Skip to main content

Fallout Tephra Layers: Composition and Significance

  • Chapter
Sediments and Environmental Geochemistry

Abstract

Tephra layers differ in color, thickness, composition, and origin from their enclosing non-volcanic sediments. They record instant geologic events extending across marine and continental environments, reflect climatic and paleoenvironmental changes and geotectonic activities, and can provide an orthostratigraphic time frame for sedimentary sequences when numerically dated (Schmincke & Bogaard 1990).

Tephra layers reflect episodic volcanism on a global and regional scale and can be used to delineate the chronologic and compositional evolution of long-lived active volcanic centers and regions. Recent work in the North Atlantic has shown that tholeiitic basaltic ash layers can be distinguished by their Ti-concentrations and attributed to Icelandic volcanic centers. Similarly, rhyolitic ash layers can be distinguished by their K2O concentrations and reflect different source regions in Iceland (Neogene low-K rhyolites), E-Greenland continental margin (Oligocene-Miocene high-K rhyolites) and Jan Mayen high-K province (Quaternary high-K rhyodacites). Compositional differences also reflect source inhomogeneities and evolution of the erupted basaltic ash from N-MORB types to E/P-MORB types through the Neogene. The undisturbed and nearly complete recovery of Neogene ash layer sequences from the Vøring Plateau (ODP Leg 104) do not support the idea of episodic volcanic activity in the North Atlantic region but reflect relatively constant ash layer frequencies of five to ten layers per Ma through the Neogene. On a global scale, however, ash layer frequencies, magma discharge rates, and K-Ar dates may indicate peaks of Cenozoic volcanic activity in the Middle Miocene, Plio-Pleistocene, and Late Quaternary.

Tephra layers are also excellent tools for numerical calibration of the geologic time scale. Recent advances in the K-Ar method, applying single grain laser dating and 40Ar/39Ar-stepwise heating techniques, have evolved as powerful methods in tephrochronology and enable high-resolution calibration of the geologic time scale, bracketing of terrestrial ice ages, and correlation to the marine record.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson AT, Newman S, Williams SN, Druitt TH, Skirius C, Stolper E (1989) H2O, CO2, Cl, and gas in Plinian and ash-flow Bishop rhyolite. Geology 17:221–226

    Article  Google Scholar 

  • Baadsgaard H, Lerbekmo JF (1982) The dating of bentonite beds. In: Odin GS (ed) Numerical dating in stratigraphy. John Wiley and Sons, New York, pp 423–440

    Google Scholar 

  • Baadsgaard H, Lerbekmo JF, McDougall I (1988) A radiometric age for the Cretaceous-Tertiary boundary based upon K-Ar, Rb-Sr, and U-Pb ages of bentonites from Alberta, Saskatchewan, and Montana. Can J Earth Sci 25:1088–1097

    Google Scholar 

  • Berger GW (1985) Thermoluminiscence dating of volcanic ash. J Volcanol Geotherm Res 25:333–347

    Article  Google Scholar 

  • Bitschene PR, Schmincke HU (1990) Composition and evolution of North Atlantic ash layers and the question of volcanic episodicity (in preparation)

    Google Scholar 

  • Bitschene PR, Schmincke HU, Viereck L (1989) Cenozoic ash layers on the Vøring Plateau (ODP Leg 104). Proc Ocean Drill Prog Initial Rep 104B. US Gov Print Off, Washington DC (in press)

    Google Scholar 

  • Bogaard Pvd, Schmincke HU (1985) Laacher See tephra: A widespread isochronous late Quaternary tephra layer in central and northern Europe. Geol Soc Am Bull 96:1554–1571

    Article  Google Scholar 

  • Bogaard Pvd, Schmincke HU (1988) Aschenlagen als quartäre Zeitmarken in Mitteleuropa. Geowissenschaft 6:75–84

    Google Scholar 

  • Bogaard Pvd, Hall CM, Schmincke HU, York D (1987) 49Ar/39Ar Laser dating of single grains: ages of Quaternary tephra from the East Eifel volcanic field, FRG. Geophys Res Lett 14:1211–1214

    Article  Google Scholar 

  • Bouroz A, Tourette M, Vialette Y (1972) Signification de mesures d’ages de cinérites, tonsteins et rhyolites de bassins houillers francais. Mem BRGM 77:951–956

    Google Scholar 

  • Bramlette MN, Bradley WH (1942) Geology and biology of North Atlantic deep-sea cores between Newfoundland and Ireland, pt. 1, Lithology and geologic interpretations. US Geol Surv Prof Pap 196A:1–55

    Google Scholar 

  • Burger K (1982) Kohlentonsteine als Zeitmarken, ihre Verbreitung und ihre Bedeutung für die Exploration und Exploitation von Kohlenlagerstätten. Z Dtsch geol Ges 133:201–255

    Google Scholar 

  • Carey S, Sigurdsson H (1982) Influence of particle aggregation on deposition of distal tephra from the May 18, 1980 eruption of Mount St. Helens volcano, J Geophys Res 87:7061–7072

    Article  Google Scholar 

  • Carey S, Sigurdsson H (1986) The 1982 eruptions of El Chichon volcano, Mexico (2): Observations and numerical modelling of tephra-fall distribution. Bull Volcanol 48:127–141

    Article  Google Scholar 

  • Carpena J, Mailhe D (1987) Fission-track dating calibration of the Fish Canyon tuff standard in French reactors. Chem Geol (Isot Geosci Sect) 66:53–59

    Article  Google Scholar 

  • Cassignol C, Gillot PY (1982) Range and effectiveness of unspiked potassium-argon dating: experimental groundwork and applications. In: Odin GS (ed) Numerical dating in stratigraphy. John Wiley & Sons, New York, pp 159–179

    Google Scholar 

  • Damon PE, Teichmüller R (1971) Das absolute Alter des sanidinführenden kaolinitischen Tonsteins im Flöz Hagen 2 des Westfal C im Ruhrrevier. Fortschr Geol Rheinl Westf 18:53–56

    Google Scholar 

  • Donn WL, Ninkovich D (1980) Rate of Cenozoic explosive volcanism in the North Atlantic Ocean inferred from deep sea cores. J Geophys Res 85:5455–5460

    Article  Google Scholar 

  • Donnelly TW (1975) Neogene explosive volcanic activity of the Western Pacific: Sites 292 and 296. In: Karig DE, Ingle JC, et al. (eds) Initial Rep Deep Sea Drill Proj 31. US Gov Print Off, Washington DC, pp 577–597

    Google Scholar 

  • Eldholm O, Thiede J, Taylor E et al. (1987) Proc Ocean Drill Prog Initial Rep 104. US Gov Print Off, Washington DC, pp 1–783

    Book  Google Scholar 

  • Faure G (1986) Principles of isotope geology, 2nd edn. John Wiley & Sons, New York, pp 1–464

    Google Scholar 

  • Federman AN, Scheidegger KF (1984) Compositional heterogeneity of distal tephra deposits from the 1912 eruption of Novarupta, Alaska. J Volcanol Geotherm Res 21:233–254

    Article  Google Scholar 

  • Fisher RV (1964) Maximum size, median diameter, and sorting of tephra. J Geophys Res 69:341–355

    Article  Google Scholar 

  • Fisher RV, Schmincke HU (1984) Pyroclastic rocks. Springer, Berlin Heidelberg New York, pp 1–472

    Book  Google Scholar 

  • Fujioka K (1986) Synthesis of Neogene explosive volcanism of the Tohoku Arc, deduced from the marine tephra drilled around the Japan Trench Region, DSDP Legs 56, 57 and 87B. In: Kagami H, Karig DE, Coulbourn WT, et al. (eds) Initial Rep Deep Sea Drill Proj 87. US Gov Print Off, Washington DC, pp 703–723

    Google Scholar 

  • Gillot PY, Cornette Y (1986) The Cassignol technique for potassium-argon dating, precision and accuracy: examples from the Late Pleistocene to recent volcanics from southern Italy. Chem Geol (Isot Geosci Sect) 59:205–222

    Article  Google Scholar 

  • Harris DM, Rose WI Jr, Roe R, Thompson MR (1981) Radar observations of ash eruptions. In: Lipman PW, Mullineaux DR (eds) The 1980 eruptions of Mount St. Helens, Washington. US Geol Surv Prof Pap 1250:323–333

    Google Scholar 

  • Harris WB, Fullagar PD (1989) Comparison of Rb-Sr and K-Ar dates of Middle Eocene bentonite and glauconite, southeastern Atlantic Coastal Plain. Geol Soc Am Bull 101:573–577

    Article  Google Scholar 

  • Heiken G, Wohletz K (1985) Volcanic ash. Univ Cal Press, Berkely, pp 1–246

    Google Scholar 

  • Hellmann KN, Lippolt HJ (1981) Calibration of the Middle Triassic time scale by conventional K-Ar and 40Ar/39Ar dating of alkali feldspars. J Geophys 50:73–88

    Google Scholar 

  • Hess JC, Lippolt HJ (1986) 40Ar/39Ar ages of tonstein and tuff sanidines: new calibration points for the improvement for the upper Carboniferous time scale. Chem Geol (Isot Geosci Sect) 59:143–154

    Article  Google Scholar 

  • Hess JC, Backfisch S, Lippolt HJ (1983) Konkordantes Sanidin- und diskordante Biotitalter eines Karbontuffs der Baden-Badener Senke, Nordschwarzwald. N Jahrb Geol Paläontol Mh 1983:277–292

    Google Scholar 

  • Hess JC, Lippolt HJ, Wirth R (1987) Interpretation of 40Ar/39Ar spectra of biotites: evidence from hydrothermal degassing experiments and TEM studies. Chem Geol 66:137–149

    Google Scholar 

  • Huff WD, Türkmenoglu AG (1981) Chemical characteristics and origin of Ordovician K-bentonites along the Cincinati arch. Clays Clay Minerals 29:113–123

    Article  Google Scholar 

  • Hurford AJ, Watkins RT (1987) Fission-track age of the tuffs of the Buluk Member, Balkate Formation, northern Kenya: a suitable fission-track age standard. Chem Geol (Isot Geosci Sect) 66:209–216

    Article  Google Scholar 

  • Izett GA, Naeser CW (1976) Age of the Bishop Tuff of eastern California as determined by the fission-track method. Geology 4:587–590

    Article  Google Scholar 

  • Jäger E, Hunziker JC (eds) (1979) Lectures in istope geology. Springer, Berlin Heidelberg New York, pp 1–328

    Google Scholar 

  • Jezek PA, Noble DC (1978) Natural hydration and ion exchange of obsidian: an electron microprobe study. Am Mineral 63:266–273

    Google Scholar 

  • Keller J (1981) Quaternary tephrochronology in the Mediterranean region. In: Self S, Sparks RSJ (eds) Tephra studies. Reidel, Dordrecht, pp 227–244

    Google Scholar 

  • Kennett JP (1981) Marine tephrochronology. In: Emiliani C (ed) The oceanic lithosphere. The Sea. John Wiley and Sons, New York: 1373–1436

    Google Scholar 

  • Kennett JP (1983) Marine geology. Prentice Hall, Englewood Cliffs, NJ, pp 1–813

    Google Scholar 

  • Kennett JP, Thunell RC (1975) Global increase in Quaternary volcanism. Science 187:497–503

    Article  Google Scholar 

  • Kennett JP, McBirney AR, Thunnell (1977) Episodes of Cenozoic volcanism in the circum-Pacific Region. J Volcanol Geotherm Res 2:145–163

    Article  Google Scholar 

  • Kober (1986) Whole-grain evaporation for 207Pb/206Pb-age-investigations on single zircons using a double-filament thermal ion source. Contrib Mineral Petrol 93:482–490

    Article  Google Scholar 

  • Lamb HH (1971) Volcanic dust in the atmosphere, with a chronology and assessment of its meteorological significance. Philos Trans R Soc London Ser A 266:425–553

    Google Scholar 

  • Ledbetter MT (1985) Tephrochronology of marine tephra adjacent to Central America. Geol Soc Am Bull 96:77–82

    Article  Google Scholar 

  • Lipman PW, Mullineaux DR (eds) (1981) The 1980 eruptions of Mount St. Helens, Washington. US Geol Surv Prof Pap 1250:1–844

    Google Scholar 

  • Lippolt HJ, Hess JC, Holub VM, Pesek J (1986a) Correlation of Upper Carboniferous deposits in the Bohemian Massif (Czechoslovakia) and in the Ruhr district (FR Germany). Evidence from 40Ar/39Ar ages of tuff layers. Z Dtsch Geol Ges 137:447–464

    Google Scholar 

  • Lippolt HJ, Fuhrmann U, Hradetzky H (1986b) 40Ar/39Ar age determinations on sanidines of the Eifel volcanic field (Fed. Rep. of Germany): contraints on age and duration of a Middle Pleistocene cold period. Chem Geol (Isot Geosci Sect) 59:187–204

    Article  Google Scholar 

  • Lo Bello P, Feraud G, Hall CM, York D, Lavina P, Bernat M (1987) 40Ar/39Ar Step-heating and laser fusion dating of a Quaternary pumice from Neschers, Massif Central, France: the defeat of xenocrystic contamination. Chem Geol (Isot Geosci Sect) 66:61–71

    Article  Google Scholar 

  • McCoy FW jr (1981) Areal distribution, redeposition and mixing of tephra within deep-sea sediments of the eastern Mediterranean Sea. In: Self S, Sparks RSJ (eds) Tephra studies. Reidel, Dordrecht, pp 245–254

    Google Scholar 

  • Merrihue C, Turner G (1966) Potassium-argon dating by activation with fast neutrons. J Geophys Res 71:2852–2857

    Google Scholar 

  • Montanari A, Drake R, Bice DM, Alvarez W, Curtis GH, Turrin BD, Depaolo DJ (1983) Radiometric dating of the Eocene-Oligocene boundary at Gubbio, Italy. In: Pomerol C, Premolisilva I (eds) Terminal Eocene events. Dev Paleontol Stratigr 9:41–47

    Google Scholar 

  • Morton AC, Keene JB (1984) Paleogene pyroclastic volcanism in the southwest Rockall Plateau. In: Roberts DG, Schnitger D, et al. (eds) Initial Rep Deep Sea Drill Proj 81. US Gov Print Off, Washington DC, pp 633–641

    Google Scholar 

  • Müller G (1961) Die rezenten Sedimente im Golf von Neapel. Mineral-Neu- und Umwandlungen in den rezenten Sedimenten des Golfes von Neapel. Ein Beitrag zur Umwandlung vulkanischer Gläser durch Halmyrolyse. Beitr Mineral Petrol 8:1–20

    Article  Google Scholar 

  • Naeser CW, Izett GA, Wilcox RE (1973) Zircon fission-track ages of Perlette family ash beds in Meade County, Kansas. Geology 1:187–189

    Article  Google Scholar 

  • Naeser CW, Briggs ND, Obradovich JD, Izett GA (1981) Geochronology of Quaternary tephra deposits. In: Self S, Sparks RSJ (eds) Tephra studies. Reidel, Dordrecht, pp 13–47

    Google Scholar 

  • Ninkovich D, Donn WL (1976) Explosive Cenozoic volcanism and climatic implications. Science 194:899–906

    Article  Google Scholar 

  • Ninkovich D, Sparks RSJ, Ledbetter MT (1978) The exceptional magnitude and intensity of the Toba eruption, Sumatra: an example of the use of deep-sea tephra layers as a geological tool. Bull Volcanol 41:286–298

    Article  Google Scholar 

  • Odin GS (1982) Numerical dating in stratigraphy. John Wiley & Sons New York, pp 1–1040

    Google Scholar 

  • Odin GS, Hunzicker JC, Jeppsson L, Spjeldnaes N (1986) Ages radiometriques K-Ar de biotites pyroclastiques sedimentees dans le Wenlock de Gotland (Suede). Chem Geol (Isot Geosci Sect) 59:117–125

    Article  Google Scholar 

  • Paterne M, Guichard F, Labeyrie J, Gillot PY, Duplessy JC (1986) Tyrrhenian sea tephrochronology of the oxygen isotope record for the past 60 000 years. Mar Geol 72:259–285

    Article  Google Scholar 

  • Paterne M, Guichard F, Labeyrie J (1988) Explosive activity of the South Italian volcanoes during the past 80 000 years as determined by marine tephrochronology. J Volcanol Geotherm Res 34:153–172

    Article  Google Scholar 

  • Rabek K, Ledbetter MW, Williams DF (1985) Tephrochronology of the western Gulf of Mexico. Quat Res 23:403–416

    Article  Google Scholar 

  • Rad Uv, Kreuzer H (1987) Composition, K-Ar dates and origin of a Mid-Eocene rhyolitic ash layer at Deep sea Drilling Project Sites 605 and 613, New Jersey transect, Legs 93 and 95. In: Hinte JEv, Wise SW, et a. (eds) Initial Rep Deep Sea Drill Proj 93. US Grov Print Off, Washington DC, pp 977–981

    Google Scholar 

  • Rose WI, Chesner CA (1987) Dispersal of ash in the great Toba eruption, 75 Ka. Geology 15:913–917

    Article  Google Scholar 

  • Ruddiman WF, Glover LK (1972) Vertical mixing of ice-rafted volcanic ash in the North Atlantic sediments. Geol Soc Am Bull 83:2817–2836

    Article  Google Scholar 

  • Rundle CC (1986) Radiometrie dating of a Caradocian tuff horizon. Chem Geol (Isot Geosci Sect) 59:111–115

    Article  Google Scholar 

  • Sarna-Wojcicki AM, Meyer CE, Woodward MJ, Lamothe PJ (1981) Composition of air-fall ash erupted on May 18, May 25, June 12, July 22, and August 7. In: Lipman PW, Mullineaux DR (eds) The 1980 eruptions of Mount St Helens, Washington. US Geol Surv Prof Pap 1250:667–681

    Google Scholar 

  • Scheidegger KF, Kulm LD (1975) Late Cenozoic volcanism in the Aleutian arc: information from ash layers in the northeastern Gulf of Alaska. Geol Soc Am Bull 86:1407–1412

    Article  Google Scholar 

  • Schmincke HU (1982) Volcanic and chemical evolution of the Canary Islands. In: Rad Uv, Hinz K, Sarnthein M, Seibold E (eds) Geology of the Northwest African continental margin. Springer, Berlin Heidelberg New York, pp 273–306

    Google Scholar 

  • Schmincke HU, Sunkel G (1987) Carboniferous submarine volcanism at Herbornseelbach (Lahn-Dill area, Germany). Geol Rundsch 76:709–734

    Article  Google Scholar 

  • Schmincke HU, Bogaard Pud (1990) Tephra layers and tephra events. In Event stratigraphy. Einsele S, Ricken W, Seilacher A (ed) 2nd ed Springer Verlag (in press)

    Google Scholar 

  • Schumacher R, Schmincke HU (1990) Internal structure and occurences of accretionary lapilli. Bull Volcanol (in preparation)

    Google Scholar 

  • Self S (1976) The recent volcanology of Terceira, Azores. J Geol Soc London 132:645–666

    Article  Google Scholar 

  • Self S, Sparks RSJ (eds) (1981) Tephra studies. Reidel, Dordrecht, pp 1–481

    Google Scholar 

  • Seward D (1979) Composition of zircon and glass fission-track ages from tephra horizons. Geology 7:479–482

    Article  Google Scholar 

  • Sigurdsson H (1981) First order major element variation in basalt glasses from the Mid-Atlantic Ridge: 29° N to 73° N. J Geophys Res 86:9483–9502

    Article  Google Scholar 

  • Sigurdsson H, Carey SN (1981) Marine tephrochronology and Quaternary explosive volcanism in the Lesser Antilles arc. In: Self S, Sparks RSJ (eds) Tephra studies. Reidel, Dordrecht, pp 255–280

    Google Scholar 

  • Sigurdsson H, Loebner B (1981) Deep-sea record of Cenozoic explosive volcanism in the North Atlantic. In: Self S, Sparks RSJ (eds) Tephra studies. Reidel, Dordrecht, pp 289–316

    Google Scholar 

  • Smalley PC, Nordaa A, Raheim A (1986) Geochronology and paleothermometry of Neogene sediments from the Vøring Plateau using Sr, C and O isotopes. Earth Planet Sci Lett 78:368–378

    Article  Google Scholar 

  • Sorem RK (1982) Volcanic ash clusters: tephra rafts and scavengers. J Volcanol Geotherm Res 13:63–71

    Article  Google Scholar 

  • Sparks RSJ, Huang TC (1980) The volcanological significance of deep-sea ash layers associated with ignimbrites. Geol Mag 117:425–436

    Article  Google Scholar 

  • Sparks RSJ, Walker GPL (1977) The significance of vitric-enriched air-fall ashes associated with crystal-enriched ignimbrites. J Volcanol Geotherm Res 2:329–341

    Article  Google Scholar 

  • Sparks RSJ, Self S, Walker GPL (1973) Products of ignimbrite eruption. Geology 1:115–118

    Article  Google Scholar 

  • Stothers RB, Rampino MW, Self S, Wolff JA (1989) Volcanic winter? Climatic effects of the largest volcanic eruptions. In: Latter JH (ed) Volcanic hazards. IAVCEI Proc Volcanol 1:3–9

    Google Scholar 

  • Sylvester AG (1978) Petrography of volcanic ashes in deep-sea cores near Jan Mayen island: Sites 338, 345–350 DSDP Leg 38. In: Talwani H, Udintsev G, et al. (eds) Initial Rep Deep Sea Drill Proj Suppl 38, 39, 40, 41. US Gov Print Off, Washington DC, pp 101–109

    Google Scholar 

  • Talwani H, Udintzev G, et al. (1976) Initial Rep Deep Sea Drill Proj 38. US Gov Print Off, Washington DC, pp 1–1256

    Book  Google Scholar 

  • Thorarinsson S (1944) Tefrokronologiska studier pa Island. Geogr Ann 26:1–217

    Article  Google Scholar 

  • Thorarinsson S (1981) Tephra studies and tephrochronology: a historical review with special references to Iceland. In: Self S, Sparks RSJ (eds) Tephra studies. Reidel, Dordrecht, pp 1–12

    Google Scholar 

  • Vallier TL, Bohrer D, Moreland G, McKee EH (1977) Origin of basalt microlapilli in lower Miocene pelagic sediment, northeastern Pacific Ocean. Geol Soc Am Bull 88:787–796

    Article  Google Scholar 

  • Varekamp J, Luhr J, Prestegaard K (1984) The 1982 eruptions of El Chichon volcano (Chiapas, Mexico): character of the eruptions, ash fall deposits, and gas phase. J Volcanol Geotherm Res 23:39–68

    Article  Google Scholar 

  • Varet J, Metrich N (1979) Ash layers interlayered with the sediments of holes 407 and 408, IPOD Leg 49. Initial Rep Deep Sea Drill Proj 49. US Gov Print Off, Washington DC, pp 437–441

    Google Scholar 

  • Vinci A (1985) Distribution and chemical composition of tephra layers from eastern Mediterranean abyssal sediments Mar Geol 64:143–155

    Article  Google Scholar 

  • Vogt PR (1979) Global magnetic episodes: new evidence and implication for the steady-state mid-oceanic ridges. Geology 7:93–98

    Article  Google Scholar 

  • Walker GPL (1981) Plinian eruptions and their products. Bull Volcanol 44:223–240

    Article  Google Scholar 

  • Walker GPL, Croasdale RC (1971) Two Plinian-type eruptions in the Azores. J Geol Soc London 127:17–55

    Article  Google Scholar 

  • Watkins ND, Sparks RSJ, Sigurdsson H, Huang TC, Federman A, Carey S, Ninkoyich D (1978) Volume and extent of the Minoan tephra from Santorini: new evidence from deep-sea sediment cores. Nature (London) 271:122–126

    Article  Google Scholar 

  • Wentworth CK (1938) Ash formations on the island of Hawaii. 3rd Spec Rep Hawaiian Volcano Observatory, Honolulu, Hawaii, pp 1–183

    Google Scholar 

  • Westgate JA, Gorton MP (1981) Correlation techniques in tephra studies. In: Self S, Sparks RSJ (eds) Tephra studies. Reidel, Dordrecht, pp 73–94

    Google Scholar 

  • Winter J (1981) Exakte tephrostratigraphische Korrelation mit morphologisch differenzierten Zirkonpopulationen (Grenzbereich Unter-/Mitteldevon, Eifel-Ardennen). N Jahrb Geol Paläontol Abh 162:97–136

    Google Scholar 

  • Worzel LJ (1959) Extensive deep-sea sub-bottom reflections identified as white ash. Proc Natl Acad Sci USA 45:349–355

    Article  Google Scholar 

  • Yanagi T, Baadsgaard H, Stelck CR, McDougall I (1988) Radiometric dating of a tuff bed in the Middle Albian Hulcross Formation at Hudson’s Hope, British Columbia. Can J Earth Sci 25:1123–1127

    Google Scholar 

  • York D, Hall CM, Yanase Y, Hanes JA, Kenyon WJ (1981) 40Ar/39Ar dating of terrestrial minerals with a continuous laser. Geophys Res Lett 8:1136–1138

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bitschene, P.R., Schmincke, HU. (1990). Fallout Tephra Layers: Composition and Significance. In: Heling, D., Rothe, P., Förstner, U., Stoffers, P. (eds) Sediments and Environmental Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75097-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75097-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75099-1

  • Online ISBN: 978-3-642-75097-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics