Skip to main content

Primary Damage and Fixation of Chromosomal DNA as Probed by Monochromatic Soft X-rays and Low-Energy Neutrons

  • Conference paper
The Early Effects of Radiation on DNA

Part of the book series: NATO ASI Series ((ASIH,volume 54))

Abstract

Chromosome structural rearrangements constitute an important genetic alteration in cells exposed to ionizing radiations. Moreover, in some instances, the chromosome rearrangement itself or mechanism involved has been unequivocally demonstrated to be a critical event leading to cell death, induction of mutation, and malignant transformation (e.g., Joshi et al. 1982, Cox and Masson 1978, Kodama and Sasaki 1987). As is the case in the lower eukaryotic cell system, there is also evidence suggesting that DNA double strand breaks are the integral component of the primary lesions responsible for the induction of chromosome aberrations and cell death in mammalian cells (Obe et al. 1982, Natarajan and Obe 1984, Bryant 1984, 1985). However, the primary process of damage fixation as a pathway to the expression of radiation injury is still a matter of considerable debate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aghamohammadi SZ, Goodhead DT, Savage JRK (1989) Production of chromosome aberrations, micronuclei, and sister-chromatid exchanges by 24-keV epithermal neutrons in human GO lymphocytes. Mutation Res 211:225–230.

    Article  PubMed  CAS  Google Scholar 

  • Bryant PE (1984) Enzymatic restriction of mammalian cell DNA using PvuII and BamHl: Evidence for the double strand break origin of chromosomal aberrations. Int J Radiat Biol 46:57–65.

    Article  CAS  Google Scholar 

  • Bryant PE (1985) Enzymatic restriction of mammalian cell DNA: Evidence for the double strand breaks as potentially lethal lesions. Int J Radiat Biol 48:55–60.

    Article  CAS  Google Scholar 

  • Chadwick KH, Leehouts HP (1978) The rejoining of DNA double-strand breaks and a model for the formation of chromosomal rearrangements. Int J Radiat Biol 33:517–529.

    Article  CAS  Google Scholar 

  • Cole A (1969) Absorption of 20-eV to 50,000-eV electron beams in air and plastic Radiation Res 38:7–33.

    Article  PubMed  CAS  Google Scholar 

  • Comming DE (1980) Arrangement of chromatin in the nucleus. Hum Genet 53: 131–143.

    Google Scholar 

  • Cox R, Masson WK (1978) Do radiation-induced thioguanine-resistant mutants of cultured mammalian cells arise by HGPRT gene mutation or X-chromosome rearrangement? Nature 276:629–630.

    Article  PubMed  CAS  Google Scholar 

  • Cox R, Thacker J, Goodhead DT (1977) Inactivation and mutation of cultured mammalian cells by aluminium characteristic ultrasoft X-rays and radiations of different LET. Int J Radiat Biol 31:561–576.

    Article  CAS  Google Scholar 

  • Cunningham RP, Shibata T, DasGupta C, Radding CM (1979) Single strands induce recA protein to unwind duplex DNA for homologous pairing. Nature 281:191–195.

    Article  PubMed  CAS  Google Scholar 

  • DasGupta C, Wu AM, Kahn R, Cunningham RP, Radding CM (1981) Concerted strand exchange and formation of Holliday structure by E. coli RecA protein. Cell 25:507–516.

    Article  PubMed  CAS  Google Scholar 

  • Edwards AA, Lloyd DC, Purrott RJ (1979) Radiation induced chromosome aberrations and the Poisson distribution. Rad Environ Biophys 16:89–100.

    Article  CAS  Google Scholar 

  • Edwards AA, Purrott RJ, Prosser JS, Lloyd DC (1980) The induction of chromosome aberrations in human lymphocytes by alpha-radiation. Int J Radiat Biol 38:83–91.

    Article  CAS  Google Scholar 

  • Finch JT, Klug A (1976) Solenoid model for superstructure in chromatin. Proc Nat Acad Sci USA 73:1897–1901.

    Article  PubMed  CAS  Google Scholar 

  • Folkard M, Prise KM, Vojnovic B, Davies S, Roper MJ, Michael BD (1989) The irradiation of V79 mammalian cells by protons with energies below 2 MeV. Part I: Experimental arrangement and measurements of cell survival. Int J Radiat Biol 56:221–237.

    Article  PubMed  CAS  Google Scholar 

  • Frankenberg D (1984) Interpretation of the dose and LET dependence of RBE values for lethal lesions in yeast cells. Radiation Res 97:329–340.

    Article  PubMed  CAS  Google Scholar 

  • Goodhead DT (1982) An assessment of the role of microdosimetry in radio-biology. Radiation Res 91:45–76.

    Article  PubMed  CAS  Google Scholar 

  • Goodhead DT, Thacker J (1977) Inactivation and mutation of cultured mammalian cells by aluminium characteristic ultrasoft X-rays. I. Properties of aluminium X-rays and preliminary experiments with Chinese hamster cells. Int J Radiat Biol 31:541–559.

    Article  CAS  Google Scholar 

  • Goodhead DT, Thacker J, Cox R (1979) Effectiveness of 0.3 keV carbon ultra-soft X-rays for the inactivation and mutation of cultured mammalian cells. Int J Radiat Biol 36:101–114.

    Article  CAS  Google Scholar 

  • Griffith JD (1975) Chromatin structure: deduced from a microchromosome. Science 187:1202–1203.

    Article  PubMed  CAS  Google Scholar 

  • Hall EJ, Novak JK, Kellerer AM, Rossi HH, Marino S, Goodman LJ (1975) RBE as a function of neutron energy. I. Experimental observations. Radiation Res 64:245–255.

    Article  PubMed  CAS  Google Scholar 

  • Howard-Flanders P, West SC, Stasiak A (1984) Role of RecA protein spiral filaments in genetic recombination. Nature 309:215–220.

    Article  PubMed  CAS  Google Scholar 

  • Howerton RJ (1986) Calculated neutron KERMA factors based on the LLNL ENDL data file. UCRL-50400, Vol. 27.

    Google Scholar 

  • Joshi GP, Nelson WJ, Revell SH, Shaw CA (1982) X-ray-induced chromosome damage in live mammalian cells, and improved measurements of its effects on their colony-forming ability. Int J Radiat Biol 41:161–181.

    Article  CAS  Google Scholar 

  • Kellerer AM, Rossi HH (1972) The theory of dual radiation action. Current Topics in Radiation Research Quarterly 8:85–158.

    CAS  Google Scholar 

  • Kobayashi K, Hieda K, Maezawa H, Ando M, Ito T (1987) Monochromatic X-ray irradiation system (0.08–0.4nm) for radiation biology studies using synchrotron radiation at the photon factory. J Rad Res 28:243–253.

    Article  CAS  Google Scholar 

  • Kodama S, Sasaki MS (1987) The involvement of chromosome 13 in the X-ray-induced in vitro transformation of mouse m5S cells. Jpn J Cancer Res 78:372–381.

    PubMed  CAS  Google Scholar 

  • Krasin F, Hutchinson F (1977) Repair of DNA double-strand breaks in Escherichia coli, which requires recA function and the presence of duplicate genome. J Mol Biol 116:81–98.

    Article  PubMed  CAS  Google Scholar 

  • Lea DE, Catcheside DG (1942) Induction by radiation of chromosome aberrations in Tradescantia. J Genet 44:216–245.

    Article  Google Scholar 

  • Lloyd DC, Edward AA (1983) Chromosome aberrations in human lymphocytes: effect of radiation quality, dose, and dose rate. In: Ishihara T, Sasaki MS (eds) Radiation-induced Chromosome Damage in Man. Alan R Liss, New York, pp23–49.

    Google Scholar 

  • Lloyd DC, Edwards AA, Prosser JS, Finnon P, Moquet JE (1988) In vitro induction of chromosomal aberrations in human lymphocytes, with and without boron 10, by radiations concerned in boron neutron capture therapy. Brit J Radiol 61:1136–1141.

    Article  PubMed  CAS  Google Scholar 

  • Meuth M (1984) The genetic consequences of nucleotide precursor pool imbalance in mammalian cells. Mutation Res 126:107–112.

    Article  PubMed  CAS  Google Scholar 

  • Miller RC, Geard CR, Brenner DJ, Komatsu K, Marino SA, Hall EJ (1989) Neutron-energy-dependent oncogenic transformation of C3H10T½ mouse cells. Radiation Res 117:114–127.

    Article  PubMed  CAS  Google Scholar 

  • Mönkehaus F, Kö hnlein W (1973) Single- and double-strand breaks in 5-bromouracil-substituted DNA of B. subtilis and phage PBSH after irradiation with long-wave length UV and their correlation to intramolecular energy transfer. Biopolers 12:329–340.

    Article  Google Scholar 

  • Natarajan AT, Obe G (1984) Molecular mechanisms Involved in the production of chromosomal aberrations: III. Restriction endonucleases. Chromosoma 90:120–127.

    Article  PubMed  CAS  Google Scholar 

  • Neary GJ (1965) Chromosome aberrations and the theory of RBE. I. General considerations. Int J Rad Biol 9:477–502.

    Article  CAS  Google Scholar 

  • Obe G, Natarajan AT, Palitti F (1982) Role of DNA double-strand breaks in the formation of radiation-induced chromosome aberrations. Prog Mut Res 4:1–9.

    CAS  Google Scholar 

  • Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Nat Acad Sci USA 83:2934–2938.

    Article  PubMed  CAS  Google Scholar 

  • Resnick MA (1976) The repair of double-strand breaks in DNA: a model involving recombination. J. Theor Biol 59:97–106.

    Article  PubMed  CAS  Google Scholar 

  • Sargentini NJ, Smith KC (1986) Involvement of genes uvrD and redB in separate mutagenic deoxyribonucleic acid repair pathways in Escherichia coli K-125 uvrb5 and B/r uvrA155. J Bacteriol 143:212–220.

    Google Scholar 

  • Sasaki MS, Kobayashi K, Hieda K, Yamada T, Ejima Y, Maezawa H, Furusawa Y, Ito T, Okada S (1989) Induction of chromosome aberrations in human lymphocytes by monochromatic X-rays of quantum energy between 4.8 and 14.6 keV. Int J Radiat Biol 56:975–988.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki MS, Kodama S (1987) Establishment and some mutational characteristics of 3T3-like near-diploid mouse cell line. J Cell Physiol 131:114–122.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi N, Kobayashi I (1990) Evidence for the double-strand break repair model of bacteriophage λ recombination. Proc Nat Acad Sci USA 87:2790–2794.

    Article  PubMed  CAS  Google Scholar 

  • Takatsuji T, Sasaki MS (1984) Dose-response relationship of chromosome aberrations induced by 23 MeV alpha particles in human lymphocytes. Int J Radiat Biol 45:237–243.

    Article  CAS  Google Scholar 

  • Thacker J, Cox R, Goodhead DT (1980) Do carbon ultrasoft X-rays induce exchange aberrations in cultured mammalian cells? Int J Radiat Biol 38: 469–472.

    Article  CAS  Google Scholar 

  • Thacker J, Stretch A, Stephens MA (1979) Mutation and inactivation of cultured mammalian cells exposed to beams of accelerated heavy ions. II. Chinese hamster V79 cells. Int J Radiat Biol 36:137–148.

    Article  CAS  Google Scholar 

  • Thacker J, Wilkinson RE, Goodhead DT (1986) The induction of chromosome exchange aberrations by carbon ultrasoft X-rays in V79 hamster cells. Int J Radiat Biol 49:645–656.

    Article  CAS  Google Scholar 

  • Tobleman WT, Cole A (1974) Repair of sublethal damage and oxygen enhancement ratio for low-voltage electron beam irradiation. Radiation Res 60: 355–360.

    Article  PubMed  CAS  Google Scholar 

  • Virsik RP, Harder D (1981) Statistical interpretation of the overdispersed distribution of radiation-induced dicentric chromosome aberrations at high LET. Radiation Res 85:13–23.

    Article  PubMed  CAS  Google Scholar 

  • Virsik RP, Schafer CH, Harder D, Goodhead DT, Cox R, Thacker J (1980) Chromosome aberrations induced in human lymphocytes by ultrasoft AlK and CK X-rays. Int J Radiat Biol 38:545–557.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sasaki, M.S. (1991). Primary Damage and Fixation of Chromosomal DNA as Probed by Monochromatic Soft X-rays and Low-Energy Neutrons. In: Fielden, E.M., O’Neill, P. (eds) The Early Effects of Radiation on DNA. NATO ASI Series, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75148-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75148-6_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75150-9

  • Online ISBN: 978-3-642-75148-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics