Skip to main content

Founder Effects in Colonizing Populations: The Case of Drosophila buzzatii

  • Conference paper
Evolutionary Biology of Transient Unstable Populations

Abstract

Colonizing species are of two kinds: those following a defined habitat, usually a human-disturbed environment (weedy species), and those shifting into a new ecological niche, distinct from the ancestral one. It has been argued (Carson, 1965) that the former do not promote speciation, but that the latter do often speciate through founder effects. According to this view, weedy species, the proper colonizing species, have some recognizable properties: a) they are the result of the fixation of genes for a defined niche, e.g. a unique host or a general adaptability; b) their chromosomal polymorphism is rigid; c) their novel genetic constitution is largely fixed in the homozygous condition, and d) they are resistant to changes by the founder effect, throughout complex, balanced systems of heterosis. On the other hand, true founder populations leading to speciation have a high segregation system, able to shift their internal balance (i.e., their coadapted gene complexes) via the founder effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allard RW, Khaler AL, Clegg MT (1977) Estimation of mating cycle components of selection in plants. In: Christansen FB and Fenchel T (eds) Measuring selection in natural populations, Lecture notes in biomathematics, vol 19. Springer Berlin Heidelberg New York, pp 1–19

    Google Scholar 

  • Anderson WW, Levine L, Olvera O, Powell JR, de la Rosa ME, Salceda VM, Gaso MI, Guzmân J (1979) Evidence for selection by male mating success in natural populations of Drosophila pseudoobscura. Proc Nat Acad Sci USA 76: 1519–1523

    Article  PubMed  CAS  Google Scholar 

  • Baker AJ, Moeed A (1987) Rapid genetic differentiation and founder effect in colonizing populations of common mynas Acridotheres tristis. Evolution 41: 525–538

    Article  Google Scholar 

  • Barker JSF, East PD, Phaff HJ, Miranda M (1984) The ecology of the yeast flora in necrotic Opuntia cacti and of associated Drosophila in Australia. Microb Ecol 10: 379–399

    Article  Google Scholar 

  • Barton NH, Charlesworth B (1984) Genetic revolutions, founder effects, and speciation. Ann Rev Ecol Syst 15: 133–164

    Article  Google Scholar 

  • Bryant EH, Van Dijk H, Van Delden W (1981) Genetic variability of the face fly, Musca Autumnalis de Geer, in relation to a population bottleneck. Evolution 35: 872–881

    Article  Google Scholar 

  • Bryant EH, Combs LM, McCommas SA (1986) The effect of an experimental bottleneck upon quantitative genetic variation in the housefly. Genetics 114: 1191–1211

    PubMed  CAS  Google Scholar 

  • Bryant E, Meffert LM (1988) Effect of an experimental bottleneck on morphological integration in the housefly. Evolution 42: 698–707

    Article  Google Scholar 

  • Carson HL (1958) The population genetics of Drosophila robusta. Advan Genet 9: 1–40

    Article  CAS  Google Scholar 

  • Carson HL (1959) Genetic conditions which promote or retard the formation of species. Cold Spr Harb Symp Quant Biol 24: 87–105

    CAS  Google Scholar 

  • Carson HL (1965) Chromosomal morphism in geographically widespread species of Drosophila. In: Baker HG, Stebbins GL (eds) Genetics of colonizing species. Academic Press, New York, pp 503–531

    Google Scholar 

  • Carson HL (1973) Reorganization of the gene pool during speciation. In: Morton NE (ed) Genetic structure of populations. Univ Press Hawaii

    Google Scholar 

  • Carson HL (1982) Speciation as a major reorganization of polygenic balances. In: Barigozzi C (eds) Mechanisms of speciation. Liss, New York, pp 411–433

    Google Scholar 

  • Carson HL (1985) Unification of speciation theory in plants and animals. Syst Bot 10: 380–390

    Article  Google Scholar 

  • Carson HL, Templeton AR (1984) Genetic revolutions in relation to speciation phenom- ena: The founding of new populations. Ann Rev Ecol Syst 15: 97–131

    Google Scholar 

  • Carson HL (1986) Sexual selection and speciation. In: Karlin S, Nevo E (eds) Evolu- tionary processes and theory. Academic Press, pp 391–409

    Google Scholar 

  • Clegg MT, Kahler AL, Allard RW (1978a) Estimation of life cycle components of selection in an experimental plant population. Genetics 89: 765–792

    PubMed  CAS  Google Scholar 

  • Clegg MT, Kahler AL, Allard RW (1978b) Genetic demography of plant populations. In: Brussard PF (ed) Ecological genetics: The interface. Springer, Berlin Heidelbreg New York, pp 173–178

    Chapter  Google Scholar 

  • Christiansen FB (1977) Population Genetics of Zoarces viviparus (L.) A review. In: Christiansen FB, Frydenberg O (eds) Measuring selection in natural populations. Springer, Berlin Heidelberg New York, pp 21–47

    Google Scholar 

  • Crumpacker DW, Pyati J, Ehrman L (1977) Ecological genetics and chromosomal polymorphism in Colorado populations of Drosophila pseudoobscura. Evol Biol 10: 437–469

    Google Scholar 

  • Dobzhansky T (1957) Genetics of natural populations. XXVI. Chromosomal variability in island and continental populations of Drosophila willistoni from Central America and West Indies. Evolution 11: 280–293

    Article  Google Scholar 

  • Dobzhansky T, Levene H (1948) Genetics of natural populations. XVII. Proof of operation of natural selection in wild populations of Drosophila pseudoobscura. Genetics 33: 537–547

    Google Scholar 

  • Font Quer P (1973) Plantas Medicinales: El Dioscórides Renovado. Barcelona Fontdevila A, Ruiz A, Alonso G, Ocana J (1981) The evolutionary history of Drosophila buzzatii. I. Natural chromosomal polymorphism in colonized populations of the Old World. Evolution 35: 148–157

    Google Scholar 

  • Fontdevila A (1982) Recent developments on the evolutionary history of the Drosophila mulleri complex in South America. In: Barker JSF, Starmer WT (eds) Ecological genetics and evolution. Academic Press Australia, pp 81–95

    Google Scholar 

  • Fontdevila A, Ruiz A, Ocana J, Alonso G (1982) The evolutionary history of Drosophila buzzatii II. How much has chromosomal polymorphism changed in colonization? Evolution 36: 843–851

    Article  Google Scholar 

  • Fontdevila A (1987) The unstable genome: An evolutionary approach. Genét Ibér 39: 315–349

    Google Scholar 

  • Fontdevila A, Pla C, Hasson E, Wasserman M, Sanchez A, Naveira H, Ruiz A (1988) Drosophila koepferae: a new member of the D. serido superspecies taxon. Ann Ent Soc USA 81: 380–385

    Google Scholar 

  • Goodnight CJ (1987) On the effect of founder events on epistatic genetic variance. Evolution 41: 80–91

    Article  Google Scholar 

  • Goodnight CJ (1988) Epistasis and the effect of founder events on the additive genetic variance. Evolution 42: 441–454

    Article  Google Scholar 

  • Hasson E (1988) Ecogenética evolutiva de Drosophila buzzatii y Drosophila koepferae (complejo mulleri, grupo repleta, Drosophilidae: Diptera) en las zonas aridas y semiaridas de Argentina. Ph.D.Thesis, Universidad de Buenos Aires, Argentina.

    Google Scholar 

  • Hasson E, Vilardi JC, Fanara JJ, Rodriguez C, Reig OA, Fontdevila A (1989) The evolutionary history of Drosophila buzzatii. X VI. Fitness component analysis in an endemic natural population from Argentina. J. Evol Biol (submitted)

    Google Scholar 

  • Kimura M (1971) Theoretical foundation of population genetics at the molecular level. Theor Popul Biol 2: 174–208

    Article  PubMed  CAS  Google Scholar 

  • Lewontin R (1965) Selection for colonizing ability. In: Baker HG, Stebbins GL (eds) The genetics of colonizing species. Academic Press, New York London, pp 77–94

    Google Scholar 

  • Lewontin RC (1974) The genetics of the evolutionary process. Columbia University Press

    Google Scholar 

  • MacBean IY, McKenzie JA, Parsons PA (1971) A pair of closely linked genes controlling high scutellar chaeta number in Drosophila. Theor Appl Genet 41: 227–235

    Google Scholar 

  • Mann J (1970) Cacti Naturalised in Australia and their Control. S G Reid Government Printer Brisbane

    Google Scholar 

  • Nadeau JH, Baccus R (1981) Selection components of four allozymes in natural populations of Peromyacus maniculatus. Evolution 35: 11–20

    Article  Google Scholar 

  • Nadeu JH, Baccus R (1983) Gametic selection and hemoglobin polymorphism in Peromyscus maniculatus: a rejoinder. Evolution 37: 642–646

    Article  Google Scholar 

  • Peris F (1989) Adaptación trófica y evolución de Drosophila en zonas aridas. Ph. D. Thesis Universitat Autònoma de Barcelona

    Google Scholar 

  • Ruiz A, Fontdevila A, Santos M, Seoane M, Torroja E (1986) The evolutionary history of Drosophila buzzatii. VIII. Evidence for endocyclic selection acting on the inversion polymorphism in a natural population. Evolution 40: 740–755

    Article  Google Scholar 

  • Ruiz A, Naveira H, Fontdevila A (1984) La historia evolutiva de Drosophila buzzatii. IV. Aspectos citogenéticos de su polimorfismo cromosómico. Genét Ibér 36: 13–35

    Google Scholar 

  • Sanchez A (1986) Relaciones filogenéticas en los clusters buzzatii y martensis (grupo repleta) de Drosophila. Tesis doctoral Universitat Autónoma de Barcelona

    Google Scholar 

  • St Louis VL, Barlow JC (1988) Genetic differentiation among ancestral and introduced populations of the eurasian tree sparrow Passer montanus. Evolution 42: 266–276

    Article  Google Scholar 

  • Thoday JM, Gibson JB, Spickett SG (1964) Regular responses to selection. 2. Recom-bination and accelerated response. Genet Res 5: 1–19

    Article  Google Scholar 

  • Vacek DC (1982) Interactions between microorganisms and cactophilic Drosophila in Australia. In: Barker JSF, Starmer WT (eds) Ecological genetics and evolution. Academic Press, Australia, pp 175–190

    Google Scholar 

  • Wrigth S (1977) Evolution and the genetics of populations, vol III. Univ. Chicago Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fontdevila, A. (1989). Founder Effects in Colonizing Populations: The Case of Drosophila buzzatii . In: Fontdevila, A. (eds) Evolutionary Biology of Transient Unstable Populations. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74525-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74525-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74527-0

  • Online ISBN: 978-3-642-74525-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics