Skip to main content

Part of the book series: Advanced Series in Agricultural Sciences ((AGRICULTURAL,volume 18))

Abstract

Generalized linear models (GLM), a flexible extension of linear models, are described. Specific examples of their application to animal breeding problems are given. These include the estimation of variance components, for normal and non-normal data, the estimation of heritability by offspring-parent regression for binary traits, and the estimation of gene frequencies. Unresolved problems are highlighted. Animal breeding studies that have used GLM methods are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramowitz M, Stegun I (1972) Handbook of mathematical functions. Dover, New York

    Google Scholar 

  • Anderson DA, Aitkin M (1985) Variance component models with binary response: interviewer variability. JR Stat Soc B 47:203–210

    Google Scholar 

  • Atkins KD, Thompson R (1986) Predicted and realised responses to selection for an index of bone length and body size in Scottish Blackface sheep. 2. Correlated responses in lifetime productivity. Anim Prod 43:437–445

    Article  Google Scholar 

  • Breslow NE (1984) Extra-Poisson variation in log-linear models. Appl Stat 33:38–44

    Article  Google Scholar 

  • Box GEP, Cox DR (1964) An analysis of transformations (with discussion). JR Stat Soc B 26:211–252

    Google Scholar 

  • Cox DR, Reid N (1987) Parameter orthogonality and approximate conditional inference. JR Stat Soc B 49:1–39

    Google Scholar 

  • Crosbie SF, Hinch GN (1985) An intuitive explanation of generalised linear models. New Zealand Ag Res 28:19–29

    Google Scholar 

  • Crowder M (1985) Gaussian estimation for correlated binomial data. JR Stat Soc 47:229–237

    Google Scholar 

  • Dempster AP, Selwyn MR, Patel CM, Roth AJ (1984) Statistical and computational aspects of mixed model analysis. Appl Stat 33:203–214

    Article  Google Scholar 

  • Diaconis P, Efron B (1985) Testing for independence in a two-way table: new interpretations of the Chi-square statistic. Ann Stat 13:845–874

    Article  Google Scholar 

  • Dobson AJ (1983) An introduction to statistical modelling. Chapman and Hall, London

    Google Scholar 

  • Elandt-Johnson RC (1971) Probability models and statistical methods in genetics. Wiley, New York

    Google Scholar 

  • Falconer DS (1965) The inheritance of liability to certain diseases estimated from the incidence among relatives. Ann Hum Genet 29:51–76

    Article  Google Scholar 

  • Foulley JL, Gianola D (1984) Estimation of genetic merit from bivariate “all or none” responses. Genet Sel Evol 16:285–306

    Article  Google Scholar 

  • Foulley JL, Gianola D, Thompson R (1983) Prediction of genetic merit from data on categorical and quantitative variates with an application to calving difficulty, birth weight and pelvic opening. Genet Sel Evol 15:407–424

    Article  Google Scholar 

  • Gilmour AR, Anderson RD, Rae AL (1985) The analysis of binomial data in a generalised linear mixed model. Biometrika 72:593–599

    Article  Google Scholar 

  • Green PJ (1982) The APL alternative. GLIM: 82. In: Gilschrist R(ed) Proc Int Conf Gen Linear Models. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Harville DA, Mee RW (1984) A mixed-model procedure for analyzing ordered categorical data. Biometrics 40:393–408

    Article  Google Scholar 

  • Haseman JD, Kupper LL (1979) Analysis of dichotomous response data from certain toxicological experiments. Biometrics 35:281–292

    Article  PubMed  CAS  Google Scholar 

  • Henderson CR (1975) Best linear unbiased estimation and prediction under a selection model. Biometrics 31:423–449

    Article  PubMed  CAS  Google Scholar 

  • Hoschele I (1986) Estimation of breeding values and variance components with quasi continuous data. PhD Thesis, Hohenheim Univ

    Google Scholar 

  • Im S (1984) Plan mixte equilibre a deux facteurs hierarchiques pour les donnees binaires. Biometrics 40:283–292

    Article  Google Scholar 

  • James JW, McGuirk BJ (1982) Regression of offspring on parent for all-or-none traits. Z Tierz Züchtungsbiol 99:308–314

    Article  Google Scholar 

  • Jensen J (1986) Sire evaluation for type traits with linear and non-linear procedures. Livest Prod Science 15:165–171

    Article  Google Scholar 

  • Laird NM (1978) Empirical Bayes methods for two-way contingency tables. Biometrika 65:581–590

    Article  Google Scholar 

  • Leonard T (1972) Bayesian methods for binomial data. Biometrika 59:581–589

    Article  Google Scholar 

  • Lindley DV, Smith AFM (1972) Bayes estimates for the linear model. JR Stat Soc B 34:1–41

    Google Scholar 

  • McCullagh P, Neider JA (1983) Generalized linear models. Chapman and Hall, London

    Google Scholar 

  • McGuirk BJ, Atkins KD (1984) Fleece rot in merino sheep. 1. The inheritance of fleece rot in a flock of medium-wool Peppin Merinos. Austr J Agric Res 35:425–434

    Article  Google Scholar 

  • Meijering A (1985) Sire evaluation for calving traits by best linear unbiased prediction and non-linear methodology. Z Tierz Züchtungsbiol 102:95–105

    Google Scholar 

  • Meijering A, Gianola D (1985a) Linear versus non-linear methods of sire evaluation for categorical traits: a simulation study. Genet Sel Evol 17:115–132

    Article  Google Scholar 

  • Meijering A, Gianola D (1985b) Observations on sire evaluation with categorical data using heteroscedastic mixed linear models. J Dairy Sci 68:1226–1232

    Article  PubMed  CAS  Google Scholar 

  • Neider JA (1985) Quasi-likelihood and GLIM. In: Gilchrist R, Francis B, Whittaker J (eds) Generalized linear models, Proceedings. Springer-Verlag, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Neider JA, Wedderburn RWM (1972) Generalized linear models. JR Stat Soc A 135:370– 384

    Article  Google Scholar 

  • O’Hagan A (1976) On posterior joint and marginal modes. Biometrika 63:329–333

    Article  Google Scholar 

  • Patterson HD, Thompson R (1971) Recovery of inter-block information when block sizes are unequal. Biometrika 58:545–554

    Article  Google Scholar 

  • Robertson A, Lerner IM (1949) The heritability of all-or-none traits: viability of poultry. Genetics 34:395–411

    Google Scholar 

  • Rodger JH (1982) Composite link functions with linear log link and Poisson error. GLIM Newsletter, December, 1982

    Google Scholar 

  • Ryder ML, Land RB, Ditchburn R (1974) Colour inheritance in Soay, Orkney and Shetland sheep. J Zool 173:477–485

    Article  Google Scholar 

  • Stiratelli R, Laird N, Ware JH (1984) Random-effects models for serial observations with binary response. Biometrics 40:961–971

    Article  PubMed  CAS  Google Scholar 

  • Tallis GM (1962) The maximum likelihood estimation of correlation from contingency tables. Biometrics 18:342–353

    Article  Google Scholar 

  • Thompson R (1979) Sire evaluation. Biometrics 35:339–353

    Article  Google Scholar 

  • Thompson R (1980) Maximum likelihood estimation of variance components. Math Operationforsch Stat 11:545–561

    Google Scholar 

  • Thompson R, Baker RJ (1981) Composite link functions in generalised linear models. Appl Stat 30:125–131

    Article  Google Scholar 

  • Thompson R, McGuirk BJ, Gilmour AR (1985) Estimating the heritability of all-or-none and categorical traits by offspring-parent regression. Z Tierz Züchtungsbiol 102:342–354

    Google Scholar 

  • Williams DA (1982) Extra binomial variation in logistic linear models. Appl Stat 31:144–148

    Article  Google Scholar 

  • Woolliams C, Suttle NF, Woolliams JA, Jones DG, Wiener G (1986) Studies on lambs from lines genetically selected for low and high copper status. 1. Differences in mortality. Anim Prod 43:293–301

    Article  CAS  Google Scholar 

  • Zhao Y (1986) Applications of the threshold model to calving ease in Simmental cattle. MS Thesis, Cornell Univ

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thompson, R. (1990). Generalized Linear Models and Applications to Animal Breeding. In: Gianola, D., Hammond, K. (eds) Advances in Statistical Methods for Genetic Improvement of Livestock. Advanced Series in Agricultural Sciences, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74487-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74487-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74489-1

  • Online ISBN: 978-3-642-74487-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics