Skip to main content

Effect of Positive End-Expiratory Airway Pressure (PEEP) on Extravascular Thermal Lung Water Estimation in the Dog

  • Conference paper
Practical Applications of Fiberoptics in Critical Care Monitoring

Abstract

Ventilatory support with positive end-expiratory pressure (PEEP) is commonly used to treat patients suffering from the adult respiratory distress syndrome (ARDS). Managing the frequently involved pulmonary edema includes the assessment of fluid actually accumulated in the lungs. Various invasive and non-invasive methods have recently been developed. Among them the double indicator dilution technique [5] proved to be clinically applicable [38]. Under a variety of edemagenic conditions an excellent correlation between the thermal lung water and that determined gravimetrically has been established in the experimental setting [23]. Nevertheless, there is “a consensus that the current (and probably all) methods for measuring lung water content in man are limited by both methodological and population variances to accuracies and sensitivities of about 20%–30%” [38].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison RC, Parker JC, Duncan CE (1983) Effect or air embolism on the measurement of extra-vascular lung thermal volume. J Appl Physiol 54: 943–949

    PubMed  CAS  Google Scholar 

  2. Anderson WP, Dunegan LJ, Knight DC, Fitz-patrick GF, O’Connor NE, Morgan AP (1975) Rapid estimation of pulmonary extravascular water with an instream catheter. J Appl Physiol 39: 843–845

    PubMed  CAS  Google Scholar 

  3. Balk R, Bone RC (1983) The adult respiratory distress syndrome. Med Clin N Am 67, 3: 685–700

    PubMed  CAS  Google Scholar 

  4. Calcagni DE, Mihm FG, Feeley TW, Rosenthal MH, Halperin BD (1983) The thermal-dye method of lung water measurement is reliable at a low cardiac output. Anesthesiology 59: A138

    Google Scholar 

  5. Chinard FP (1975) Estimation of extravascular lung water by indicator-dilution techniques. Circ Res 37: 137–145

    PubMed  CAS  Google Scholar 

  6. Fallon KD, Drake RE, Laine GA, Gabel JC (1985) Effect of cardiac output on extravascular lung water estimates made with the Edwards lung water computer. Anesthesiology 62: 505–508

    Article  PubMed  CAS  Google Scholar 

  7. Gherini S, Peters RM, Virgilio RW(1979) Mechanical work on the lungs and work of breathing with positive end-expiratory pressure and continuous positive airway pressure. Chest 76: 251– 255

    Article  PubMed  CAS  Google Scholar 

  8. Gibney RTN, Wilson RS, Pontoppidan H (1981) Comparison of work of breathing on high gas flow and demand valve continuous positive airway pressure systems. Chest 80: 382

    Article  Google Scholar 

  9. Goresky CA, Cronin FP, Wangel BE (1969) Indicator dilution measurements of extravascular water in the lungs. J Clin Invest 48: 487–501

    Article  PubMed  CAS  Google Scholar 

  10. Haider M, Schad H (1985) Lymph formation, lymph flow and the effect of a thoracic duct fistula on hyponcotic pulmonary edema during positive end-expiratory pressure (PEEP) in anesthestized dogs. Abstracts 4th World Congress on Intensive and Critical Care Medicine Jerusalem

    Google Scholar 

  11. Haider M, Schad H (1985) Thoracic duct lymph and PEEP. Studies in anesthetized dogs. I. Lymph formation and thoracic duct drainage at athmospheric pressure. Intensive Care Med (submitted for publication)

    Google Scholar 

  12. Haider M, Schad H, Mendler N (1986) Thoracic duct lymph and PEEP. Studies in anesthetized dogs. II. Thoracic duct drainage against pulsatile jugular venous pessure. Intensive Care Med (submitted for publication)

    Google Scholar 

  13. Hill SL, Elings VB, Lewis F (1981) Effect of cardiac output on extra vascualar lung water. Am Surg 47: 522–528

    PubMed  CAS  Google Scholar 

  14. Holcroft JW; Trunkey DD (1974) Extravascular lung water following hemorrhagic shock in the baboon: Comparison between resuscitation with Ringer’s lactate and plasmanate, Ann Surg 180: 408–415

    Article  PubMed  CAS  Google Scholar 

  15. Howell JBL, Permutt S, Proctor DF, Riley RL (1961) Effect of inflation of the lung on different parts of pulmonary vascular bed. J Appl Physiol 16: 71–76

    PubMed  CAS  Google Scholar 

  16. Hughes JMB, Glazier JB, Maloney JE, West JB (1968) Effect of extra-alveolar vessels on the distribution of blood flow in the dog lung. J Appl Physiol 25: 701–712

    PubMed  CAS  Google Scholar 

  17. Kirk BW (1969) Effect of alterations in pulmonary blood flow on lung-exchangable water in the dog. J Appl Physiol 27: 607–612

    PubMed  CAS  Google Scholar 

  18. Lassen NA, Perl W (1979) Tracer kinetic methods in medical physiology. Raven Press, New York

    Google Scholar 

  19. Lewis FR, Elings VI (1978) Microprocessor determinaton of lung water using thermal-green dye double indicator dilution. Surg Forum 29: 182–184

    PubMed  Google Scholar 

  20. Link J (1983) Increase of expiratory resistance by the PEEP-valve of the Servoventilator. Intensive Care Med 9: 137–138

    Article  PubMed  CAS  Google Scholar 

  21. Mendler J (1983) High frequency jet ventilation. Experimentelle Untersuchungen am Hund zu einem neuem Beatmungsverfahren. Inaugural-Dissertation München

    Google Scholar 

  22. Mihm FG, Feeley TW, Rosenthal MH, Lewis FR (1982) Measurement of extravascular lung water in dogs using the thermal-green dye indicator dilution method. Anesthesiology 57: 116–122

    Article  PubMed  CAS  Google Scholar 

  23. Noble WH, Kay JC, Maret KH, Coskanelte G (1980) Reappraisal of extravascular thermal volume as a measure of pulmonary edema. Appl Physiol 48: 120–129

    CAS  Google Scholar 

  24. Noble WH , Severinghaus JW (1972) Thermal and conductivity dilution curves for rapid quantitation of pulmonary edema. J Appl Physiol 32: 770–775

    PubMed  CAS  Google Scholar 

  25. Oppenheimer L, Elings VB, Lewis FR (1979) Thermal-dye lung water measurements: Effect of edema and embolization. J Surg Res 26: 504–512

    Article  PubMed  CAS  Google Scholar 

  26. Pepe PE, Marini JJ (1982) Occult positive end-expiratory pressure in mechanically ventilated patients with air flow obstruction. The auto-PEEP effect. Am Rev Resp Dis 126: 166–170

    PubMed  CAS  Google Scholar 

  27. Permutt S (1965) Effect of interstitial pressure of the lung on pulmonary circulation. Med Thorac 22: 118–131

    PubMed  CAS  Google Scholar 

  28. Permutt S (1979) Mechanical influences on water accumulation in the lungs. In: Pulmonary edema. Fishman AP, Renkin EM (eds), American Physiological Society, Bethesda, chpt. 13, pp 175– 193

    Google Scholar 

  29. Permut S, Howell JBL, Proctor DF, Riley RL (1961) Effect of lung inflation on static pressure-volume characteristics of pulmonary vessels. J Appl Physiol 16: 64–70

    Google Scholar 

  30. Popovich J (1983) The physiology of mechanical ventilation and the mechanical zoo: IPPB, PEEP, CPAP. Med Clin N Am 67, 3: 621–631

    PubMed  Google Scholar 

  31. Rizk NW, Murray JF (1982) PEEP and pulmonary edema. Am J Med 72: 381–383

    Article  PubMed  CAS  Google Scholar 

  32. Rossi A (1985) Measurement of static compliance of the total respiratory system in patients with acute respiratory failure during mechanical ventilation: The effect of intrinsic positive and expiratory pressure. Am Rev Respir Dis 131: 672–677

    PubMed  CAS  Google Scholar 

  33. Schuster HP (1984) Die hämodynamischen Auswirkungen der Überdruckbeatmung. Klin Wochenschr 62: 56–64

    Article  PubMed  CAS  Google Scholar 

  34. Shapiro BA, Cane RD, Harrison RA (1984) Positive end-expiratory pressure therapy in adults with special reference to acute lung injury: A review of the literature and suggested clinical correlations. Crit Care Med 12: 127–141

    Article  PubMed  CAS  Google Scholar 

  35. Sivak ED, Tita J, Meden G, Ishigami M, Graves J, Kavlich J, Stowe NT, Magnusson MO (1986) Effects of furosemide versus isolated ultrafiltration on extravascular lung water in oleic acid-induced pulmonary edema. Crit Care Med 14: 48–51

    Article  PubMed  CAS  Google Scholar 

  36. Snashall PD, Hughes JMB (1981) Lung water balance. Rev Physiol Biochem Pharmacol, Springer Verlag Berlin-Heidelberg-New York, Vol. 89: 6– 62

    Google Scholar 

  37. Staub NC (1984) Pathophysiology of pulmonary edema. In: Edema. Staub NC, Taylor AE (eds). Raven Press New York, chpt.30, pp 719–746

    Google Scholar 

  38. Staub NC, Hogg JC (1980) Conference report of a workshop on the measurement of lung water. Crit Care Med 8: 752–759

    Article  PubMed  CAS  Google Scholar 

  39. Suter PM, Fairley HB, Isenberg MD (1975) Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med 292: 284–289

    Article  PubMed  CAS  Google Scholar 

  40. Zapol WM, Snider MT (1977) Pulmonary hypertension in severe acute respiratory failure. N Engl J Med 296: 476–489

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haider, M., Schad, H. (1990). Effect of Positive End-Expiratory Airway Pressure (PEEP) on Extravascular Thermal Lung Water Estimation in the Dog. In: Lewis, F.R., Pfeiffer, U.J. (eds) Practical Applications of Fiberoptics in Critical Care Monitoring. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75086-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75086-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51718-4

  • Online ISBN: 978-3-642-75086-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics