Skip to main content

Terrestrial Mammals in Cold

  • Chapter
Animal Adaptation to Cold

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 4))

Abstract

Terrestrial mammals in temperate, subarctic, and arctic environments must adapt to cold in order to survive winter. At high latitudes winter may last for 8 months and mammals may be exposed to extreme air and ground surface temperatures of −50°C. Similar conditions may exist at high altitudes in temperate regions. In deserts during winter, subfreezing temperatures are common at night. At temperate and arctic latitudes it is not unusual to find a small vole (20 g) and large moose (400 kg) occupying the same habitat. Both of these mammals maintain relatively constant high body core temperatures and remain active throughout the winter (i.e., they do not exhibit torpor or hibernation). This is remarkable since body size influences the level of heat production at thermoneutrality, the inherent insulative and metabolic capabilities for combating cold, and the nature of behavioral responses. As a result, the solutions employed by small mammals for adapting to seasonal cold may be different than those used by large mammals. In addition to making seasonal adjustments, mammals that reside in cold-dominated regions such as the arctic may show climatic adaptations which distinguish them from mammals at lower latitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramson DI (1967) Circulation in the extremities. Academic Press, London, pp 268–291.

    Google Scholar 

  • Alexander G (1979) Cold thermogenesis. In: Robertshaw D (ed) Int Rev Physiol 20, Environ Physiol III, Park, Baltimore, pp 43–155.

    Google Scholar 

  • Allen JA (1877) The influence of physical conditions in the genesis of species. Radical Rev 1:108–140.

    Google Scholar 

  • Aschoff J (1981) Thermal conductance in mammals and birds: its dependence on body size and circadian phase. Comp Biochem A Physiol A Comp Physiol 69:611–619.

    Google Scholar 

  • Bakken GS (1976) A heat transfer analysis of animals: unifying concepts and the application of metabolism chamber data to field ecology. J Theor Biol 60:337–384.

    PubMed  CAS  Google Scholar 

  • Bartholomew GA (1982) Body temperature and energy metabolism. In: Gordon MS (ed) Animal physiology: principals and adaptation, 4th edn. Macmillan, New York, pp 333–406.

    Google Scholar 

  • Baust JG, Brown KT (1980) Heterothermy and cold acclimation in the arctic ground squirrel, Citellus undulatus. Comp Biochem Physiol A Comp Physiol 67:447–452.

    Google Scholar 

  • Bazet HC, Love L, Newton M, Eisenberg L, Day R, Foster R, II (1948) Temperature changes in blood flowing in arteries and veins in man. J Appl Physiol 1:3–19.

    Google Scholar 

  • Bergmann C (1847) Ueber die Verhältnisse der Wärmeökonomie der Tiere zu ihrer Grösse. Göt-tinger Studien, pp 595-708.

    Google Scholar 

  • Blanchard JM, Hauer WE, Luick JR (1983) The effects of feeding whole-grain barley to free-ranging reindeer. Agroborealis 15:57–60.

    Google Scholar 

  • Blaxter KL (1962) The energy metabolism of ruminants. Charles Thomas, Springfield, 111, 332 pp.

    Google Scholar 

  • Blix AS, Johnsen HK (1983) Aspects of nasal heat exchange in resting reindeer. J Physiol 340:445–454.

    PubMed  CAS  Google Scholar 

  • Blix AS, Steen J (1979) Temperature regulation in newborn polar homeotherms. Physiol Rev 59(2):285–304.

    PubMed  CAS  Google Scholar 

  • Blix AS, Grav HJ, Markussen KA, White RG (1984) Modes of thermal protection in newborn muskoxen (Ovibos moschatus). Acta Physiol Scand 122:443–453.

    PubMed  CAS  Google Scholar 

  • Borowski S (1958) Variations in density of coat during the life cycle of Sorex araneus araneus L. Acta Theriol 2:286–289.

    Google Scholar 

  • Bradley SR, Deavers DR (1980) A re-examination of the relationship between thermal conductance and body weight in mammals. Comp Biochem Physiol A Comp Physiol 65:465–476.

    Google Scholar 

  • Brooks RJ, Webster AB (1984) Relationship of seasonal change into changes in age structure and body size in Microtus pennsylvanicus. In: Merritt J (ed) Winter ecology of small mammals. Spec Publ No. 10, Carnegie Mus Nat Hist, Pittsburgh, pp 275–284.

    Google Scholar 

  • Brown JH, Lasiewski RC (1972) Metabolism of weasels: the cost of being long and thin. Ecology 53:939–943.

    Google Scholar 

  • Brown JH, Lee AH (1969) Bergmann’s rule and climatic adaptation in woodrats (Neotoma). Evolution 23:329–338.

    Google Scholar 

  • Bruck K (1976) Cold adaptation in man. In: Jansky L, Musacchia XJ (eds) Regulation of depressed metabolism and thermogenesis. Charles Thomas, Springfield, 111, pp 42–63.

    Google Scholar 

  • Budd GM, Warhaft N (1966) Cardiovascular and metabolic responses to noradrenaline in man, before and after acclimatization to cold in Antarctica. J Physiol (Lond) 186:233–242.

    CAS  Google Scholar 

  • Calder WA III (1987) Scaling energetics of homeothermic vertebrates: an operational allometry. Annu Rev Physiol 49:107–120.

    PubMed  Google Scholar 

  • Cameron RD, Luick JR (1972) Seasonal changes in total body water, extracellular fluid and blood volume in grazing reindeer. Can J Zool 50:107–116.

    PubMed  CAS  Google Scholar 

  • Carlson LD, Hsieh ACL (1970) Control of energy exchange. Macmillan, New York, 151 pp.

    Google Scholar 

  • Casey TM (1981) Nest insulation: energy savings to brown lemmings using a winter nest. Oecologia (Bed) 50:199–204.

    Google Scholar 

  • Casey TM, Casey KK (1979) Thermoregulation of arctic weasels. Physiol Zool 52:153–164.

    Google Scholar 

  • Casey TM, Withers PC, Casey KK (1979) Metabolic and respiratory responses of arctic mammals to ambient temperature during summer. Comp Biochem Physiol A Comp Physiol 64:331–342.

    Google Scholar 

  • Cena K, Clark JA (1979) Transfer of heat through animal coats and clothing. In: Robertshaw D (ed) Int Rev Physiol 20, Environ Physiol III. Park, Baltimore, pp 1–42.

    Google Scholar 

  • Chaffee RRJ, Roberts JC (1971) Temperature acclimation in birds and mammals. Annu Rev Physiol 33:155–202.

    PubMed  CAS  Google Scholar 

  • Chappell MA (1980 a) Insulation, radiation, and convection in small arctic mammals. J Mammal 61(2):268–277.

    Google Scholar 

  • Chappell MA (1980 b) Thermal energetics and thermoregulatory costs of small arctic mammals. J Mammol 62(2):278–291.

    Google Scholar 

  • Christopherson RJ (1976) Effects of prolonged cold and the outdoor winter environment on apparent digestibility in sheep and cattle. Can J Anim SCi 56:201.

    Google Scholar 

  • Christopherson RJ, Hudson RJ, Richmond RJ (1978) Comparative winter bioenergetics of American bison, yak, Scottish Highland and Herford calves. Acta Theriol 23:49.

    Google Scholar 

  • Conley KE, Porter WP (1986) Heat loss from deer mice (Peromyscus): evaluation of seasonal limits to thermorEgulation. J Exp Biol 126:249–269.

    PubMed  CAS  Google Scholar 

  • Contreras LC (1984) Bioenergetics of huddling: test of a psycho-physiological hypothesis. J Mammal 65(2):256–262.

    Google Scholar 

  • Dark J, Zucker I (1986) Photoperiodic regulation of body mass and fat reserves in the meadow vole. Physiol Behav 38:851–854.

    PubMed  CAS  Google Scholar 

  • Dark J, Zucker I, Wade GN (1983) Photoperiodic regulation of body mass, food intake, and reproduction in meadow voles. Am J Physiol 245:R334–R338.

    PubMed  CAS  Google Scholar 

  • Dauphine TC Jr (1976) Biology of the Kaminuriak population of barren-ground caribou, Part 4. Growth, reproduction and energy reserves. Can Wildl Serv, Ottawa, 69 pp (Series 38).

    Google Scholar 

  • Edholm OG (1978) Man — hot and cold. Arnold, London.

    Google Scholar 

  • Fancy SG, White RG (1986) Predicting energy expenditures for activities of caribou from heart rates. Rangifer, Special Issue No. 1:123–130.

    Google Scholar 

  • Feist DD (1984) Metabolic and thermogenic adjustments in winter acclimatization of subarctic Alaskan red-backed voles. In: Merritt JF (ed) Winter ecology of small mammals. Spec Publ No. 10, Carnegie Mus Nat Hist, Pittsburgh, pp 131–137.

    Google Scholar 

  • Feist DD, Morrison PR (1981) Seasonal changes in metabolic capacity and norepinephrine thermogenesis in the Alaskan red-backed vole: environmental cues and annual differences. Comp Biochem Physiol A Comp Physiol 69:697–700.

    Google Scholar 

  • Feist D, Rosenmann M (1975) Seasonal sympatho-adrenal and metabolic responses to cold in the Alaskan snowshoe hare (Lepus americanus macfarlani). Comp Biochem Physiol A Comp Physiol 51:449–455.

    PubMed  CAS  Google Scholar 

  • Feist DD, Rosenmann M (1976) Norepinephrine thermogenesis in seasonally acclimatized and cold acclimated red-backed voles in Alaska. Can J Physiol Pharmacol 54(2):146–153.

    PubMed  CAS  Google Scholar 

  • Ferguson JH, Folk GE Jr (1970) Free fatty acid levels of arctic mammals. Fed Proc Fed Am Soc Exp Biol 26:659.

    Google Scholar 

  • Ferguson JH, Folk GE Jr (1971) Effects of temperature and acclimation upon free fatty acid levels in three species of rodents. Can J Zool 49:303–305.

    PubMed  CAS  Google Scholar 

  • Folk GE Jr (1974) Textbook of environmental physiology. Lea amp; Febiger, Philadelphia.

    Google Scholar 

  • Folkow LP, Mercer JB (1986) Partition of heat loss in resting and exercising winter-and summer-insulated reindeer. Am J Physiol 251:R32–R40.

    PubMed  CAS  Google Scholar 

  • Fuller WA (1969) Changes in numbers of three species of small rodents near Great Slave Lake, NWT, Canada, 1964-1967, and their significance for general population theory. Ann Zool Fenn 6:113–144.

    Google Scholar 

  • Galster W, Morrison PR (1977) Plasma lipid levels and lipoprotein ratios in ten rodent species. Comp Biochem Physiol B Comp Biochem 58:39–42.

    CAS  Google Scholar 

  • Garland HO (1985) Altered temperature. In: Case RM (ed) Variations in human physiology. Manchester Univ Press, Dover, NH, pp 111–133.

    Google Scholar 

  • Gasaway WC, Coady JW (1974) Review of energy requirements and rumen fermentation in moose and other ruminants. Nat Can 101:227–262.

    Google Scholar 

  • Gates CC, Hudson RJ (1979) Effects of posture and activity on metabolic responses of wapiti to cold. J Wildl Manage 43(2):564–567.

    Google Scholar 

  • Glickman N, Mitchell H, Keeton R, Lambert E (1967) Shivering and heat production in men exposed to intense cold. J Appl Physiol 22:1–8.

    PubMed  CAS  Google Scholar 

  • Guard CL, Murrish DE (1975) Effects of temperature on the viscous behavior of blood from antarctic birds and mammals. Comp Biochem Physiol A Comp Physiol 52:287–290.

    PubMed  CAS  Google Scholar 

  • Halikas GC (1971) Viscous properties of muskox blood. Comp Biochem Physiol A Comp Physiol 39:869–874.

    PubMed  CAS  Google Scholar 

  • Halikas GC (1972) Cryorheology of reindeer blood. Biorheology 9:105–114.

    PubMed  CAS  Google Scholar 

  • Hammel HT (1964) Terrestrial animals in cold: recent studies of primitive man. In: Dill DB (ed) Adaptation to the environment. Am Physiol Soc, Washington DC, pp 413–434.

    Google Scholar 

  • Hammel HT, Houpt TR, Lange-Anderson K, Skjenneberg S (1962) Thermal and metabolic measurements on a reindeer at rest and in exercise. Arctic Aeromedical Laboratory Technical Report AALTDR 61-54.

    Google Scholar 

  • Harris GD, Huppi HD, Gessaman JA (1985) The thermal conductance of winter and summer pelage of Lepus californicns. J Therm Biol 10:79–81.

    Google Scholar 

  • Hart JS (1950) The effect of humidity and temperature on carbon dioxide production of deer mice and on heat transmission through their fur. Can J Res D 28:280–284.

    Google Scholar 

  • Hart JS (1952) Use of daily metabolic periodicities as a measure of the energy expended by voluntary activity of mice. Can J Zool 30:83–89.

    Google Scholar 

  • Hart JS (1956) Seasonal changes in insulation of fur. Can J Zool 34:53–57.

    Google Scholar 

  • Hart JS (1957) Climatic and temperature induced changes in the energetics of homeotherms. Rev Can Biol 16:133–174.

    PubMed  CAS  Google Scholar 

  • Hart JS (1971) Rodents. In: Whittow GC (ed) Comparative physiology of thermoregulation, Vol II. Mammals. Academic Press, London, pp 1–149.

    Google Scholar 

  • Hart JS, Heroux O (1953) A comparison of some seasonal and temperature-induced changes in Peromyscus: cold resistance, metabolism, and pelage insulation. Can J Zool 31:528–534.

    Google Scholar 

  • Hart JS, Heroux O (1955) Exercise and temperature regulation in lemmings and rabbits. Can J Biochem Physiol 33:428–435.

    PubMed  CAS  Google Scholar 

  • Hart JS, Sabean HB, Hildes JA et al. (1962) Thermal and metabolic responses of coastal Eskimos during a cold night. J Appl Physiol 17:953–959.

    PubMed  CAS  Google Scholar 

  • Hart JS, Pohl H, Tener JS (1965) Seasonal acclimatization in the varying hare (Lepus americanus). Can J Zool 43:731–744.

    PubMed  CAS  Google Scholar 

  • Haysen V, Lacey RC (1985) Basal metabolic rates in mammals: taxonomic differences in the allometry of BMR and body mass. Comp Biochem Physiol A Comp Physiol 81:741–754.

    Google Scholar 

  • Heldmeier G (1971 a) Relationship between nonshivering thermogenesis and body size. In: Jansky L (ed) Nonshivering thermogenesis. Swets aaaaamp; Zeitlinger, Amsterdam, pp 73–81.

    Google Scholar 

  • Heldmaier G (1971b) Zitterfreie Wärmebildung und Körpergrösse bei Säugetieren. Z Vgl Physiol 73:222–248.

    Google Scholar 

  • Heldmaier G, Boeckler H, Buchberger A, Klaus S, Puchalski W, Steinlechner S, Wiesinger H (1986) Seasonal variation of thermogenesis. In: Heller HC, Musacchia XJ, Wang LCH (eds) Living in the cold: physiological and biochemical adaptations. Elsevier, Amsterdam, pp 361–372.

    Google Scholar 

  • Henshaw RE (1986) Regulation of heat circulation to the feet of mammals in chronic cold. In: Heller HC, Musacchia XJ, Wang LCH (eds) Living in the cold: physiological and biochemical adaptations. Elsevier, Amsterdam pp 167–176.

    Google Scholar 

  • Henshaw RE, Underwood LS, Casey TM (1972) Peripheral thermoregulation: foot temperature in two arctic canines. Science 175:988–990.

    PubMed  CAS  Google Scholar 

  • Herried CF, II, Kessel B (1967) Thermal conductance in birds and mammals. Comp Biochem Physiol 21:405–414.

    Google Scholar 

  • Heusner AA (1987) What does the power function reveal about structure and function in animals of different size? Annu Rev Physiol 49:121–133.

    PubMed  CAS  Google Scholar 

  • Hill RW (1976) Comparative physiology of animals, an environmental approach. Harper amp; Row, New York.

    Google Scholar 

  • Hill RW (1983) Thermal physiology and energetics of Peromyscus; ontogeny, body temperature, metabolism, insulation, and microclimatology. J Mammal 64(1):19–37.

    Google Scholar 

  • Hinds DS (1973) Acclimatization of thermoregulation in the desert cottontail, Sylvilagous audobonii. J Mammal 54:708–728.

    PubMed  CAS  Google Scholar 

  • Hinds DS (1977) Acclimatization of thermoregulation in desert inhabiting jackrabbits (Lepus alleni and Lepus californicus). Ecology 58:246–264.

    Google Scholar 

  • Hissa R, Saarela S, Nieminen M (1981) Development of temperature regulation in newborn reindeer. Rangifer 1(1):29–38.

    Google Scholar 

  • Holleman DF, White RG, Feist DD (1982) Seasonal energy and water metabolism in free living Alaskan voles. J Mammal 63:293–296.

    Google Scholar 

  • Holter JB, Urban WE Jr, Hayes HH, Silver H, Skutt HR (1975) Ambient temperature effects on physiological traits of white-tailed deer. Can J Zool 53:679–685.

    PubMed  CAS  Google Scholar 

  • Hong SK (1973) Pattern of cold adaptation in women divers of Korea (ama). Fed Proc 32:1614–1622.

    PubMed  CAS  Google Scholar 

  • Hori T, Nakayama T, Tokura H, Hara F, Suzuki M (1977) Thermoregulation of the Japanese macaque living in the snowy mountain area. Jap J Physiol 27:305–319.

    CAS  Google Scholar 

  • Hudson RJ, Christopherson RJ (1985) Maintenance metabolism. In: Hudson RJ, White RG (eds) Bioenergetics of wild herbivores. CRC, Boca Raton, Florida, pp 121–142.

    Google Scholar 

  • Huttenen P, Hirvonen J, Kinnula V (1981) The occurrence of brown adipose tissue in outdoor workers. Eur J Appl Physiol 46:339–345.

    Google Scholar 

  • Irving L (1957) The usefulness of Scholander’s views on adaptive insulation of animals. Evolution 11:257–259.

    Google Scholar 

  • Irving L (1972) Arctic life of birds and mammals including man. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Irving L, Krog J (1955) Temperature of the skin in the arctic as a regulator of heat. J Appl Physiol 7:355–364.

    PubMed  CAS  Google Scholar 

  • Irving L, Krog J, Monson M (1955) The metabolism of some Alaskan animals in summer and winter. Physiol Zool 28:173–185.

    Google Scholar 

  • Irving L, Schmidt-Nielsen K, Abrahamsen NSB (1957) On the melting points of animal fats in cold climates. Physiol Zool 30:93–105.

    CAS  Google Scholar 

  • Iversen JA (1972) Basal energy metabolism of mustelids. J Comp Physiol 81:341–344.

    Google Scholar 

  • Itoh S, Doi K, Kuroshima A (1970) Enhanced sensitivity to noradrenaline of the Ainu. Int J Biometeor 14:195–200.

    Google Scholar 

  • Jackson DC, Schmidt NK (1964) Counter-current heat exchange in the respiratory passages. Proc Natl Acad Sci USA 51:1192–1197.

    PubMed  CAS  Google Scholar 

  • Jansky L (1973) Non-shivering thermogenesis and its thermoregulatory significance. Biol Rev 48:85–132.

    PubMed  CAS  Google Scholar 

  • Johnson E (1984) Seasonal adaptive coat changes in mammals. Acta Zool Fenn 171:7–12.

    Google Scholar 

  • Joy RJT (1963) Responses of cold-acclimated men to infused norepinephrine. J Appl Physiol 18:1209–1212.

    PubMed  CAS  Google Scholar 

  • Kennedy PM, Christopherson RJ, Milligan LP (1986) Digestive responses to cold. In: Milligan LP, Grovum WL, Dobson A (eds) Control of digestion and metabolism in ruminants. Reston, Englewood Cliffs, New Jersey, pp 285–306.

    Google Scholar 

  • Khateeb AA, Johnson E (1971) Seasonal changes of the pelage in the vole (Microtus agrestis), I. Correlation with changes in the endocrine glands. Gen Comp Endocrinol 16:217–228.

    Google Scholar 

  • Kleiber M (1961) The fire of life. An introduction to animal energetics. Wiley, New York, 454 pp.

    Google Scholar 

  • Klein DR (1965) The ecology of deer range in Alaska. Ecol Monogr 35:259–284.

    Google Scholar 

  • Landsberg L, Young JB (1983) Autonomic regulation of thermogenesis. In: Girardier L, Stock M (eds) Mammalian thermogenesis. Chapman amp; Hall, London, pp 99–140.

    Google Scholar 

  • Langman VA (1985) Nasal heat exchange in a northern ungulate, the reindeer (Rangifer tarandus). Respir Physiol 59:279–287.

    PubMed  CAS  Google Scholar 

  • Langvatn R, Albon SD (1986) Geographic clines in body weight of Norwegian red deer: novel explanation of Bergmann’s rule? Holarct Ecol 9:285–293.

    Google Scholar 

  • Layne JN (1969) Nest-building behavior in three species of deer mice, Peromyscus. Behaviour 35:288–303.

    Google Scholar 

  • LeBlanc J (1978) Adaptation of man to cold. In: Wang LCH, Hudson JW (eds) Strategies in cold, natural torpidity and thermogenesis. Academic Press, London, pp 695–715.

    Google Scholar 

  • Lewis T (1930) Observations upon the reactions of the vessels of human skin to cold. Heart 15:351.

    Google Scholar 

  • Lynch CB (1986) Genetic basis of cold adaptation in laboratory and wild mice, Mus domesticus. In: Heller HC, Musacchia XJ, Wang LCH (eds) Living in the cold, physiological and biochemical adaptations. Elsevier, Amsterdam, pp 497–504.

    Google Scholar 

  • Lynch GR (1973) Seasonal change in the thermogenesis, organ weights and body composition in the white-footed mouse, Peromyscus leucopus. Oecologia (Berl) 13:363–367.

    Google Scholar 

  • MacLean SF Jr, Fitzgerald BM, Pitelka FA (1974) Population cycles in arctic lemmings: winter reproduction and predation by weasels. Arct Alp Res 6:1–12.

    Google Scholar 

  • Madison DM (1984) Group nesting and its ecological and evolutionary significance in overwintering microtine rodents. In: Merritt JF (ed) Winter ecology of small mammals. Spec Publ Carnegie Mus Hist, 10, Pittsburgh, pp 267-274.

    Google Scholar 

  • Marston HR (1948) Energy transactions in sheep. I. The basal heat production and heat increment. Aust J Sci Res B 1:93.

    CAS  Google Scholar 

  • Mayr E (1963) Animal species and evolution. Belknap, Cambridge, Mass, 797 pp.

    Google Scholar 

  • McEwen EH (1970) Energy metabolism of barren ground caribou (Rangifer tarandus). Can J Zool 48:391–392.

    Google Scholar 

  • McEwen EH (1975) The adaptive significance of the growth pattern in cervid compared with other ungulate species. Zool Zh 54:1221–1231 (in Russian with English summary).

    Google Scholar 

  • McNab BK (1971) On the ecological significance of Bergmann’s rule. Ecology 52:845–854.

    Google Scholar 

  • McNab BK (1980) On estimating thermal conductance in endotherms. Physiol Zool 53:145–156.

    Google Scholar 

  • Meng M, West GC, Irving L (1969) Fatty acid composition of caribou bone marrow. Comp Biochem Physiol 30:187–191.

    PubMed  CAS  Google Scholar 

  • Mercer JB, Johnsen HK, Blix AS, Hotvedt R (1985) Central control of expired air temperature and other thermoregulatory effectors in reindeer. Am J Physiol 248:R679–R685.

    PubMed  CAS  Google Scholar 

  • Merritt JF (1984) Growth patterns and seasonal thermogenesis of Peromyscus maniculatus inhabiting the Appalachian and Rocky Mountains of North America. Ann Carnegie Mus Nat Hist 53:527–548.

    Google Scholar 

  • Merritt JF (1986) Winter survival adaptations of the short-tailed shrew (Blarina brevicaude) in an Appalachian montane forest. J Mammal 67(3):450–464.

    Google Scholar 

  • Miller FL, Gunn A (1986) Effect of adverse weather on neonatal caribou survival — a review. Rangifer, Special Issue No. 1:211–217.

    Google Scholar 

  • Miller LK (1967) Caudal nerve function as related to temperature in some Alaskan mammals. Comp Biochem Physiol 21:686–697.

    Google Scholar 

  • Miller LK (1970) lemperature-dependent characteristics of peripheral nerves exposed to different thermal conditions in the same animal. Can J Zool 48:75–81.

    PubMed  CAS  Google Scholar 

  • Miller LK, Irving L (1967) Temperature-related nerve function in warm and cold-climate musk-rats. Am J Physiol 213:1295–1298.

    PubMed  CAS  Google Scholar 

  • Mitchell D (1974) Physical basis of thermoregulation. In: Robertshaw D (ed) MTP Int Rev Sci, Physiol Series 1, Vol 7: Environ Physiol, Univ Park Press, Baltimore, pp 1–32.

    Google Scholar 

  • Mitchell D (1977) Physical basis of thermoregulation. In: Robertshaw D (ed) Int Rev Physiol 15, Environ Physiol II. Univ Park Press, Baltimore, pp 1–28.

    Google Scholar 

  • Mitchell JW, Myers GE (1968) An analytical model of the countercurrent heat exchange phenomena. Biophys J 8:897–911.

    PubMed  CAS  Google Scholar 

  • Morrison P (1966) Insulative flexibility in the guanaco. J Mammal 47:18–23.

    Google Scholar 

  • Nilssen KJ, Johnsen HK, Rognmo A, Blix AS (1984 a) Heart rate and energy expenditure in resting and running Svälbard and Norwegian reindeer. Am J Physiol 246:R963–R967.

    PubMed  CAS  Google Scholar 

  • Nilssen KJ, Sundsfjord JA, Blix AS (1984b) Regulation of metabolic rate in Svālbard and Norwegian reindeer. Am J Physiol 247:R837–841.

    PubMed  CAS  Google Scholar 

  • Park YS, Rennie DW, Lee IS (1983) Time course of deacclimatization to cold water immersion in Korean woman divers. J Appl Physiol 54:1708–1716.

    PubMed  CAS  Google Scholar 

  • Parker KL, Robbins CT (1984) Thermoregulation in mue deer and elk. Can J Zool 62:1409–1422.

    Google Scholar 

  • Parker KL, Robbins CT (1985) Thermoregulation in ungulates. In: Hudson RJ, White RG (eds) Bioenergetics of wild herbivores. CRC, Boca Raton, pp 163–182.

    Google Scholar 

  • Regelin WL, Schwartz CC, Franzmann AW (1985) Seasonal energy metabolism of adult moose. J Wildl Manage 49(2):388–393.

    Google Scholar 

  • Reimers E, Klein DR, Sorumgard R (1983) Calving time, growth rate, and body size of Norwegian reindeer on different ranges. Arct Alp Res 15:107–118.

    Google Scholar 

  • Renecker LA, Hudson RJ (1985) Seasonal energy expenditures and thermoregulatory responses of moose. Can J Zool 64:322–327.

    Google Scholar 

  • Renecker LA, Hudson RJ, Christopherson MK, Arelis C (1978) Effects of posture, feeding, low temperature and wind on energy expenditures of moose calves. Proc 14th N Am Moose Conf Workshop, Halifax, NS 14:126–140.

    Google Scholar 

  • Richards SA (1973) Temperature regulation. Wykeham, London, 212 pp.

    Google Scholar 

  • Rosenmann M, Morrison P, Feist D (1975) Seasonal changes in metabolic capacity of red-backed voles. Physiol Zool 48:303–310.

    Google Scholar 

  • Rothwell NJ, Stock MJ (1983) Diet-induced thermogenesis. In: Girardier L, Stock MJ (eds) Mammalian thermogenesis. Chapman & Hall, London, pp 208–233.

    Google Scholar 

  • Schmid WD (1976) Temperature gradients in the nasal passage of some small mammals. Comp Biochem Physiol A Comp Physiol 54:305–308.

    PubMed  CAS  Google Scholar 

  • Schmidt-Nielsen K (1983) Animal physiology: adaptation and environment. Cambridge University Press, New York.

    Google Scholar 

  • Schmidt-Nielsen K (1984) Scaling: why is animal size so important? Cambridge University Press, New York.

    Google Scholar 

  • Schmidt-Nielsen K, Hainsworth FR, Murrich DE (1970) Counter-current heat exchange in the respiratory passages: effect on water and heat balance. Respir Physiol 9:263–276.

    PubMed  CAS  Google Scholar 

  • Scholander PF (1955) Evolution of climatic adaptation in homeotherms. Evolution 9:15–26.

    Google Scholar 

  • Scholander PF (1956) Climatic rules. Evolution 10:339–340.

    Google Scholar 

  • Scholander PF, Krog J (1957) Countercurrent heat exchange and vascular bundles in sloths. J Appl Physiol 10:405–411.

    PubMed  CAS  Google Scholar 

  • Scholander P, Hock R, Walters V, Irving L (1950a) Adaptation to cold in arctic and tropical mammals and birds in relation to body temperature, insulation and basal metabolic rate. Biol Bull 99:259–271.

    PubMed  CAS  Google Scholar 

  • Scholander PF, Hock R, Walters V, Johnson F, Irving L (1950b) Heat regulation in some arctic and tropical mammals and birds. Biol Bull 99:237–258.

    PubMed  CAS  Google Scholar 

  • Scholander PF, Walters V, Hock R, Irving L (1950c) Body insulation of some arctic and tropical mammals and birds. Biol Bull 99:225–236.

    PubMed  CAS  Google Scholar 

  • Scholander PF, Hammel HT, Hart JS, Lemesurier DH, Steen J (1958) Cold adaptation in Australian aborigines. J Appl Physiol 13:211–218.

    PubMed  CAS  Google Scholar 

  • Sealander JA (1966) Seasonal variations in hemoglobin and hematocrit values in the northern red-backed mouse, Clethrionomys rutilus dawsoni (Meriam), in interior Alaska. Can J Zool 44:213–244.

    PubMed  CAS  Google Scholar 

  • Sealander JA (1972) Circum-annual changes in age, pelage characteristics and adipose tissue in the northern red-backed vole in interior Alaska. Acta Theriol 17:1–24.

    Google Scholar 

  • Segal AN (1962) The periodicity of pasture and physiological functions of reindeer. In: Reindeer of the Karelian ASSR, pp 130–150. Petrozaavodsk: Akademie Nauka. (Transi by Dept Sec State Bur for Transi, Ottawa, Canada).

    Google Scholar 

  • Segal AN (1980) Thermoregulation in reindeer (Rangifer tarandus). Zool Zh 59:1718–1724 (in Russia)

    Google Scholar 

  • Silver H, Colovos NF, Holter JB, Hayes HH (1969) Fasting metabolism of white-tailed deer. J Wildl Manage 33:490–498.

    Google Scholar 

  • Skogland T (1985) The density-dependent resource limitations on the demography of wild reindeer. J Anim Ecol 54:359–374.

    Google Scholar 

  • Smith RE, Horwitz BA (1969) Brown fat and thermogenesis. Physiol Rev 49:330–425.

    PubMed  CAS  Google Scholar 

  • Stevenson RD (1986) Allen’s rule in North American rabbits (Sylvilagus) and hares (Lepus) is an exception, not a rule. J Mammal 67(2):312–316.

    Google Scholar 

  • Suttie JM, Simpson AM (1985) Photoperiodic control of appetite, growth, antlers, and endocrine status of red deer. In: Fennessey PF, Drew KR (eds) Biology of deer production. Soc New Zeal Bull 22:429–432.

    Google Scholar 

  • Swan KG, Henshaw RE (1973) Lumbar sympathectomy and cold acclimatization by Arctic wulf. Ann Surg 177:286–292.

    PubMed  CAS  Google Scholar 

  • Timisjarvi J, Nieminen M, Sippola A (1984) The structure and insulation properties of the reindeer fur. Comp Biochem Physiol A Comp Physiol 79:601–609.

    PubMed  CAS  Google Scholar 

  • Vogt FD, Lynch GR (1982) Influence of ambient temperature, nest availability, huddling and daily torpor on energy expenditure in the white-footed mouse Peromyscus leucopus. Physiol Zool 55:56–63

    Google Scholar 

  • Walsberg GE, Campbell GS, King JR (1978) Animal coat color and radiative heat gain: a re-evaluation. J Comp Physiol 126:221–232.

    Google Scholar 

  • Wang LCH, Jones DL, MacArthur RA, Fuller WA (1973) Adaptation to cold: energy metabolism in an atypical lagomorph, the arctic hare (Lepus arcticus). Can J Zool 51:841–846

    PubMed  CAS  Google Scholar 

  • Webster AJF (1974 a) Physiological effects of cold exposure. In: Robertshaw D (ed) MTP Int Rev Sci Physiol Series 1, vol 7: Environ Physiol. Univ Park Press, Baltimore, pp 33–70.

    Google Scholar 

  • Webster AJF (1974b) Adaptation to cold. In: Robertshaw D (ed) MTP Int Rev Sei, Physiol Series 1, vol 7: Environ Physiol. Univ Park Press, Baltimore, pp 71–106.

    Google Scholar 

  • Werner J (1977) Influences of local and global temperature stimuli on the Lewis-reaction. Pfluegers Arch 367:291–294.

    CAS  Google Scholar 

  • West SD (1977) Midwinter aggregation in the northern red-backed vole, Clethrionomys rutilus. Can JZool 55:1404–1409.

    Google Scholar 

  • Westra R, Hudson RJ (1981) Digestive function of wapiti calves. J Wildl Manage 45:148–155.

    Google Scholar 

  • White RG, Fancy SG (1983) Nutrition and energetics of indigenous northern ungulates. In: Gudmundsson O. (ed) Grazing research at northern latitudes. NATO Ser A Life Sci 108:259–269.

    Google Scholar 

  • White RG, Feist DD (1980) Stearate oxidation in the Alaskan red-backed vole: effects of cold and norepinephrine. Physiologist 23(4):84.

    Google Scholar 

  • White RG, Staaland H (1983) Ruminai volatile fatty acid production as an indicator of forage quality in Svālbard reindeer. Acta Zool Fenn 175:61–64.

    Google Scholar 

  • White RG, Bunnell FL, Gaare E, Skogland T, Hubert B (1981) Ungulates on arctic ranges. In: Bliss LC, Heal OW, Moore JJ (eds) Tundra ecosystems: a comparative analysis. IBP 25. Cambridge University Press, Cambridge, pp 397–483.

    Google Scholar 

  • White RG, Frisby K, Sammons B, Holleman DF, Jourdan M (1984a) Seasonal changes in water metabolism of captive muskoxen. In: Klein DR, White RG, Keller S (eds) Proc 1st Int Muskox Symp Biol Papers U. Alaska, Spec Rept 4:205–206.

    Google Scholar 

  • White RG, Holleman DF, Wheat P, Tallas PG, Jourdan M, Henrichsen P (1984b) Seasonal changes in voluntary intake and digestibility of diets by captive muskoxen. In: Klein DR, White RG, Keller S (eds) Proc 1st Int Muskox Symp. Biol Papers U Alaska, Spec Rept 4:193–194.

    Google Scholar 

  • Whitney P (1976) Population ecology of two sympatric species of subarctic microtine rodents. Ecol Monogr 46:85–104.

    Google Scholar 

  • Whittow GC (ed) (1971) Comparative physiology of thermoregulation. IL Mammals. Academic Press, London.

    Google Scholar 

  • Wickler SJ (1980) Maximal thermogenic capacity and body temperatures of white-footed mice (Peromyscus) in summer and winter. Physiol Zool 53(3):338–346.

    Google Scholar 

  • Withers PC, Casey TM, Casey KK (1979) Allometry of respiratory and haematological parameters of arctic mammals. Comp Biochem Physiol A Comp Physiol 64:343–350.

    Google Scholar 

  • Wolff JO (1985) Behavior. In: Tamarin RH (ed) Biology of new world Microtus. Spec Publ No 8, Am Soc Mammal, pp 340-372.

    Google Scholar 

  • Wunder BA (1985) Energetics and thermoregulation. In: Tamarin RH (ed) Biology of new world Microtus. Spec Publ No 8, Am Soc Mammal, pp 812-844.

    Google Scholar 

  • Yousef MK (1987) Effects of climatic stresses on thermoregulatory processes in man. Experien-tia (Basel) 43:14–19.

    CAS  Google Scholar 

  • Zervanos SM (1975) Seasonal effects of temperature on the respiratory metabolism of the collared peccary (Tayassu tajacu). Comp Biochem Physiol A Comp Physiol 50:365–371.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Feist, D.D., White, R.G. (1989). Terrestrial Mammals in Cold. In: Wang, L.C.H. (eds) Animal Adaptation to Cold. Advances in Comparative and Environmental Physiology, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74078-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74078-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74080-0

  • Online ISBN: 978-3-642-74078-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics