Skip to main content

Biochemical Characterization of Cellular Hormone Receptors

  • Chapter
Cell Receptors

Part of the book series: Current Topics in Pathology ((CT PATHOLOGY,volume 83))

Abstract

A large variety of cellular functions and physiological events are modulated or controlled by hormones and neurotransmitters. The cellular receptors for these molecules can be divided into two general categories: (a) cell surface receptors for peptides, growth factors, and neurotransmitters that are linked to secondary events (some of which are still unknown) (Kahn 1989), and (b) receptors for steroids, dihydrocholecalciferol, and thyroid hormones ultimately allowing interaction with specific DNA sequences and regulation of gene expression (Baulieu and Mester 1989). Modifications in hormone receptors and/or their secondary events have been implicated in a steadily growing number of pathophysiological disorders, thus making detailed knowledge of their primary structure and their functional properties increasingly important. Recent advances in receptor research have led to the isolation, cloning, and expression of multiple receptor proteins, and the subsequent dissection of functionally important domains through site-directed mutagenesis and site-specific monoclonal antibodies (Kris et al. 1985; Strader et al. 1988; Okamura et al. 1989; Cunningham et al. 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abou-Samra AB, Jueppner H, Westerberg D, Potts, JT Jr, Segre GV (1989) Parathyroid hormone causes translocation of protein kinase-C from cytosol to membranes in rat osteosarcoma cells. Endocrinology 124:1107–1113

    Article  PubMed  CAS  Google Scholar 

  • Ashkenazi A, Peralta EG, Winslow JW, Ramachanran J, Capon DJ (1989) Functionally distinct G proteins selectively couple different receptors to PI hydrolysis in the same cell. Cell 56:487–493

    Article  PubMed  CAS  Google Scholar 

  • Baulieu EE, Mester J (1989) Steroid hormone receptors. In: DeGroot LJ (ed) Endocrinology, vol 1, 2nd edn. W. B. Saunders, Philadelphia, pp 16–39

    Google Scholar 

  • Benovic JL, Mayor F Jr, Somers RL, Caron MG, Lefkowitz RJ (1986) Light-dependent phosphorylation of rhodopsin by β-adrenergic receptor kinase. Nature 321:869–872

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ (1987) Inositol trisphosphate and diacylglycerol: two interacting second messengers. Ann Rev Biochem 56:159–193

    Article  PubMed  CAS  Google Scholar 

  • Bonner TI, Buckley NJ, Young AC, Brann MR (1987) Identification of a family of muscarinic acetylcholine receptor genes. Science 237:527–532

    Article  PubMed  CAS  Google Scholar 

  • Boutin JM, Jolicoeur C, Okamura H et al. (1988) Cloning and expression of the rat prolactin receptor, a member of the growth hormone/prolactin receptor family. Cell 53:69–77

    Article  PubMed  CAS  Google Scholar 

  • Caulfield MP, Nutt RF, Levy JJ et al. (1989) Removal of partial agonism from 7-to-34 parathyroid hormone-related peptide (PTHrP) by substitution with amino acids from the parathyroid hormone sequence. J Bone Miner Res 4 (Suppl 1):896

    Google Scholar 

  • Changeux JP, Giraudat J, Dennis M (1987) The nicotinic acetylcholine receptor: molecular architecture of a ligand-regulated ion channel. TIPS 8:459–465

    CAS  Google Scholar 

  • Chinkers M, Garbers DL (1989) The protein kinase domain of the ANP receptor is required for signaling. Science 245:1392–1394

    Article  PubMed  CAS  Google Scholar 

  • Chinkers M, Garbers DL, Chang MS, Lowe DG, Chin H, Goeddel DV, Schulz S (1989) A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature 338:78–83

    Article  PubMed  CAS  Google Scholar 

  • Civitelli R, Martin TJ, Fausto A, Gunsten SL, Hruska KA, Avioli LV (1989) Parathyroid hormone-related peptide transiently increases cytosolic calcium in osteoblast-like cells: comparison with parathyroid hormone. Endocrinology 125:1204–1210

    Article  PubMed  CAS  Google Scholar 

  • Cockroft S (1987) Phosphoinositide phosphodiesterase: regulation by a novel guanine nucleotide binding protein, Gp. Trends Pharmacol Sci 12:75–78

    Google Scholar 

  • Cole JA, Eber SL, Poelling RE, Thorne PK, Forte LR (1987) A dual mechanism for regulation of kidney phosphate transport by parathyroid hormone. Am J Physiol 253:E221–E227

    PubMed  CAS  Google Scholar 

  • Cunningham BC, Jhurani P, Ng P, Wells JA (1989) Receptor and antibody epitopes in human growth hormone identified by homolog-scanning mutagenesis. Science 243:1330–1336

    Article  PubMed  CAS  Google Scholar 

  • Demay M, Mitchell J, Goltzman D (1985) Comparison of renal and osseous binding of parathyroid hormone and hormonal fragments. Am J Physiol 249:E437–E446

    PubMed  CAS  Google Scholar 

  • Dixon RA, Kobilka BK, Strader DJ et al. (1986) Cloning of the gene and cDNA for mammalian β-adrenergic receptor and homology with rhodopsin. Nature 321:75–79

    Article  PubMed  CAS  Google Scholar 

  • Ebina Y, Ellis L, Jarnagin K et al. (1985) The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signalling. Cell 40:747–758

    Article  PubMed  CAS  Google Scholar 

  • Gilman AG (1984) G proteins and dual control of adenylate cyclase. Cell 36:577–579

    Article  PubMed  CAS  Google Scholar 

  • Gilman AG (1987) G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56:615–649

    Article  PubMed  CAS  Google Scholar 

  • Goldman ME, McKee RL, Caulfield MP et al. (1988) A new highly potent parathyroid hormone antagonist: [D-Trp12, Tyr34]bPTH-(7–34)NH2. Endocrinology 123:2597–2599

    Article  PubMed  CAS  Google Scholar 

  • Grunwald GB, Gierschik P, Nirenberg M, Spiegel A (1986) Detection of α-transducin in retinal rods but not cones. Science 231:856–859

    Article  PubMed  CAS  Google Scholar 

  • Helwig JJ, Yang MCM, Bollack C, Judges C, Pang PKT (1987) Structure-activity relationship of parathyroid hormone: relative sensitivity of rabbit renal microvessel and tubule adenylate cyclases to oxidized PTH and PTH inhibitors. Europ J Pharmacol 140:247–257

    Article  CAS  Google Scholar 

  • Hermann-Erleé MPM, Heersche JNM, Hekkelman JW, Gaillard PJ, Tregear GW, Parsons JA, Potts JT Jr (1976) Effects on bone in vitro of bovine parathyroid hormone and synthetic fragments representing residues 1–34, 2–34 and 3–34. Endocr Res Commun 3:21–35

    Article  Google Scholar 

  • Horiuchi N, Holick MF, Potts JT Jr, Rosenblatt M (1983) A parathyroid hormone inhibitor in vivo: design and biological evaluation of an analogue. Science 220:1053–1055

    Article  PubMed  CAS  Google Scholar 

  • Julius D, MacDermott AB, Axel R, Jessell TM (1988) Molecular characterization of a functional cDNA encoding the serotonin 1c receptor. Science 241:558–564

    Article  PubMed  CAS  Google Scholar 

  • Jüppner H, Abou-Samra AB, Uneno S, Gu WX, Potts JT Jr, Segre GV (1988) The parathyroid hormone-like peptide associated with humoral hypercalcemia of malignancy and parathyroid hormone bind to the same receptor on the plasma membrane of ROS 17/2.8 cells. J Biol Chem 263:8557–8560

    PubMed  Google Scholar 

  • Jüppner H (1989) Parathyroid hormone: biological activity of synthetic and endogenous peptide fragments. In: Martinez J (ed) Peptide hormones as prohormones: processing, biological activity, pharmacology. Ellis Horwood, Chichester, England, pp 325–354

    Google Scholar 

  • Jüppner H, Abou-Samra AB, Uneno S, Keutmann HT, Potts JT Jr, Segre GV (1989) Preparation and characterization of [N α-(4-Azido-2-nitrophenyl)Ala1,Tyr36]-parathyroid hormone related peptide (1–36) amide: a high-affinity, partial agonist having high cross-linking efficiency with its receptor on ROS 17/2.8 cells. Biochemistry (in press)

    Google Scholar 

  • Kahn CR (1976) Membrane receptors for hormones and neurotransmitters. J Cell Biol 70:261–286

    Article  PubMed  CAS  Google Scholar 

  • Kahn CR (1989) Membrane receptors for peptide hormones. In: DeGroot LJ (ed) Endocrinology, vol 1, 2nd edition, W. B. Saunders, Philadelphia, pp 40–57

    Google Scholar 

  • Katoh M, Raguet S, Zachwieja J, Djiane J, Kelly PA (1987) Hepatic prolactin receptors in the rat: characterization using monoclonal antireceptor antibodies. Endocrinology 120:739–749

    Article  PubMed  CAS  Google Scholar 

  • Khosla S, Demay M, Pines M, Hurwitz S, Potts JT Jr, Kronenberg HM (1988) Nucleotide sequence of cloned cDNAs encoding chicken preproparathyroid hormone. J Bone Miner Res 3:689–698

    Article  PubMed  CAS  Google Scholar 

  • Kobilka BK, Matsui H, Kobilka TS et al. (1987 a) Cloning, sequencing, and expression of the gene coding for the human platelet α2-adrenergic receptor. Science 238:650–656

    Article  PubMed  CAS  Google Scholar 

  • Kobilka BK, Frielle T, Collins S et al. (1987 b) An intronless gene encoding a potential member of the family of receptors coupled to guanine nucleotide regulatory proteins. Nature 329:75–79

    Article  PubMed  CAS  Google Scholar 

  • Kris RM, Lax I, Gullick W, Waterfield MD, Ullrich A, Fridkin M, Schlessinger J (1985) Antibodies against a synthetic peptide as a probe for the kinase activity of the avian EGF receptor and v-erbB protein. Cell 40:619–625

    Article  PubMed  CAS  Google Scholar 

  • Krupinski J, Coussen F, Bakalyar HA et al. (1989) Adenylyl cyclase amino acid sequence: possible channel- or transporter-like structure. Science 244:1558–1564

    Article  PubMed  CAS  Google Scholar 

  • Kuno T, Andresen J, Kamisaki Y et al. (1986) Co-purification of an atrial natriuretic factor receptor and particulate guanylate cyclase from rat lung. J Biol Chem 261:5817–5823

    PubMed  CAS  Google Scholar 

  • Lefkowitz RJ, Roth J, Pricer W, Pastan I (1970) ACTH receptors in the adrenal: specific binding of ACTH-125I and the relation to adenyl cyclase. Proc Natl Acad Sci USA 65:745–752

    Article  PubMed  CAS  Google Scholar 

  • Lerea CL, Somer DE, Hurley JB, Klock IB, Bunt-Milan AH (1986) Identification of specific transducin alpha subunits in retinal rod and cone photoreceptors. Science 234:77–80

    Article  PubMed  CAS  Google Scholar 

  • Leung DW, Spencer SA, Cachianes G et al. (1987) Growth hormone receptor and serum binding protein: purification, cloning and expression. Nature 330:537–543

    Article  PubMed  CAS  Google Scholar 

  • Libert F, Parmentier M, Lefort A et al. (1989) Selective amplification and cloning of four new members of the G protein-coupled receptor family. Science 244:569–572

    Article  PubMed  CAS  Google Scholar 

  • Lochrie MA, Hurley JB, Simon MI (1985) Sequence of the alpha subunit of photoreceptor G protein: homologies between transducin, ras, and elongation factors. Science 228:96–99

    Article  PubMed  CAS  Google Scholar 

  • Löwik CW, van Leeuwen JP, van der Meer JM, van Zeeland JK, Scheven BA, Herrmann-Erleé MPM (1985) A two receptor model for the action of parathyroid hormone on osteoblasts: a role for intracellular free calcium and cAMP. Cell Calcium 6:311–326

    Article  PubMed  Google Scholar 

  • Martin KJ, McConkey CL, Garcia JC, Montani D, Betts CR (1989) Protein kinase-A and the effects of parathyroid hormone on phosphate uptake in opossum kidney cells. Endocrinology 125:295–301

    Article  PubMed  CAS  Google Scholar 

  • Masu Y, Nakayama K, Tamaki H, Harada Y, Kuno M, Nakanishi S (1987) cDNA cloning of bovine substance-K receptor through oocyte expression system. Nature 329:836–838

    Article  PubMed  CAS  Google Scholar 

  • McFarland KC, Sprengel R, Phillips H et al. (1989) Lutropin-choriogonadotropin receptor: an unusual member of the G protein-coupled receptor family. Science 245:494–499

    Article  PubMed  CAS  Google Scholar 

  • Mcintosh CHS, Hesch RD (1975) Labelled antibody membrane assay for parathyroid hormone: a new approach to the measurement of receptor bound hormone. Biochem Biophys Res Comm 64:376–383

    Article  PubMed  CAS  Google Scholar 

  • McKee MD, Murray TM (1985) Binding of intact parathyroid hormone to chicken renal membranes: evidence for a second binding site with carboxyl-terminal specificity. Endocrinology 117:1930–1939

    Article  PubMed  CAS  Google Scholar 

  • Mittel CK, Murad F (1982) Guanylate cyclase: regulation of cyclic GMP metabolism. In: Nathason JA, Kebabian JW (eds) Handbook of experimental pharmacology, vol 58(1). Springer, Berlin Heidelberg New York, pp 225–260

    Google Scholar 

  • Murad F (1986) Cyclic guanosine monophosphate as a mediator of vasodilation. J Clin Invest 78:1–5

    Article  PubMed  CAS  Google Scholar 

  • Murray TM, Rao LG, Muzaffar SA, Ly H (1989) Human parathyroid hormone carboxylterminal peptide (53–84) stimulates alkaline phosphatase activity in dexamethasone-treated rat osteosarcoma cells in vitro. Endocrinology 124:1097–1099

    Article  PubMed  CAS  Google Scholar 

  • Nussbaum SR, Rosenblatt M, Potts JT Jr (1980) Parathyroid hormone: renal receptor interactions. Demonstration of two receptor-binding domains. J Biol Chem 255:10183–10187

    PubMed  CAS  Google Scholar 

  • Okamura H, Zachwieja J, Raguet S, Kelly PA (1989) Characterization and application of monoclonal antibodies to the prolactin receptor. Endocrinology 124:2499–2508

    Article  PubMed  CAS  Google Scholar 

  • Pang PKT, Yang MCM, Tenner TE, Chang JK, Shimizu M (1981) Hypotensive action of synthetic fragments of parathyroid hormone. J Pharmacol Exp Ther 216:567–571

    PubMed  CAS  Google Scholar 

  • Paul AK, Marala RB, Jaiswal RK, Sharma RK (1987) Coexistence of guanylate cyclase and atrial natriuretic factor receptor in a 180-kD protein. Science 235:1224–1226

    Article  PubMed  CAS  Google Scholar 

  • Pilch PF, Czech MP (1984) Affinity cross-linking of peptide hormones and their receptors. In: Venter JC, Harrison LC (eds) Membranes, detergents, and receptor solubilization. Alan R. Liss, New York, pp 161–175

    Google Scholar 

  • Rall TW, Sutherland EW, Berthet J (1957) The relationship of epinephrine and glucagon to liver Phosphorylase. J Biol Chem 224:463–475

    PubMed  CAS  Google Scholar 

  • Ramachandran J, Ullrich A (1987) Hormonal regulation of protein tyrosine kinase activity. Trends Pharmol Sci 8:28–31

    Article  CAS  Google Scholar 

  • Rao LG, Murray TM (1985) Binding of intact parathyroid hormone to rat osteosarcoma cells: major contribution of binding sites for the carboxyl-terminal region of the hormone. Endocrinology 117:1632–1638

    Article  PubMed  CAS  Google Scholar 

  • Rosenblatt M, Goltzman D, Keutmann HT, Tregear GW, Potts JT Jr (1976) Chemical and biological properties of synthetic, sulfur-free analogues of parathyroid hormone. J Biol Chem 251:159–164

    PubMed  CAS  Google Scholar 

  • Ruoho AE, Rashidbaigi A, Roeder PE (1984) Approaches to the identification of receptors utilizing photoaffinity labeling. In: Venter JC, Harrison LC (eds) Membranes, detergents, and receptor solubilization. Alan R. Liss, New York, pp 119–160

    Google Scholar 

  • Sakaguchi K, Fukase M, Kobayashi I et al. (1987) Synthetic parathyroid hormone fragments shortened at the amino-terminus stimulate glucose-6-phosphate dehydrogenase activity in the distal renal tubule. J Bone Miner Res 2:83–90

    Article  PubMed  CAS  Google Scholar 

  • Schimerlik MI (1989) Structure and regulation of muscarinic receptors. Annu Rev Physiol 51:217 – 227

    Article  PubMed  CAS  Google Scholar 

  • Schlüter KD, Hellstern H, Wingender E, Mayer H (1989) The central part of parathyroid hormone stimulates thymidine incorporation of chondrocytes. J Biol Chem 264:11087–11092

    PubMed  Google Scholar 

  • Segre GV, Rosenblatt M, Reiner BL, Mahaffey JE, Potts JT Jr (1979) Characterization of parathyroid hormone receptors in canine renal cortical plasma membranes using a radioiodinated sulfur-free hormone analogue. J Biol Chem 254:6980–6986

    PubMed  CAS  Google Scholar 

  • Segre GV, Rosenblatt M, Tully GL, Laugharn J, Reit B, Potts JT Jr (1985) Evaluation of an in vitro parathyroid hormone antagonist in vivo in dogs. Endocrinology 116:1024–1029

    Article  PubMed  CAS  Google Scholar 

  • Shigeno C, Hiraki Y, Westerberg DP, Potts JT Jr, Segre GV (1988 a) Photoaffinity labeling of parathyroid hormone receptors in clonal rat osteosarcoma cells. J Biol Chem 263:3864–3871

    PubMed  CAS  Google Scholar 

  • Shigeno C, Hiraki Y, Westerberg DP, Potts JT Jr, Segre GV (1988 b) Parathyroid hormone receptors are plasma membrane glycoproteins with asparagine-linked oligosaccharides. J Biol Chem 263:3872–3878

    PubMed  CAS  Google Scholar 

  • Shigeno C, Hiraki Y, Keutmann HT, Stern AM, Potts JT Jr, Segre GV (1989) Preparation of a photoreactive analog of parathyroid hormone [Nle8, Lys(N-ε-4-azido-2-nitrophenyl)13, Nle18, Tyr34] bovine parathyroid hormone (1–34)NH2, a selective, high-affinity ligand for characterization of parathyroid hormone receptors. Anal Biochem 179:268–273

    Article  PubMed  CAS  Google Scholar 

  • Sibley DR, Benovic JL, Caron MG, Lefkowitz RJ (1988) Phosphorylation of cell surface receptors: a mechanism for regulating signal transduction pathways. Endocr Rev 9:38–56

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Lowe DG, Thorpe DS et al. (1988) Membrane guanylate cyclase is a cell surface receptor with homology to protein kinases. Nature 334:708–712

    Article  PubMed  CAS  Google Scholar 

  • Steinbach JH (1989) Structural and functional diversity in vertebrate skeletal muscle nicotinic acetylcholine receptors. Annu Rev Physiol 51:353–365

    Article  PubMed  CAS  Google Scholar 

  • Stern PH, Stewart PJ, Stathopoulus V, Rappaport MS (1988) Parathyroid hormone and phosphatidylinositol. Proceedings of the First International Conference on New Actions of Parathyroid Hormone 1987. Kobe, Japan, pp 17–21

    Google Scholar 

  • Strader CD, Sigal IS, Candelore MR, Rands E, Hill WS, Dixon RA (1988) Conserved aspartic acid residues 79 and 113 of the beta-adrenergic receptor have different roles in receptor function. J Biol Chem 263:10267–10271

    PubMed  CAS  Google Scholar 

  • Sweet F, Murdock GL (1987) Affinity labeling of hormone-specific proteins. Endocr Rev 8:154–184

    Article  PubMed  CAS  Google Scholar 

  • Takayanagi R, Inagami T, Snajdar RM, Imada T, Tamura M, Misono KS (1987) Two distinct forms of receptors for atrial natriuretic factor in bovine adrenocortical cells. J Biol Chem 262:12104–12113

    PubMed  CAS  Google Scholar 

  • Ullrich A, Coussens L, Hayflick JS et al. (1984) Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 309:418–425

    Article  PubMed  CAS  Google Scholar 

  • Ullrich A, Bell JR, Chen EY et al. (1985) Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 313:756–761

    Article  PubMed  CAS  Google Scholar 

  • Ullrich A, Gray A, Tam AW et al. (1986) Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J 5:2503–2512

    PubMed  CAS  Google Scholar 

  • Yamada H, Tsutsumi M, Fukase M et al. (1989) Effects of human PTH-related peptide and human PTH on cyclic AMP production and cytosolic free calcium in an osteoblastic cell clone. Bone Mineral 6:45–54

    Article  CAS  Google Scholar 

  • Yamaguchi DT, Hahn TJ, Iida-Klein A, Kleeman CR, Muallem S (1987) Parathyroid hormone-activated calcium channels in an osteoblast-like clonal osteosarcoma cell line. J Biol Chem 262:7711–7718

    PubMed  CAS  Google Scholar 

  • Yamamoto I, Shigeno C, Potts JT Jr, Segre GV (1988) Characterization and agonist-induced down-regulation of parathyroid hormone receptors in clonal rat osteosarcoma cells. Endocrinology 122:1208–1217

    Article  PubMed  CAS  Google Scholar 

  • Yarden Y, Escobedo JA, Kuang WJ et al. (1986) Structure of the receptor for platelet-derived growth factor helps define a family of closely related growth factor receptors. Nature 323:226–232

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jüppner, H., Hesch, R.D. (1991). Biochemical Characterization of Cellular Hormone Receptors. In: Seifert, G. (eds) Cell Receptors. Current Topics in Pathology, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75515-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75515-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75517-0

  • Online ISBN: 978-3-642-75515-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics