Skip to main content

The Cytogenesis of Macrophages and Osteoclast-like Giant Cells in Bone Tumors with Special Emphasis on the So-Called Fibrohistiocytic Tumors

  • Chapter
Biological Characterization of Bone Tumors

Part of the book series: Current Topics in Pathology ((CT PATHOLOGY,volume 80))

Abstract

The osteoclast was first described in 1873 by Kölliker as a “bone resorbing cell.” Its origin, however, remained obscure. Osteoblasts and osteoclasts were first believed to have a common origin, a precursor descending from the connective tissue of bone (Tonna and Cronkite 1961). Later observations and experimental results prompted a search for osteoclast precursors in the mononuclear phagocyte system (Fishman and Hay 1962; Jee and Nolan 1963; Hanaoka et al. 1970; Chambers 1978; Byers et al. 1975; Kasahara et al. 1979). Morphological and enzyme histochemical investigations revealed several similarities between macrophages and multinucleated giant cells in bone tumors, as far as their histological appearance and their intracellular enzymatic pattern were concerned (Chambers 1978; Aparisi etal. 1977; Steiner etal. 1972; Schajowicz 1961; Yoshida etal. 1982). Osteoclasts and tumor-associated giant cells were found to share the presence of the enzymes nonspecific esterase and acid Phosphatase, which are both equally characteristic of macrophages (Chambers 1978; Schajowicz 1961). Experimental cell analysis in studies of thorotrast-stained peritoneal macrophages from healthy rats, transfused into histocompatible rats with experimental fractures (Göthlin and Ericsson 1976), as well as studies of osteopetrotic mice (Loutit and Sansom 1976), further advanced the research. Quail-chick chimera experiments suggested that osteoclasts are differentiated descendants of the multipotential hematopoietic stem cell of the bone marrow (Ash et al. 1980).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alguacil-Garcia A, Unni KK, Goellner JR (1978) Malignant fibrous histiocytoma. An ultrastructural study of six cases. Am J Clin Pathol 69: 121–129

    PubMed  CAS  Google Scholar 

  • Aparisi T, Arborgh B, Ericsson JLF (1977) Giant cell tumor of bone: fine structural analysis of acid phosphatase. Virchows Arch 376: 299–308

    CAS  Google Scholar 

  • Ash P, Loutit JF, Townsend KMS (1980) Osteoclasts derive from haematopoietic stem cells. Nature 283: 669–670

    Article  PubMed  CAS  Google Scholar 

  • Athanasou NA, Bliss E, Gatter KC, Heryet A (1985) An immunohistological study of giant cell tumor of bone: evidence for an osteoclast origin ofthe giant cells. J Pathol 147: 153–158

    Article  PubMed  CAS  Google Scholar 

  • Athanasou NA, Quinn J, McGee JOD (1988) Immunocytochemical analysis of the human osteoclast: phenotypic relationship to other marrow-derived cells. Bone Mineral 3: 317–333

    CAS  Google Scholar 

  • Breard J, Reinherz EL, Kung PC, Goldstein C, Schlossmann SF (1980) A monoclonal antibody reactive with human peripheral blood monocytes. J Immunol 124: 1943–1948

    PubMed  CAS  Google Scholar 

  • Brooks JP, Pascal RR (1984) Malignant giant cell tumor of bone: ultrastructural and immunohistologic evidence of histiocytic origin. Hum Pathol 15: 1098–1100

    Article  PubMed  CAS  Google Scholar 

  • Burger EH, van der Meer JWM, Nijweide PJ (1984) Osteoclasts formation from mononuclear phagocytes: role of bone forming cells. J Cell Biol 99: 1901–1908

    Article  PubMed  CAS  Google Scholar 

  • Byers VS, Levin AS, Johnston JO, Hackett AJ (1975) Quantitative immunofluorescence studies of the tumor antigen bearing cells in giant cell tumor of bone and osteogenic sarcoma. Cancer Res 35: 2520–2525

    PubMed  CAS  Google Scholar 

  • Chambers TJ (1978) Multinucleate giant cells. J Pathol 126: 125–148

    Article  PubMed  CAS  Google Scholar 

  • Cordeil JL, Fallini B, Erber WN et al. (1984) Immunoenzymatic labelling of monoclonal antibodies using immune complexes of alkaline phosphatase and monoclonal anti-alkaline phosphatases. J Histochem Cytochem 22: 219–229

    Article  Google Scholar 

  • Dehner LP (1988) Malignant fibrous histiocytoma. Nonspecific morphologic pattern, specific pathologic entity, or both? Arch Pathol Lab Med 112: 236–237

    PubMed  CAS  Google Scholar 

  • Dimitriou-Bona A, Burmester GR, Waters SJ, Winchester RJ (1983) Human mononuclear phagocyte differentiation antigens. I. Patterns of antigenic expression on the surfaces of human monocytes and macrophages defined by monoclonal antibodies. J Immunol 130: 145–152

    Google Scholar 

  • Du Boulay A (1982) Demonstration of ax-antitrypsin and aj-antichymotrypsin in fibrous histiocytoma using the immunoperoxidase technique. Am J Surg Pathol 6: 559–564

    Article  PubMed  Google Scholar 

  • Erlandson RA (1984) Diagnostic immunohistochemistry of human tumors. Am J Surg Pathol 8: 615–624

    Article  PubMed  CAS  Google Scholar 

  • Fishman Da, Hay ED (1962) Origin of osteoclasts from mononuclear leukocytes in regenerating new limbs. Anat Rec 143: 329–338

    Article  Google Scholar 

  • Fu SY, Gabbiani G, Kaye G, Lattes R (1975) Malignant soft tissue tumors of probable histiocytic origin (malignant fibrous histiocytomas): general considerations and electron microscopic and tissue culture studies. Cancer 35: 176–198

    Article  PubMed  CAS  Google Scholar 

  • Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H (1984) Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol 133: 1710–1715

    PubMed  CAS  Google Scholar 

  • Göthlin G, Ericsson JLE (1976) The osteoclast. Review of ultrastructure, origin, and structure-function relationship. Clin Orthop Rel Res 120: 201–231

    Google Scholar 

  • Hanaoka HB, Friedman B, Mack RP (1970) Ultrastructure and histogenesis of giant cell tumor of bone. Cancer 25: 1408–1423

    Article  PubMed  CAS  Google Scholar 

  • Hanaoka H, Yabe H (1985) A new concept of the origin and development of the osteoclast (abstract). Dept Orthop Surg School of Med, Keio University 35 Shinanomachi Shinjukuku, Tokyo 160

    Google Scholar 

  • Hiddemann W, Roessner A, Wörmann B etal. (1987) Tumor heterogeneity in osteosarcoma as identified by flow cytometry. Cancer 59: 324–328

    Article  PubMed  CAS  Google Scholar 

  • Hogg N, Shapiro IM, Jones SJ, Slusarenco M, Bovde A (1980) Lack of Fc-receptors on osteoclasts. Cell Tissue Res 212: 509–516

    Article  PubMed  CAS  Google Scholar 

  • Horton MA, Rimmer EF, Lewis D, Pringle JAS, Füller K, Chambers TJ (1984) Cell surface chracterization of the human osteoclast: phenotypic relationship to other bone marrow-derived cell types. J Pathol 144: 281–294

    Article  PubMed  CAS  Google Scholar 

  • Huvos A (1979) Bone tumors. Diagnosis, treatment, and prognosis. Saunders, Philadelphia

    Google Scholar 

  • Isaacson P, Jones DB, Judd MA (1979) α1-Antitrypsin in human macrophages. Lancet II: 964–965

    Article  Google Scholar 

  • Iwasaki H, Kikuchi M, Takii M, Enjoji M (1982) Benign and malignant fibrous histiocytomas of the soft tissues. Functional characterization of the cultured cells. Cancer 50: 520–530

    Article  PubMed  CAS  Google Scholar 

  • Jee WSS, Nolan PD (1963) Origin of the osteoclasts from fusion of phagocytes. Nature 200: 225

    Article  PubMed  CAS  Google Scholar 

  • Kasahara K, Yamamuto T, Kasahara A (1979) Giant cell tumor of bone: cytological studies. Br. J Cancer 40: 201–209

    Article  PubMed  CAS  Google Scholar 

  • Katenkamp D, Stiller D (1981) Malignant fibrous histiocytoma of bone. Light microscopic and electron microscopic examination of four cases. Virchows Arch 391: 323–335

    CAS  Google Scholar 

  • Kindblom IG, Jacobsen G, Jacobsen M (1982) Immunohistochemical investigations of tumors of supposed fibroblastic-histiocytic origin. Hum Pathol 13: 834–840

    Article  PubMed  CAS  Google Scholar 

  • Knowles DM, Iolidijiana B, Marboe C, D’Agati V, Grimes M, Chess L (1984) Monoclonal antihuman monocyte antibodies OKM 1 and OKM 5 possess distinctive tissue distributions including differential reactivity with vascular endothelium. J Immunol 132: 2170–2179

    PubMed  Google Scholar 

  • Kölliker A (1873) Die normale Resorption des Knochengewebes und ihre Bedeutung für die Entstehung der typischen Knochenformen. F.C.W. Vogel, Leipzig

    Google Scholar 

  • Lawson CW, Fischer C, Gatter KC (1987) An immunohistochemical study of differentiation in malignant fibrous histiocytoma. Histopathology 11: 375–383

    Article  PubMed  CAS  Google Scholar 

  • Loutit JF, Sansom JM (1976) Osteopetrosis of microphthalmic mice — a defect of the hematopoietic stem cell? Calcif Tissue Res 20: 251–262

    Article  PubMed  CAS  Google Scholar 

  • Loutit JF, Nisbet NW (1982) The origin of the osteoclast. Immunobiol 161: 193

    Article  CAS  Google Scholar 

  • Mason BY, Taylor CR (1975) The distribution of muramidase (lysozyme) in human tissues. J Clin Pathol 28: 124–132

    Article  PubMed  CAS  Google Scholar 

  • Meister P (1984) Immunhistochemische Methoden bei der Diagnostik von Weichgewebstumoren. Pathologe 5: 90–98

    PubMed  CAS  Google Scholar 

  • Meister P, Nathrath W (1981) Immunohistochemical characterization of histiocytic tumors. Diagn Histopathol 4: 79–87

    PubMed  CAS  Google Scholar 

  • Motoi M, Helbron D, Kaiserling E, Lennert K (1980) Eosinophilie granuloma of lymph nodes — a variant of histiocytosis X. Histopathology 4: 585–606

    Article  PubMed  CAS  Google Scholar 

  • Nash JRG (1982) Macrophages in human tumours: an immunohistochemical study. J Pathol 136: 73–83

    Article  Google Scholar 

  • Nathrath W, Meister P (1982) Lysozyme (muramidase) and oci-antichymotrypsin as immunohistochemical tumour markers. Acta Histochem [Suppl] 25: 69–72

    CAS  Google Scholar 

  • Oursler MJ, Bell LV, Clevinger B, Osdoby PH (1985) Identification of osteoclast-specific monoclonal antibodies. J Cell Biol 100: 1592–1600

    Article  PubMed  CAS  Google Scholar 

  • Permanetter W, Meister P (1984) Distribution of lysozyme (muramidase) and α1-antiehymotrypsin in normal and neoplastic epithelial tissues. A survey. Acta Histochem 74: 173–179

    PubMed  CAS  Google Scholar 

  • Radzun HJ (1985) Immunhistochemie des menschlichen Mononukleär-Phagozytischen Systems. Immunohistochemical analysis of the human mononuclear phagocyte system. Gustav Fischer, Stuttgart

    Google Scholar 

  • Radzun HJ, Parwaresch MR (1983) Differential immunohistochemical resolution of the human mononuclear phagocyte system. Cell Immunol 82: 174–183

    Article  PubMed  CAS  Google Scholar 

  • Radzun HJ, Parwaresch MR, Feller AC, Hansmann ML (1984) Monocyte/macrophage-specific mononuclear antibody Ki-M-1 recognizes interdigitating reticulum cells. Am J Pathol 17: 441–450

    Google Scholar 

  • Roessner A (1984) Zur Zyto- und Histogenese der malignen und semimalignen Knochentumoren. Gustav Fischer, Stuttgart

    Google Scholar 

  • Roessner A, Hobik HP, Grundmann E (1979) Malignant fibrous histiocytoma of bone and osteosarcoma. A comparative light and electron microscopy study. Pathol Res Pract 164: 385–401

    Article  PubMed  CAS  Google Scholar 

  • Roessner A, Zwadlo G, Vollmer E, Sorg C, Grundmann E (1987) Biologie characterization of human bone tumors. IX. Occurrence of macrophages. Pathol Res Pract 182: 336–343

    PubMed  CAS  Google Scholar 

  • Roholl PJM, Kleijne J, van Basten CFH, van der Putte SCJ, van Unnik JAM (1985) A study to analyze the origin of tumor cells in malignant fibrous histiocytomas. A multiparametric characterization. Cancer 56: 2809–2815

    Article  PubMed  CAS  Google Scholar 

  • Schajowicz F (1961) Giant cell tumors of bone (osteoclastoma). A pathological and histochemical study. J Bone Joint Surg 43: 1–7

    Google Scholar 

  • Shen H, Talle MA, Goldstein G, Chess L (1983) Functional subsets of human macrophages defined by monoclonal antibodies: a distinct subset of monocytes containing the cells capable of inducing the autologous mixed lymphocyte culture. J Immunol 130: 698–705

    PubMed  CAS  Google Scholar 

  • Steiner GC, Ghosh L, Dorfman HD (1972) Ultrastructure of giant cell tumor of bone. Hum Pathol 3: 569–586

    Article  PubMed  CAS  Google Scholar 

  • Talle MA, Allegar N, Makowski M, Rao PE, Mittler RS, Goldstein G (1983) Classification of human lymphocytes and monocytes with the OK series of monoclonal antibodies. Diagn Immunol 1: 129–135

    PubMed  CAS  Google Scholar 

  • Todd RE, Biondi A, Roach JA (1985) Human macrophage antigens. In: van Furth R (ed) The mononuclear phagocytes. Characteristics, physiology and function. Martinus Nijhoff, Dordrecht

    Google Scholar 

  • Tonna EA, Cronkite EP (1961) Use of tritiated thymidine for the study of the origin of the osteoclasts. Nature 190: 459–463

    Article  PubMed  CAS  Google Scholar 

  • Ugolini V, Nunez G, Smith RG, Stastny P, Capra JD (1980) Initial characterization of monoclonal antibodies against human monocytes. Proc Natl Acad Sci USA 77: 6764–6768

    Article  PubMed  CAS  Google Scholar 

  • Vollmer E, Roessner A, Gerdes J, Mellin W, Stein H, Chong-Schachel S, Grundmann E (1986) Improved grading of bone tumors with the monoclonal antibody Ki-67. J Cancer Res Clin Oncol 112: 281–282

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H, Akeho M, Yumoto T (1982) Giant cell tumor of bone. Enzyme histochemical, biochemical and tissue culture studies. Virchows Arch 395: 319–330

    CAS  Google Scholar 

  • Zwadlo G, Feige U, v. Bassewitz DB, Bröcker EB, Sorg C (1983) Monoclonal antibodies against human macrophages: distribution of macrophage subtypes in normal, inflammatory, and tumor tissue (abstract). Immunobiology 165: 242

    Google Scholar 

  • Zwadlo G, Bröcker EB, Bassewitz v. DB, Feige U, Sorg C (1985) A monoclonal antibody to a differentiation antigen present on mature human macrophages and absent from monocytes. J Immunol 134: 1487–1492

    PubMed  CAS  Google Scholar 

  • Zwadlo G, Schlegel T, Sorg C (1986) A monoclonal antibody to a subset of human monocytes found only in the peripheral blood and inflammatory tissues. J Immunol (in press)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roessner, A. et al. (1989). The Cytogenesis of Macrophages and Osteoclast-like Giant Cells in Bone Tumors with Special Emphasis on the So-Called Fibrohistiocytic Tumors. In: Roessner, A. (eds) Biological Characterization of Bone Tumors. Current Topics in Pathology, vol 80. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74462-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74462-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74464-8

  • Online ISBN: 978-3-642-74462-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics