Skip to main content

Importance of Indirect Calorimetry for the Nutrition of Intensive Care Patients

  • Conference paper
Hormones and Nutrition in Obesity and Cachexia

Abstract

Elliott and Alberti 1983 [22] investigated in great detail the direction and extent of different hormonal changes after trauma and operation and their influence on intermediary metabolism. Their results are summarized in Table 1 and show that most hormones whose levels are increased after trauma, such as catecholamines, Cortisol, glucagon and vasopressin, have a markedly catabolic effect. The growth hormone shows a catabolic influence on carbohydrate and fat metabolism as well, but it stimulates protein synthesis. Only insulin has a totally anabolic effect. The presence of high levels of counterregulatory hormones on the other hand leads to protein degradation, glycolysis, gluconeogenesis and lipolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adolph M (1985) Umsatzmessungen bei beatmeten Patienten. In: Ahnefeld FW, Hartig W, Holm E, Kleinberger G (eds) Zucksehwerdt, Munich (Klinische Ernährung, vol 19)

    Google Scholar 

  2. Adolph M, Eckart J (1982) Messung des Energiebedarfs durch die indirekte Kalorimetrie. In: Kleinberger G, Eckart J (eds) Der Energiebedarf und seine Deckung. Zuckschwerdt, Munich (Klinische Ernährung, vol 7) pp 1–30

    Google Scholar 

  3. Bässler KH (1982) Basaler Energiestoffwechsel und seine physiologischen Varianten. In: Kleinberger G, Eckart J (eds) Der Energiebedarf und seine Deckung. Zuckschwerdt, München, (Klinische Ernährung, vol 7) pp 89–102

    Google Scholar 

  4. Behrendt W (1986) Kontinuierliche Energieumsatzmessung und ihre Bedeutung für die parenterale Ernährungstherapie. In: Melichar G, Kalff G, Müller FG (eds) Invasives und nichtinvasives Monitoring von Atmung, Beatmung, Kreislauf und Stoffwechsel. Karger, Basel, pp 152–163 (Beiträge zur Intensiv- und Notfallmedizin, vol 4)

    Google Scholar 

  5. Behrendt W, Kalff G, Giani G, Minale C, Barsnik F (1985) Kontinuierliche Messung der Sauerstoffaufnahme mit den Engström Metabolie Computer. Infusionstherapie 12:153 –160

    CAS  Google Scholar 

  6. Berkson J, Boothby WM (1936) Studies of the energy metabolism of normal individuals. A comparison of the estimation of basal metabolism from (1) a linear formulas and (2) “surface area”. Am J Physiol 116:485–494

    Google Scholar 

  7. Bessey PQ (1986) Parenteral nutrition and trauma. In: Rombeau JL, Caldwell MD (eds) Parenteral nutrition, vol 2. Saunders, Philadelphia, pp 471–488

    Google Scholar 

  8. Boothby WM, Berkson J, Dunn HL (1936) Studies of the energy metabolism of normal individuals: standard for basal metabolism with nomogrammi for clinical application. Am J Physiol 116:468–484

    Google Scholar 

  9. Braun U, Turner E (1987) Die Bedeutung der indirekten Kalorimetrie als diagnostisches Verfahren der Intensivmedizin. In: Eckart J (ed) Intensivmedizin und Anästhesiologie; Beiträge zur Intensiv- und Notfallmedizin, vol 5. Karger, Basel, pp 140–150

    Google Scholar 

  10. Brown R, Gross E, Little RA (1984) Whole body oxygen consumption and anthropometry. Clin Nutr 3:11–16

    Article  Google Scholar 

  11. Carlsson C, Carlsson L (1986) Physical conditions for measuring oxygen consumption and carbon dioxide production. In: Melichar G, Kalff G, Müller FG (eds) Invasives und nichtinvasives Monitoring von Atmung, Beatmung, Kreislauf und Stoffwechsel. Karger, Basel, pp 120–125 (Beiträge zur Intensiv- und Notfallmedizin, vol 4)

    Google Scholar 

  12. Carlsson M, Nordenström J, Hedenstierna G (1984) Clinical implications of continuous measurement of energy expenditure in mechanically ventilated patients. Clin Nutr 3:103–110

    PubMed  CAS  Google Scholar 

  13. Clifton GL, Robertson CS, Grossmann RG (1984) The metabolic response to severe head injury. J Neurosurg 60:687–696

    Article  PubMed  CAS  Google Scholar 

  14. Crowley LV, Seifter E, Kriss P, Rettura G, Nakas K, Levenson SM (1977) Effects of environmental temperature and femoral fracture on wound healing in rats. J Trauma 17:436–445

    Article  PubMed  CAS  Google Scholar 

  15. Cuthbertson DP, Dell GS, Smith CM, Tilstone WJ (1972) Metabolism after injury. I: Effects of severity, nutrition and environmental temperature on protein, potassium, zinc and creatinine. Br J Surg 59:68–79

    Article  Google Scholar 

  16. Daly JM, Heymsfield SB, Head CA, Harvey LP, Nixon DW, Katzeff H, Grossmann GD (1985) Human energy requirements: overestimation by widely used prediction equation. Am J Clin Nutr 42:1170–1174

    PubMed  CAS  Google Scholar 

  17. Damask MC, Askanazi J, Weisman C, Elwyn DH, Kinney JM (1983) Artifacts in measurement of resting energy expenditure. Crit Care Med 11:750–752

    Article  PubMed  CAS  Google Scholar 

  18. Dempsey DT, Guenter P, Mullen JL, Fairman R, Crosby LO, Spielmann G, Gennarelli T (1985) Energy expenditure in acute trauma to the head with and without barbiturate therapy. Surg Gynecol Obstet 160:128–134

    PubMed  CAS  Google Scholar 

  19. Eckart J, Adolph M (1980) Messung des Energiebedarfs und der Verwertung zugeführter Energieträger. In: Eckart J, Kleinberger G, Lochs H (eds) Grundlagen und Praxis der Ernährungstherapie. Zuckschwerdt, Munich, pp 31 – 67 (Klinische Ernährung, vol 3)

    Google Scholar 

  20. Eckart J, Neeser G, Adolph M (1986) Optimierung von Energie- und Substratzufuhr unter dem Einfluß neuer Meßverfahren. In: Melichar G, Kalff G, Müller FG (eds) Invasives und nichtinvasives Monitoring von Atmung, Beatmung, Kreislaufund Stoffwechsel. Karger, Basel, pp 93–119 (Beiträge zur Intensiv- und Notfallmedizin, vol 4)

    Google Scholar 

  21. Elia M, Livesey G (1988) Theory and validity of indirect calorimetry during net lipid synthesis. Am J Clin Nutr 47:591–607

    PubMed  CAS  Google Scholar 

  22. Elliott M, Alberti KGMM (1983) The horomonal and metabolic response to surgery and trauma. In: Kleinberger G, Deutsch E (eds) New aspects of typical nutrition. Karger, Basel, pp 247–270

    Google Scholar 

  23. Feenstra BWA, v. Lanschot JJB, Vermeij CG, Bruining HA (1986) Artifacts in the assessment of metabolic gas exchange. Intensive Care Med 12:312–316

    Article  PubMed  CAS  Google Scholar 

  24. Feurer JD, Mullen JL (1986) Measurement of energy expenditure. In: Rombeau JL, Caldwell MD (eds) Parenteral nutrition. Saunders, Philadelphia, pp 224–236

    Google Scholar 

  25. Feurer JD, Crosby LO, Mullen JL (1984) Measured and predicted resting energy expenditure in clinically stable patients. Clin Nutr 3:27–34

    Article  Google Scholar 

  26. Fernandez Mondejar E, Duro Lombardo M, Perez de la Cruz AJ, Merida Mordes A, Torres Ruiz JM, Ferron Orihmela JA (1982) Variations in oxygen consumption and carbon dioxide production during parenteral nutrition. Intensive Care Med 8:169–172

    Article  PubMed  CAS  Google Scholar 

  27. Fleisch A (1951) Le métabolisme basal standard et sa détermination au moyen du “Metabolaculator”. Helv Med Acta 18:23–44

    PubMed  CAS  Google Scholar 

  28. Giovannini I, Boldrini G, Castaguato M, Namio G, Pittiniti J, Castiolini G (1983) Respiratory quotient and patterns of substrate utilization in human sepsis and trauma. JPEN 7:226–230

    Article  CAS  Google Scholar 

  29. Goodwin CW (1986) Parenteral nutrition in thermal injuries. In: Rombeau JL, Caldwell MD (eds) Parenteral nutrition, vol 2. Saunders, Philadelphia, pp 489–507

    Google Scholar 

  30. Hansell DT, Richardson R, Davies JWL, Burns HJG (1987) Estimation of resting energy expenditure by anthropometry. Clin Nutr 6:51–57

    Article  Google Scholar 

  31. Harris JA, Benedict FG (1919) A biometric study of basal metabolism in man. Carnegie Institute of Washington, Washington DC (Publication number 297)

    Google Scholar 

  32. Kahn RC, Koslow M, Butcher S (1987) Metabolic studies in head injured patients (Abstract 42). JPEN 11:9

    Google Scholar 

  33. Kahn RC, Koslow M, Butcher S (1987) Metabolic studies in head injured patients (Abstract 42). JPEN 11:9S

    Google Scholar 

  34. Kinney JM (1974) Energy requirements in injury and sepsis. Acta Anaesthesiol Scand[Suppl] 55:15–20

    Article  CAS  Google Scholar 

  35. Kinney JM (1980) The application of indirect calorimetry to clinical studies. In: Kinney JM (ed) Assessment of energy metabolism in health and disease; report of the First Ross Conference on Medical Research. Ross Laboratories, Columbus, pp 42–48

    Google Scholar 

  36. Kinney JM, Morgan AP, Domingues FJ, Gildner KJ (1964) A method for continuous measurement of gas exchange and expired radioactivity in acutely ill patients. Metabolism 13:205–211

    Article  PubMed  CAS  Google Scholar 

  37. Kleiber M (1947) Body size and metabolic rate. Physiol Rev 27:511–541

    PubMed  CAS  Google Scholar 

  38. Kleiber M (1975) The fire of life. An introduction of animal energetics. Krieger, New York

    Google Scholar 

  39. Kolpek JH, Ott L, Record KE, Rapp RP, Young AB (1987) Comparison of urinary urea nitrogen excretion and measured energy expenditure in spinal cord injury and non-steroid treated severe head trauma patients (Abstract 48) JPEN 11:10S

    Google Scholar 

  40. v. Lanschot JJB, Feenstra BWA, Vermeij CG, Bruining HA (1985) Determination of total energy expenditure in critically ill patients. Eur Surg Res 17/S1:93

    Google Scholar 

  41. v. Lanschot JJB, Feenstra BWA, Vermeij CG, Bruining HA (1986) Calculation vs measurement of total energy expenditure. Crit Care Med 14:981–985

    Article  PubMed  Google Scholar 

  42. v. Lanschot JJB, Feenstra BWA, Looijen R, Vermeij CG, Bruing HA (1987) Total parenteral nutrition in critically ill surgical patients: fixed vs tailored caloric replacement. Intensive Care Med 13:46–51

    Article  PubMed  Google Scholar 

  43. Livesey G, Elia M (1988) Estimation of energy expenditure, net carbohydrate utilization and net fat oxidation and synthesis by indirect calorimetry: evaluation of errors with special reference to the detailed composition of fuels. Am J Clin Nutr 47:608–628

    PubMed  CAS  Google Scholar 

  44. Long CL, Crosby F, Geiger JW, Kinney JM (1976) Parenteral nutrition in the septic patient: nitrogen balance, limiting plasma amino acids and caloric to nitrogen ratios. Am J Clin Nutr 29:380–391

    PubMed  CAS  Google Scholar 

  45. Long CL, Schaffel N, Geiger JW, Schiller WR, Blakemore WS (1979) Metabolic response to injury and illness: estimation of energy and protein needs from indirect calorimetry and nitrogen balance. JPEN 3:452–456

    Article  CAS  Google Scholar 

  46. Mann S, Westenskow DR, Houtchens BA (1985) Measured and predicted caloric expenditure in the acutely ill. Crit Care Med 13:173–177

    Article  PubMed  CAS  Google Scholar 

  47. Meriläinen PT (1987) Datex Deltratrac MBM 100. Description of the working principle and technical solutions. Manual No 874309

    Google Scholar 

  48. Nanni G, Siegel JH, Coleman B, Fader P, Cestiglione R (1984) Increased lipid fuel dependence in the critically ill septic patient. J Trauma 24:14–30

    Article  PubMed  CAS  Google Scholar 

  49. Norton AC (1980) Portable equipment for gas exchange. In: Kinney JM, Buskirk ER, Munro HN (eds) Assessment of energy metabolism in health and disease: report of the First Ross Conference on Medical Research. Ross Laboratories, Columbus, pp 36–41

    Google Scholar 

  50. Owen OE, Holup JL, D’Alessio DA et al (1987) A reappraisal of the caloric requirements of men. Am J Clin Nutr 46:875–885

    PubMed  CAS  Google Scholar 

  51. Quebbeman EJ, Ansman RK (1982) Estimating energy requirements in patients receiving parenteral nutrition. Arch Surg 117:1281–1285

    PubMed  CAS  Google Scholar 

  52. Rhodes JM, Caroli A, Dawson J, Hall S, Pincock A, Temple J, Elias E (1985) A controlled trial of fixed versus tailored caloric intake in patients receiving intravenous feeding after abdominal surgery. Clin Nutr 4:169–174

    Article  PubMed  CAS  Google Scholar 

  53. Robertson CS, Grossman RS (1985) Energy expenditure in the head-injured patient. Crit Care Med 13:336 (abstr)

    Google Scholar 

  54. Roza AM, Shizgal HM (1984) The Harris-Benedict equation re-evaluated: resting energy requirements and the body cell mass. Am J Clin Nutr 40:168–182

    PubMed  CAS  Google Scholar 

  55. Segal KR (1987) Comparison of indirect calorimetric measurements of resting energy expenditure with a ventilated hood, face mask and mouth piece. Am J Clin Nutr 45:1420–1423

    PubMed  CAS  Google Scholar 

  56. Siegel JH (1986) Physiologic and nutritional implications of abnormal hormone-substrate relations and altered protein metabolism in human sepsis. In: Rombeau JL, Caldwell MD (eds) Parenteral nutrition, vol 2. Saunders, Philadelphia, pp 555–575

    Google Scholar 

  57. Spanier AH, Shizgal HM (1977) Caloric requirements of the critically ill patient receiving intravenous hyperalimentation. Am J Surg 133:99–105

    Article  PubMed  CAS  Google Scholar 

  58. Stein TP (1985) Why measure the respiratory quotient of patients on total parenteral nutrition? J Am Coll Nutr 4:501–513

    PubMed  CAS  Google Scholar 

  59. Turner WW, Ireton CS, Hunt JL, Baxter Ch R (1985) Predicting energy expenditures in burned patients. J Trauma 25:11–16

    Article  PubMed  Google Scholar 

  60. Weissmann C, Damask MC, Askanazi J, Rosenbaum SH, Kinney JM (1985) Evaluation of a non-invasive method for the measurement of metabolic rate in humans. Clin Sci 69:135–141

    Google Scholar 

  61. Weissmann C, Kemper M, Damask MC (1984) Effect of routine intensive care interactions on metabolic rate. Chest 86:815–818

    Article  Google Scholar 

  62. Weissmann C, Kemper M, Elwyn DH, Askanazi J, Hyman AI, Kinney JM (1986) The energy expenditure of the mechanically ventilated critically ill patient — an analysis. Chest 89:254–259

    Article  Google Scholar 

  63. Westenskow D, Cutler C, Wallace W (1984) Instrumentation for monitoring gas exchange and metabolic rate in critically ill patients. Crit Care Med 12:183–187

    Article  PubMed  CAS  Google Scholar 

  64. Wilmore DW (1977) The metabolic management of critically ill. Plenum Medical, New York, pp 34–36

    Google Scholar 

  65. Wilmore DW, Aulick LH (1978) Metabolic changes in burned patients. Surg Clin North Am 58:1173–1187

    PubMed  CAS  Google Scholar 

  66. Wilmore DW, Long JM, Mason AD (1974) Catecholamines: mediators of the hypermetabolic response to thermal injury. Am Surg 180:653–669

    CAS  Google Scholar 

  67. Wilmore DW, Mason AD, Johnson DW, Pruitt BA (1975) Effect of ambient temperature on heat production and heat loss in burn patients. J Appi Physiol 38:593–597

    CAS  Google Scholar 

  68. Wilmore DW, Long JM, Mason AD, Pruitt BA (1976) Stress in surgical patients as a neurophysiologic reflex response. Surg Gynecol Obstet 142:257–269

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Adolph, M., Eckart, J. (1990). Importance of Indirect Calorimetry for the Nutrition of Intensive Care Patients. In: Müller, M.J., Danforth, E., Burger, A.G., Siedentopp, U. (eds) Hormones and Nutrition in Obesity and Cachexia. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75037-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75037-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51637-8

  • Online ISBN: 978-3-642-75037-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics