Skip to main content

Effects of Soil Acidity on Plant Associations

  • Chapter
Soil Acidity

Abstract

The dependence of vegetation on soil acidity is a conspicuous phenomenon in humid climates that has been described in a vast number of publications. Most striking is the difference in vegetation between soils rich in calcium carbonate with pH ≧ 6 [CO2/carbonate-buffer range, according to Ulrich (1981)] and soils poor in calcium, with pH ≦ 4 (aluminium- and iron-buffer range). Only very few plant species grow equally well in both buffer ranges. Species occurring exclusively in the former range are known as calcicole and species occurring only in the latter range are known as calcifuge (Hope Simpson 1938). In comparison to these extreme groups the majority of species displays a more or less intermediate occurrence. A closer examination reveals, however, that even these species can be grouped according to their respective distribution within the whole pH-span of humid climate soils (Ellenberg 1979). This means, on the other hand, that these groupings make it possible to use species or plant associations as indicators of soil acidity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams F, Lund ZF (1966) Effect of chemical activity of soil solution on cotton root penetration of acid subsoils. Soil Sci 101:193–198

    Article  CAS  Google Scholar 

  • Albert R (1982) Halophyten. In: Kinzel H (ed) Pflanzenökologie und Mineralstoffwechsel. Ulmer, Stuttgart, pp 33–204

    Google Scholar 

  • Alva AK, Edwards DG, Asher CJ, Blarney FPC (1986) Effects of P:Al molar ratio and calcium concentration on plant response to aluminium toxicity. Soil Sci Soc Am J 50:133–137

    Article  CAS  Google Scholar 

  • Bauch J, Schröder W (1982) Zellulärer Nachweis einiger Elemente in den Feinwurzeln gesunder und erkrankter Tannen (Abies alba Mill.) und Fichten (Picea abies (L.) Karst.). Forstwiss Centralbl 101:285–294

    Article  Google Scholar 

  • Blarney FPC, Edwards DG, Asher CJ (1983) Effects of aluminium, OH:Al and P:Al molar ratios, and ionic strength on soybean root elongation in solution culture. Soil Sci 136:197–207

    Article  Google Scholar 

  • Bogner W (1968) Experimentelle Prüfung von Waldbodenpflanzen auf ihre Ansprüche an die Form der Stickstoff-Ernährung. Mitt Ver Forstl Standortskd Forstpflanzenzücht 18:3–45

    Google Scholar 

  • Bradshaw AD, Lodge RW, Jowett D, Chadwick MJ (1958) Experimental investigations into the mineral nutrition of several grass species. Part I: calcium level. J Ecol 46:749–757

    Article  Google Scholar 

  • Caldwell CR, Haug A (1982) Divalent cation inhibition of barley root plasma membrane-bound Ca2 + -ATPase activity and its reversal by monovalent cations. Physiol Plant 54:112–118

    Article  CAS  Google Scholar 

  • Clarkson DT (1965) The effect of aluminium and some other trivalent metal cations on cell division in the root apices of Allium cepa. Ann Bot 29/114:309–315

    Google Scholar 

  • Clarkson DT (1966) Aluminium tolerance in species within the genus Agrostis. J Ecol 54:167–178

    Article  Google Scholar 

  • Clymo RS (1962) An experimental approach to part of the calcicole problem. J Ecol 50:707–731

    Article  CAS  Google Scholar 

  • Cramer GR, Läuchli A, Polito VS (1985) Displacement of Ca2+ by Na+ from the plasmalemma of root cells. A primary response to salt stress? Plant Physiol 79:207–211

    Article  PubMed  CAS  Google Scholar 

  • Ellenberg H (1958) Bodenreaktion (einschließlich Kalkfrage). In: Ruhland W (ed) Handbuch der Pflanzenphysiologie IV. Springer, Berlin Göttingen Heidelberg, pp 638–708

    Google Scholar 

  • Ellenberg H (1979) Zeigerwerte der Gefäßpflanzen Mitteleuropas. Scr Geobot IX, 2. Aufl, Goltze KG, Göttingen

    Google Scholar 

  • Evers FH (1964) Die Bedeutung der Stickstofform für Wachstum und Ernährung der Pflanzen, insbesondere der Waldbäume. Mitt Ver Forstl Standortskd Forstpflanzenzücht 14:19–37

    Google Scholar 

  • Fluri M (1909) Der Einfluß von Aluminiumsalzen auf das Protoplasma. Flora 99:81–126

    Google Scholar 

  • Foy CD (1974) Effects of aluminium. In: Carson EW (ed) The plant root and its environment. Univ Press Virginia, Charlottesville, pp 603–642

    Google Scholar 

  • Foy CD (1983) Plant adaptation to mineral stress in problem soils. Iowa State J Res 57:339–354

    CAS  Google Scholar 

  • Foy CD, Burns GR, Brown JC, Fleming AL (1965) Differential aluminium tolerance of two wheat varieties associated with plant-induced pH-changes around their roots. Soil Sci Soc Am Proc 29:64–67

    Article  CAS  Google Scholar 

  • Foy CD, Fleming AL, Burns GR, Armiger WR (1967) Characterization of differential aluminium-tolerance among varieties of wheat and barley. Soil Sci Soc Am Proc 31:513–521

    Article  CAS  Google Scholar 

  • Foy CD, Fleming AL, Armiger WH (1969) Aluminium tolerance of soybean varieties in relation to calcium nutrition. Agron J 61:505–511

    Article  CAS  Google Scholar 

  • Foy CD, Chaney RL, White MC (1978) The physiology of metal toxicity of plants. Ann Rev Plant Physiol 29:511–566

    Article  CAS  Google Scholar 

  • Gigon A, Rorison IH (1972) The response of some ecologically distinct plant species to nitrate- and ammonium-nitrogen. J Ecol 60:93–102

    Article  CAS  Google Scholar 

  • Godbold DL, Fritz E, Hüttermann A (1988) Aluminium toxicity and forest decline. Proc Natl Acad Sci USA 85:3888–3892

    Article  PubMed  CAS  Google Scholar 

  • Grothus R (1986) Wachstum und Nährstoffaufnahme calcicoler und calcifuger Arten in Abhängigkeit vom Calcium-Gehalt des Substrats. Diplomarbeit Syst Geobot Inst Univ Göttingen (unpubl)

    Google Scholar 

  • Häussling M, Leisen E, Marschner H, Römheld V (1985) An improved method for non-destructive measurements of the pH at the root-soil interface (rhizosphere). J Plant Physiol 117:371–375

    Google Scholar 

  • Hanson JB (1984) The functions of calcium in plant nutrition. In: Tinker PB, Läuchli A (eds) Advances in plant nutrition 1. Praeger Sei, NY, pp 149–208

    Google Scholar 

  • Harrison-Murray RS, Clarkson DT (1973) Relationships between structural development and the absorption of ions by the root system of Cucurbita pepo. Planta 114:1–16

    Article  CAS  Google Scholar 

  • Hartwell BL, Pember FR (1918) The presence of aluminium as a reason for the difference in the effect of so-called acid soil on barley and rye. Soil Sci 6:259–277

    Article  CAS  Google Scholar 

  • Haug A (1984) Molecular aspects of aluminium toxicity. Crit Rev Plant Sci 1,I.4:345–373

    Article  CAS  Google Scholar 

  • Hope Simpson JF (1938) A chalk flora on the lower greensand: its use in interpreting the calcicole habit. J Ecol 26:218–235

    Article  Google Scholar 

  • Horst WJ, Wagner A, Marschner H (1983) Effect of aluminium on root growth, cell-division rate and mineral element contents in roots of Vigna unguiculata genotypes. Z Pflanzenphysiol 109:95–103

    CAS  Google Scholar 

  • Huett DO, Menary RC (1980) Aluminium distribution in freeze-dried roots of cabbage, lettuce and kikuyu grass by energy-dispersive X-ray analysis. Aust J Plant Physiol 7:101–111

    Article  CAS  Google Scholar 

  • Ingestad T, Lund A-B (1986) Theory and techniques for steady state mineral nutrition and growth of plants. Scand J For Res I:439–453

    Article  Google Scholar 

  • Jefferies RL, Willis AJ (1964) Studies on the calcicole-calcifuge habit. II. The influence of calcium on the growth and establishment of four species in soil and sand cultures. J Ecol 52:691–707

    Article  Google Scholar 

  • Kent LM, Läuchli A (1985) Germination and seedling growth of cotton: salinity-calcium interactions. Plant Cell Environ 8:155–159

    Article  CAS  Google Scholar 

  • Kiehne U (1986) Wachstum und Nährstoffaufnahme calcicoler und calcifuger Arten in Abhängigkeit vom pH-Wert des Substrats. Diplomarbeit Syst Geobot Inst Univ Göttingen (unpubl)

    Google Scholar 

  • Kinzel H (1982) Pflanzenökologie und Mineralstoffwechsel. Ulmer, Stuttgart

    Google Scholar 

  • Kinzel H (1983) Influence of limestone, silicates and soil pH on vegetation. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology. III. Encycl Plant Physiol New Ser, Springer, Berlin Heidelberg New York, 12C:201–244

    Chapter  Google Scholar 

  • Kuiper D, Kuiper PJC (1978) Lipid composition of the roots of Plantago species: response to alteration of the level of mineral nutrition and ecological significance. Physiol Plant 44:81–87

    Article  CAS  Google Scholar 

  • La Haye PA, Epstein E (1969) Salt toleration by plants: enhancement with calcium. Science 166:395–396

    Article  Google Scholar 

  • Lance JC, Pearson RW (1969) Effect of low concentrations of aluminium on growth and water and nutrient uptake by cotton roots. Soil Sci Soc Am Proc 33:95–98

    Article  CAS  Google Scholar 

  • Le Gales Y, Lamant A, Heller R (1980) Fixation du calcium par les fractions macromoléculaires solubles isolées à partir de végétaux supérieurs. Physiol Vég 18:431–441

    Google Scholar 

  • Legge RL, Thompson JE, Baker JE, Lieberman M (1982) The effect of Ca on fluidity and phase properties of microsomal membranes isolated from postclimacteric Golden Delicious apples. Plant Cell Physiol 23:161–169

    CAS  Google Scholar 

  • Loneragan JF, Snowball K (1969) Calcium requirement of plants. Austr J Agric Res 20:465–478

    Article  CAS  Google Scholar 

  • Lund ZF (1970) The effect of calcium and its relation to several cations in soybean root growth. Soil Sci Soc Am Proc 34:456–459

    Article  CAS  Google Scholar 

  • Marschner H, Mengel K (1966) Der Einfluß von Ca- und H-Ionen bei unterschiedlichen Stoffwechselbedingungen auf die Membranpermeabilität junger Gerstenwurzeln. Z Pflanzenernähr Düng Bodenkd 112:39–49

    Article  CAS  Google Scholar 

  • Marschner H, Römheld V, Ossenburg-Neuhaus H (1982) Rapid method for measuring changes in pH and reducing processes along roots of intact plants. Z Pflanzenphysiol 105:407–416

    Google Scholar 

  • Matsumoto H, Hirasawa E, Torikai H, Takahashi E (1976) Localization of absorbed aluminium in pea root and its binding to nucleic acids. Plant Cell Physiol 19(3):429–436

    Google Scholar 

  • Matsumoto H, Morimura S, Takahashi E (1977a) Less involvement of pectin in the precipitation of aluminium in pea root. Plant Cell Physiol 18:325–335

    CAS  Google Scholar 

  • Matsumoto H, Morimura S, Takahashi E (1977b) Binding of aluminium to DNA of DNP in pea root. Plant Cell Physiol 18:987–993

    CAS  Google Scholar 

  • Matzner E (1987) Der Stoffumsatz zweier Waldökosysteme im Soiling. Habil-Schrift, Forstwiss Fachb, Univ Göttingen

    Google Scholar 

  • Moore DP (1974) Physiological aspects of pH on roots. In: Carson EW (ed) The plant root and its environment. Univ Press Virginia, Charlottesville, pp 135–151

    Google Scholar 

  • Morimura S, Matsumoto H (1978) Effect of aluminium on some properties and template activity of purified pea DNA. Plant Cell Physiol 19(3):429–436

    CAS  Google Scholar 

  • Morimura S, Takahashi E, Matsumoto H (1978) Association of aluminium with nuclei and inhibition of cell division in onion (Allium cepa) roots. Z Pflanzenphysiol 88:395–401

    CAS  Google Scholar 

  • Mugwira LM, Patel SU (1977) Root zone pH-changes and ion uptake imbalances by triticale, wheat and rye. Agron J 69:719–722

    Article  CAS  Google Scholar 

  • Murach D, Matzner E The influence of soil acidification on root growth of Norway spruce (Picea abies, Karst.) and European beech (Fagus silvatica L.). IUFRO workshop “Woody plant growth in a changing chemical and physical environment”, Vancouver (in press)

    Google Scholar 

  • Nair ND, Prenzel J (1978) Calculations of equilibrium concentrations of mono- and polynuclear hydroxyl-aluminium species at different pH and total aluminium concentrations. Z Pflanzenernaehr Bodenkd 141:741–751

    Article  CAS  Google Scholar 

  • Neitzke M (1984) Der Einfluß von Aluminium auf die Keimung und Keimlingsentwicklung der Buche (Fagus sylvatica L.) unter Berücksichtigung von Wechselwirkungen mit Calcium und Stickstoffform. Diss Fachb Biol, Univ Münster

    Google Scholar 

  • Neitzke M, Runge M (1985) Keimlings- und Jungpflanzenentwicklung der Buche (Fagus sylvatica L.) in Abhängigkeit vom Al/Ca-Verhältnis des Bodenextraktes. Flora 177:237–249

    CAS  Google Scholar 

  • Oursel A, Lamant A, Salsac L, Mazliak P (1973) Etude comparée des lipides et de la fixation passive du calcium dans les racines et les fractions subcellulaires du Lupinus luteus et de la Vicia faba. Phytochemistry 12:1865–1874

    Article  CAS  Google Scholar 

  • Pavan MA, Bingham FT (1982) Toxicity of aluminium to coffee seedlings grown in nutrient solutions. Soil Sci Soc Am J 46:993–997

    Article  CAS  Google Scholar 

  • Pavan MA, Bingham FT, Pratt PF (1982) Toxicity of aluminium to coffee in Utisols and Oxisols with CaCo3 and CaSO4 • 2H2O. Soil Sci Soc Am J 46:1201–1207

    Article  CAS  Google Scholar 

  • Raven JA, Smith FA (1976) Nitrogen assimilation and transport in vascular land plants in relation to intracellular pH regulation. New Phytol 76:415–431

    Article  CAS  Google Scholar 

  • Rhue RD, Grogan CO (1977) Screening corn for Al tolerance using different Ca and Mg concentrations. Agron J 69:755–760

    Article  CAS  Google Scholar 

  • Robson AD, Pitman MG (1983) Interactions between nutrients in higher plants. In: Läuchli A, Bieleski RL (eds) Inorganic plant nutrition. Encycl Plant Physiol New Ser, Springer, Berlin Heidelberg New York 15A: 147–180

    Chapter  Google Scholar 

  • Rode MW (1988) Die Aluminium-Toleranz von Arten basischer bis mäßig saurer und saurer Böden in Abhängigkeit von der Stickstoff-Form und vom Phosphat-Angebot. Ber Forschungszentrums Waldökosysteme Waldsterben A, Bd 35, 161 s

    Google Scholar 

  • Rorison IH (1965) The effect of aluminium on the uptake and incorporation of phosphate by excised sainfoin roots. New Phytol 64:23–27

    Article  CAS  Google Scholar 

  • Rost-Siebert K (1985) Untersuchungen zur H- und Al-Ionen-Toxicität an Keimpflanzen von Fichte (Picea abies, Karst.) und Buche (Fagus sylvatica, L.) in Lösungskultur. Diss Forstl Fak, Univ Göttingen

    Google Scholar 

  • Rothert W (1906) Das Verhalten der Pflanzen gegenüber Aluminium. Bot Z 64:47

    Google Scholar 

  • Runge M (1983) Physiology and ecology of nitrogen nutrition. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology III. Encycl Plant Physiol, Springer, Berlin Heidelberg New York, 12C: 163–200

    Chapter  Google Scholar 

  • Schierl R, Göttlein A, Hohmann E, Trübenbach D, Kreutzer K (1986) Einfluß von saurer Beregnung und Kalkung auf Humusstoffe sowie die Aluminium- und Schwermetalldynamik in wässrigen Bodenextrakten. Forstwiss Centralbl 105:309–313

    Article  Google Scholar 

  • Siegel N, Haug A (1983) Calmodulin-dependent formation of membrane potential in barley root plasma membrane vesicles; a biochemical model of aluminium toxicity in plants. Physiol Plant 59:285–291

    Article  CAS  Google Scholar 

  • Skeen JR (1929) The tolerance limit of seedlings for aluminium and iron and the antagonism of calcium. Soil Sci 27:69–80

    Article  CAS  Google Scholar 

  • Sörensen SPL (1909) Enzymstudien II. Medd Carlsberg Lab Köbenhavn

    Google Scholar 

  • Ulrich B (1981) Ökologische Gruppierung von Böden nach ihrem chemischen Bodenzustand. Z Pflanzenernaehr Bodenkd 144:289–305

    Article  CAS  Google Scholar 

  • Vierstra R, Haug A (1978) The effect of Al3+ on the physical properties of membrane lipids in Thermoplasma acidophilum. Biochem Biophys Res Commun 84:138–143

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Prof. Dr. H. Walter on the occasion of his 90th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Runge, M., Rode, M.W. (1991). Effects of Soil Acidity on Plant Associations. In: Ulrich, B., Sumner, M.E. (eds) Soil Acidity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74442-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74442-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74444-0

  • Online ISBN: 978-3-642-74442-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics