scholar 

  100. Tryti J, Sellevoll MA (1977) Scismic crustal study of the Oslo rift. Pageoph 115:1061–1085.

    Article  Google Scholar 

  101. Warren DH, Healy JH, Jackson WH (1966) Crustal seismic measurements in southern Mississippi. J Geophys Res 71:3437–3458.

    Google Scholar 

  102. Warren DH, Healy JH, Bohn J, Marshall PA (1972) Crustal calibration of the Large Aperture Seismic Array (LASA), Montana. US Geol Surv Open File Rep 1671:163 pp

    Google Scholar 

References

  • Birch F, Roy RF, Decker ER (1968) Heat flow and thermal history in New York and New England. In: White WS, Haddley JB, Thompson JB Jr, Zen E-an (eds) Studies of Appalachian geology: northern and maritime. Wiley, New York, pp 437–451.

    Google Scholar 

  • Bodmer P, Rybach L (1985) Heat flow maps and deep groundwater circulation: examples from Switzerland. J Geodyn 4:233–245.

    Article  Google Scholar 

  • Borevski LV, Vartanayan GS, Kulikov TV (1984) Gidro-geologichesiky ocherk. In: Kozlovsky EA (ed) Kolskaya Sverkhglubokaya. Nedra, Moscow, pp 240–254 (in Russian).

    Google Scholar 

  • Buntebarth G (1982) Density and seismic velocity in relation to mineralogical constitution based on an ionic model for minerals. Earth Planet Sci Lett 57:358–366.

    Article  Google Scholar 

  • Čermák V (1979) Heat flow map of Europe. In: Čermák V, Rybach L (eds) Terrestrial heat flow in Europe. Springer, Berlin Heidelberg New York, pp 3–40.

    Chapter  Google Scholar 

  • Čermák V (1982) Crustal temperature and mantle heat flow in Europe. Tectonophysics 83:123–142.

    Article  Google Scholar 

  • Čermák V (1989) Crustal heat production and mantle heat flow in Central and Eastern Europe. Tectonophysics 159:195–215.

    Article  Google Scholar 

  • Čermák V, Bodri L (1986) Two-dimensional temperature modelling along five East European geotraverses. J Geodyn 5:133–163.

    Article  Google Scholar 

  • Čermák V, Bodri L (1988) On the distribution of radiogenic heat producing elements and the derived geothermal model of the continental crust. In: Proceedings. Int Symp Geothermal Energy, Kumamoto/Beppu, Nov. 10–14, 1988, pp 326-329.

    Google Scholar 

  • Čermák V, Rybach L (1989) Vertical distribution of heat production in the continental crust. Tectonophysics 159:217–230.

    Article  Google Scholar 

  • Čermák V, Šafanda J, Guterch A (1989) Deep temperature distribution along three profiles crossing the Teisseyre-Tornquist tectonic zone in Poland. Tectonophysics 164:151–163.

    Article  Google Scholar 

  • Costain JL (1978) A new model for the linear relationship between heat flow and heat generation. EOS, Trans Am Geophys Union 59:392.

    Google Scholar 

  • Drury MJ (1987) Heat flow provinces reconsidered. Phys Earth Planet Inter 49:78–96.

    Article  Google Scholar 

  • Fielitz K (1976) Compressional and shear wave velocities as a function of temperature in rocks at high pressure. In: Giese P, Prodehl C, Stein A (eds) Explosion seismology in Central Europe. Springer, Berlin Heidelberg New York, pp 40–44.

    Chapter  Google Scholar 

  • Fletcher R, Reeves CM (1964) Function minimization by conjugate gradients. Comp J 7:149–154.

    Article  Google Scholar 

  • Gebrande H (1982) Elastic wave velocities and constants of elasticity of rocks at room temperature and pressure up to 1 GPa. In: Angenheister G (ed) Landolt—Börnstein New Series, Vol Vlb. Physical properties of rocks. Springer, Berlin Heidelberg New York, pp 35–99.

    Google Scholar 

  • Gosnold WD, Swanberg CA (1980) A new model for the distribution of crustal heat sources. EOS, Trans Am Geophys Union 61:387.

    Google Scholar 

  • Haack U (1982) Radioactive isotopes in rocks. In: Angenheister G (ed) Landolt—Börnstein New Series, Vol Vlb. Physical properties of rocks. Springer, Berlin Heidelberg New York, pp 433–560.

    Google Scholar 

  • Horváth F, Bodri L, Ottlik P (1979) Geothermics of Hungary and the tectonophysics of the Pannonian “Red Spot”. In: Čerrnák V, Rybach L (eds) Terrestrial heat flow in Europe. Springer, Berlin Heidelberg New York, pp 206–217.

    Chapter  Google Scholar 

  • Jaupart C, Sclater JG, Simmons G (1981) Heat flow studies: constraints on the distribution of uranium, thorium and potassium in the continental crust. Earth Planet Sci Lett 52:328–344.

    Article  Google Scholar 

  • Kern H (1982) Elastic wave velocities and constants of elasticity of rocks at elevated pressures and temperatures. In: Angenheister G (Ed) Landolt-Bönstein New Series, Vol. Vlb, Physical properties of rocks. Springer, Berlin Heidelberg New York, pp 99–140.

    Google Scholar 

  • Lachenbruch AH (1968) Preliminary geothermal model of the Sierra Nevada. J. Geophys Res, 73:6977–6989.

    Article  Google Scholar 

  • Lachenbruch AH (1970) Crustal temperature and heat production: implication of the linear heat flow relations. J Geophys Res 75:3291–3300.

    Article  Google Scholar 

  • Lachenbruch AH, Bunker CM (1971) Vertical gradients of heat production in the continental crust II. Some estimates from borehole data. J Geophys Res 76:3852–3860.

    Article  Google Scholar 

  • Maj S (1987) A parabolic relation between the surface heat flow and radiogenic heat production for heat flow provinces. Publ Inst Geophys Pol Acad Sci A-18(204): 59.

    Google Scholar 

  • Majorowicz J (1975) Strumien cieplny na obsarze nizu Polski Acta Geophys Pol 23:259–275.

    Google Scholar 

  • Morgan P, Sass JH (1984) Thermal regime of the continental lithosphere. J Geodynamics 1:143–166.

    Article  Google Scholar 

  • Nicolaysen LO, Hart RJ, Gale NH (1981) The Vredefort radioelement profile extended to supracrustal strata at Carletonville, with applications for continental heat flow. J Geophys Res 86:10653–10661.

    Article  Google Scholar 

  • Pollack HN, Chapman DS (1977) Mantle heat flow. Earth Planet Sci Lett 34:174–184.

    Article  Google Scholar 

  • Roy RF, Blackwell DD, Birch F (1968) Heat generation of plutonic rocks and continental heat flow provinces. Earth Planet Sci Lett 5:1–12.

    Article  Google Scholar 

  • Roy, RF, Blackwell DD, Decker ER (1972) Continental heat flow. In: Robertson EC (Ed) The nature of the solid Earth. McGraw-Hill, New york, pp 506–543.

    Google Scholar 

  • Rybach L (1973) Wärmeproduktionbestimmungen an Gesteinen der Schweizer Alpen. Beitr Geol Schweiz Geotechn Ser, Kümmerly & Frey, Bern 51:43.

    Google Scholar 

  • Rybach L (1987) A petrological model of the lower continental crust, derived from seismic velocities and from radioactive heat production. Ann Geophys 5B(4):403–408.

    Google Scholar 

  • Rybach L, Buntenarth G (1982) Relationship between the petrophysical properties, density, seismic velocity, heat generation and mineralogical constitution. Earth Planet Sci Lett 57:367–376.

    Article  Google Scholar 

  • Rybach L, Buntebarth G (1984) The variation of heat generation, density and seismic velocity with rock type in the continental lithosphere. Tectonophysics 103:335–344.

    Article  Google Scholar 

  • Rybach L, Cermak V (1987) The depth dependence of heat production in the continental lithosphere, derived from seismic velocities. Geophys Res Lett 14:311–313.

    Article  Google Scholar 

  • Singh RN (1981) On the application of the Pontryagin’s maximum principle for identification of the radiogenic heat distribution in the earth’s interior Int J Engng Sci 19:1601–1604.

    Article  Google Scholar 

  • Singh RN, Negi JG (1980) A variational approach to model of depth dependence of radiogenic heat in the crust. Geophys Res Lett 7:209–210.

    Article  Google Scholar 

  • Sollogub VB, Guterch A, Prosen D (Eds) (1978) Stroyeniye zemnoy kori i verkhney mantiyi Centralnoy i Vostochnoy Evropi. Naukova Dumka, Kiev, 272 pp (in Russian).

    Google Scholar 

  • Sollogub VB, Guterch A and Prosen D (Eds) (1980) Struktura zemnoy kori i verkhney mantiyi po dannim geofizicheskikh issledovaniyi. Naukova Dumka, Kiev, 208 pp (in Russian).

    Google Scholar 

  • Swanberg CA (1972) Vertical distribution of heat generation in the Idaho batholith. J Geophys Res 77:2508–2513.

    Article  Google Scholar 

  • Theilen F, Meissner R (1979) A comparison of crustal and upper mantle features in Fennoscandia and the Rhenish shield, two areas of recent uplift. Tectonophysics 61:227–242.

    Article  Google Scholar 

  • Vitorello I, Pollack HN (1980) On the variation of continental heat flow with age and the thermal evolution of the continents. J Geophys Res 85:983–995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Čermák, V., Bodri, L., Rybach, L. (1991). Radioactive Heat Production in the Continental Crust and Its Depth Dependence. In: Čermák, V., Rybach, L. (eds) Terrestrial Heat Flow and the Lithosphere Structure. Exploration of the Deep Continental Crust. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75582-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75582-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75584-2

  • Online ISBN: 978-3-642-75582-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics