Skip to main content

Abstract

Regulation of the acid-base status is an imperative task for maintenance of homeostasis in living animals. Deviations of pH from the predetermined setpoint values may result in reduced metabolic performance as a result of the often pronounced optima in the overall pH/activity relationships of metabolic pathways. The mechanisms involved in acid-base regulation do not differ among and within vertebrate classes, but the extent to which certain processes are, or can be, utilized may be vastly different. Accordingly, buffering, changes in PCO2, and transmembrane and transepithelial acid-base-relevant ion transfer, which are the main regulatory processes in other vertebrates, are also valid mechanisms for elasmobranch fishes (for closer analysis of relative importance and theoretical limitations of these mechanisms in fishes, see Heisler 1986d, e).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Austin JH, Sunderman FW, Camack JG (1927) Studies in serum electrolytes. II. The electrolyte composition and the of a poikilothermous animal at different temperatures. J Biol Chem 72: 677–685

    CAS  Google Scholar 

  • Benadé AJS, Heisler N (1978) Comparison of efflux rates of hydrogen and lactate ions from isolated muscles in vitro. Respir Physiol 32: 369–380.

    PubMed  Google Scholar 

  • Bentley PJ, Maetz J, Payan P (1976) A study of the unidirectional fluxes of Na+ and Cl across the gills of the dogfish Scyliorinus canicula (Chondrychthyes). J Exp Biol 64: 629–637.

    PubMed  CAS  Google Scholar 

  • Bornancin M, Denzis G, Maetz J (1977) Branchial Cl transport, anion stimulated ATPase and acid-base balance in Anguilla anguilla adapted to freshwater: Effects of hyperoxia. J Comp Physiol 117:313–322.

    CAS  Google Scholar 

  • Bower CE, Bidwell JP (1978) Ionization of ammonia in seawater: Effects of temperature, and salinity. J Fish Res Board Can 35: 1012–1016.

    CAS  Google Scholar 

  • Bullis HR Jr (1967) Depth segregations and distribution of sex-maturity groups in the marbled catshark, Galeus arae. In: Gilbert W, Mathewson RF, Rail DP (eds) Sharks, Skates and Rays. Hopkins, Baltimore, Maryland, pp 141–148.

    Google Scholar 

  • Burger JW, Tosteson DC (1966) Sodium influx and efflux in the spiny dogfish. Comp Biochem Physiol 19:649–653.

    CAS  Google Scholar 

  • Cameron JN (1978) Regulation of blood pH in teleost fish. Respir Physiol 33: 129–144.

    PubMed  CAS  Google Scholar 

  • Cameron JN (1985) The bone compartment in a teleost fish, Ictalurus punctatus: size, composition and acid-base response to hypercapnia. J Exp Biol 117: 307–318.

    PubMed  CAS  Google Scholar 

  • Cameron JN, Heisler N (1983) Studies of ammonia in rainbow trout: Physico-chemical parameters, acid-base behaviour and respiratory clearance. J Exp Biol 105: 107–125.

    CAS  Google Scholar 

  • Cameron JN, Heisler N (1985) Ammonia transfer across fish gills: a review. In: Gilles R (ed) Circulation, Respiration and Metabolism. Springer, Heidelberg, pp 125–138.

    Google Scholar 

  • Cameron JN, Kormanik GA (1982) Intracellular and extracellular acid-base status as a function of temperature in the freshwater channel catfish, Ictalurus punctatus. J Exp Biol 99: 127–142.

    PubMed  CAS  Google Scholar 

  • Claiborne JB, Heisler N (1984) Acid-base regulation in the carp (Cyprinus carpio) during and after exposure to environmental hypercapnia. J Exp Biol 108: 25–43.

    Google Scholar 

  • Claiborne JB, Heisler N (1986) Acid-base regulation and ion transfers in the carp (Cyprinus carpio): compensation during graded long- and short-term environmental hypercapnia and the effect of bicarbonate infusion. J Exp Biol 126: 41–63.

    PubMed  CAS  Google Scholar 

  • Cohen JJ (1959) The capacity of the kidney of the marine dogfish, Squalus acanthias, to secrete hydrogen ion. J Cell Comp Physiol 53: 205–213.

    PubMed  CAS  Google Scholar 

  • Cross CE, Packer BS, Linta JM, Murdaugh HV Jr, Robin ED (1969) H+ buffering and excretion in response to acute hypercapnia in the dogfish Squalus acanthias. Am J Physiol 216: 440–452.

    PubMed  CAS  Google Scholar 

  • Deetjen P, Maren T (1974) The dissociation between renal HC0 3 reabsorption and H+ secretion in the skate, Raja erinacea. Pflügers Arch 346: 25–30.

    PubMed  CAS  Google Scholar 

  • Dejours P (1972) Action des changements de PO2 de l’eau sur la ventilation et l’équilibre acid-base du sang chez quelques poissons teléostéens. J Physiol (Paris) 65: 386A

    Google Scholar 

  • Dejours P (1973) Problems of control of breathing in fishes. In: Bolis L, Schmidt-Nielsen K, Maddrell SHP (eds) Comparative physiology. North-Holland, Amsterdam, pp 117–133.

    Google Scholar 

  • Dejours P (1975) Principles of comparative respiratory physiology. North-Holland, Amsterdam

    Google Scholar 

  • Dejours P (1981) Principles of comparative respiratory physiology. Elsevier/North-Holland, Amsterdam

    Google Scholar 

  • Dejours P, Toulemond A, Truchot JP (1977) The effects of hyperoxia on the breathing of marine fishes. Comp Biochem Physiol 58A: 409–411.

    Google Scholar 

  • Dill DB, Edwards HT (1935) Properties of reptilian blood. IV. The alligator (Alligator mississippiensis Daudin). J Cell Comp Physiol 6: 243–254.

    CAS  Google Scholar 

  • Dill DB, Edwards HT, Florkin M (1932) Properties of the blood of the skate (Raja oscillata) Biol Bull 62:23–36.

    CAS  Google Scholar 

  • Dill DB, Edwards HT, Bock AV, Talbott JH (1935) Properties of reptilian blood. III. The chuckwalla (Sauromalus obesus Baird). J Cell Comp Physiol 6: 37–42.

    Google Scholar 

  • Eddy FB, Lomholt JP, Weber RE, Johansen K (1977) Blood respiratory properties of rainbow trout (Salmo gairdneri) kept in water of high CO2 tension. J Exp Biol 67: 37–47.

    PubMed  CAS  Google Scholar 

  • Edsall JT, Wyman J (1958) Biophysical chemistry, Academic Press, New York.

    Google Scholar 

  • Edwards HT, Dill DB (1935) Properties of reptilian blood. II. The gila monster (Heloderma suspectum Cope). J Cell Comp Physiol 6: 21–35.

    CAS  Google Scholar 

  • Emerson K, Russo RC, Lund RW, Thurston RV (1975) Aqueous ammonia equilibrium calculations: Effect of pH and temperature. J Fish Res Board Can 32: 2379–2383.

    CAS  Google Scholar 

  • Evans DH (1979) Fish. In: Maloiy GMO (ed) Comparative physiology of osmoregulation in animals, Vol 1. Academic Press, New York, pp 305–390.

    Google Scholar 

  • Evans DH (1980) Kinetic studies of ion transport by fish gill epithelium. Am J Physiol 238: R224-R230

    PubMed  CAS  Google Scholar 

  • Evans DH (1982) Mechanisms of acid extrusion by two marine fishes: The teleost, Opsanus beta, and the elasmobranch, Squalus acanthias. J Exp Biol 97: 189–299.

    Google Scholar 

  • Evans DH (1984) The role of gill permeability and transport mechanisms in euryhalinity. In: Hoar WS, Randall DJ (eds) Fish physiology, Vol X (B). Academic Press, Orlando, pp 315–401.

    Google Scholar 

  • Evans DH (1985) Modes of ammonia transport across fish gills. In: Gilles R, Gilles-Baillien M (eds) Transport processes, iono- and Osmoregulation. Springer, Berlin Heidelberg New York, pp 169–176.

    Google Scholar 

  • Evans DH (1986) The role of branchial and dermal epithelia in acid-base regulation in aquatic animals. In: Heisler N (ed) Acid-base regulation in animals. Elsevier Biomedical Press, Amsterdam, pp 139–172.

    Google Scholar 

  • Fromm PO (1963) Studies on renal and extrarenal excretion in a freshwater teleost, Salmo gairdneri. Comp Biochem Physiol 10: 121–128.

    PubMed  CAS  Google Scholar 

  • Gans C, Parsons TS (1964) A photographic atlas of shark anatomy. Academic Press, New York.

    Google Scholar 

  • Glass ML, Boutilier RG, Heisler N (1985) Effects of body temperature on respiration, blood gases and acid-base status in the turtle Chrysemys picta bellii. J Exp Biol 114: 37–51.

    Google Scholar 

  • Goldstein L, Forster RP (1971) Osmoregulation and urea metabolism in the little skate, Raja erinacea. Am J Physiol 220: 742–746.

    PubMed  CAS  Google Scholar 

  • Goldstein L, Forster G, Fanelli GM Jr (1964) Gill blood flow and ammonia excretion in the marine teleost, Myoxocephalus scorpius. Comp Biochem Physiol 12: 489–499.

    PubMed  CAS  Google Scholar 

  • Harvey HW (1974) The chemistry and fertility of sea waters. Cambridge Univ Press, London.

    Google Scholar 

  • Heisler N (1978) Bicarbonate exchange between body compartments after changes of temperature in the larger spotted dogfish (Scyliorhinus stellaris). Respir Physiol 33: 145–160.

    PubMed  CAS  Google Scholar 

  • Heisler N (1980) Regulation of the acid-base status in fishes. In: Ali MA (ed) Environmental physiology of fishes. Plenum, New York, pp 123–162.

    Google Scholar 

  • Heisler N (1982) Transepithelial ion transfer processes as mechanisms for fish acid-base regulation in hypercapnia and lactacidosis. Can J Zool 60: 1108–1122.

    CAS  Google Scholar 

  • Heisler N (1984a) Role of ion transfer processes in acid-base regulation with temperature changes in fish. Am J Physiol 246: R441-R451.

    PubMed  CAS  Google Scholar 

  • Heisler N (1984b) Acid-base regulation in fishes. In: Hoar WS, Randall DJ (eds) Fish physiology, Vol X (A). Academic Press, Orlando, pp 315–401.

    Google Scholar 

  • Heisler N (1985) Branchial ion transfer processes as mechanisms for fish acid-base regulation. In: Gilles R, Gilles-Baillien M (eds) Transport processes, ion- and osmoregulation. Springer, Berlin Heidelberg New York pp 177–193.

    Google Scholar 

  • Heisler N (1986a) Buffering and transmembrane ion transfer processes. In: Heisler N (ed) Acid-base regulation in animals. Elsevier Biomedical Press, Amsterdam, pp 3–47.

    Google Scholar 

  • Heisler N (1986b) Acid-base regulation in fishes. In: Heisler N (ed) Acid-base regulation in animals. Elsevier Biomedical Press, Amsterdam, pp 309–356.

    Google Scholar 

  • Heisler N (1986c) Comparative aspects of acid-base regulation. In: Heisler N (ed) Acid-base regulation in animals. Elservier Biomedical Press, Amsterdam, pp 397–450.

    Google Scholar 

  • Heisler N (1986d) Mechanisms and limitations offish acid-base regulation. In: Nilsson S, Holmgren S (eds) Fish physiology: Recent Advances. Croom-Helm, London.

    Google Scholar 

  • Heisler N (1988) Acid-base regulation in fishes: I Mechanisms. In: Morris R, Bridges CR (eds) Acid toxicity and aquatic animals. Company of Biologists Ltd, Cambridge. Society of Experimental Biology Seminar Series

    Google Scholar 

  • Heisler N, Neumann P (1977) Influence of sea water pH upon bicarbonate uptake induced by hypercapnia in an elasmobranch (Scyliorhinus stellaris). Pflügers Arch 368 Suppl: R19

    Google Scholar 

  • Heisler N, Neumann P (1980) The role of physico-chemical buffering and of bicarbonate transfer processes in intracellular regulation in response to changes of temperature in the larger spotted dogfish (Scyliorhinus stellaris). J Exp Biol 85: 99–110.

    CAS  Google Scholar 

  • Heisler N, Weitz H, Weitz AM (1976a) Hypercapnia and resultant bicarbonate transfer processes in an elasmobranch fish. Bull Eur Physiopathol Respir 12: 77–85.

    PubMed  CAS  Google Scholar 

  • Heisler N, Weitz H, Weitz AM (1976b) Extracellular and intracellular with changes of temperature in the dogfish Scyliorhinus stellaris. Respir Physiol 26: 249–263.

    PubMed  CAS  Google Scholar 

  • Heisler N, Neumann P, Holeton GF (1980) Mechanisms of acid-base adjustment in dogfish (Scyliorhinus stellaris) subjected to long-term temperature acclimation. J Exp Biol 85: 89–98.

    CAS  Google Scholar 

  • Heisler N, Holeton GF, Toews DP (1981) Regulation of gill ventilation and acid-base status in hyper- oxia-induced hypercapnia in the larger spotted dogfish (Scyliorhinus stellaris). Physiologist 24: 305

    Google Scholar 

  • Heisler N, Forcht G, Ultsch GF, Anderson JF (1982) Acid-base regulation in response to environmental hypercapnia in two aquatic salamanders, Siren lacertina and Amphiuma means. Respir Physiol 49: 141–158.

    PubMed  CAS  Google Scholar 

  • Heisler N, Toews DP, Holeton GF (1988) Regulation of ventilation and acid-base status in the elasmobranch Scyliorhinus stellaris during hyperoxia-induced hypercapnia. Respir Physiol 71: 227–246.

    PubMed  CAS  Google Scholar 

  • Höbe H, Wood CM, Wheatly MG (1984) The mechanisms of acid-base and ionoregulation in the freshwater rainbow trout during environmental hyperoxia and subsequent normoxia. I. Extra- and intracellular acid-base status. Respir Physiol 55: 139–154.

    PubMed  Google Scholar 

  • Hodler J, Heinemann HO, Fishman AP, Smith HW (1955) Urine pH and carbonic anhydrase activity in the marine dogfish. Am J Physiol 183: 155–162.

    PubMed  CAS  Google Scholar 

  • Holeton GF, Heisler N (1983) Contribution of net ion transfer mechanisms to the acid-base regulation after exhausting activity in the larger spotted dogfish (Scyliorhinus stellaris). J Exp Biol 103:31–46.

    PubMed  CAS  Google Scholar 

  • Holeton GF, Neumann P, Heisler N (1983) Branchial ion exchange and acid-base regulation after strenuous exercise in rainbow trout (Salmo gairdneri). Respir Physiol 51: 303–318.

    PubMed  CAS  Google Scholar 

  • Holliday CW, Schmidt-Nielsen B, Swensen E, Maren T (1979) Acidification of the urine by the urinary bladder of the female little skate, Raja erinacea. Bull Mt Desert Isl Biol Lab 19: 52–53.

    Google Scholar 

  • Horowicz P, Burger JW (1968) Unidirectional fluxes of Na+ in the spiny dogfish, Squalus acanthias. Am J Physiol 214: 635–642.

    PubMed  CAS  Google Scholar 

  • Hunn JB (1982) Urine flow rate in freshwater salmonids: A review. Prog Fish-Cult 44: 119–125.

    Google Scholar 

  • Kato S, Cavallo AH (1967) Shark tagging in the eastern pacific ocean 1962–1965. In: Gilbert W, Mathewson RF, Rail DP (eds) Sharks, skates and rays. Hopkins, Baltimore, Maryland, pp 93–110.

    Google Scholar 

  • Janssen RG, Randall DJ (1975) The effect of changes in pH and PCO2 in blood and water on breathing in rainbow trout, Salmo gairdneri. Respir Physiol 25: 235–245.

    PubMed  CAS  Google Scholar 

  • King P, Goldstein L (1979) Dogfish (Squalus acanthias) renal response to an acid load. Bull Mt Desert Isl Biol Lab 19: 77–80.

    Google Scholar 

  • Lacy ER (1983) Carbonic anhydrase localization in the elasmobranch rectal gland. J Exp Zool 226: 163–169.

    PubMed  CAS  Google Scholar 

  • Maetz J (1974) Adaptation to hyper-osmotic environments. Biochem Biophys Perspect Mar Biol 1: 91–149.

    Google Scholar 

  • Maetz J, Lahlou B (1966) Les échanges de sodium et de chlore chez un élasmobranche, Scyliorhinus, mesures a l’aide des isotopes 24Na et 36Cl. J Physiol (Paris) 58: 249.

    Google Scholar 

  • Murdaugh HV Jr, Robin ED (1967) Acid-base metabolism in the dogfish shark. In: Gilbert W, Mathewson RF, Rail DP (eds) Sharks, skates and rays. Hopkins, Baltimore, Maryland, pp 249–264.

    Google Scholar 

  • Neumann P, Holeton GF, Heisler N (1983) Cardiac output and regional blood flow in gills and muscles after exhaustive exercise in rainbow trout (Salmo gairdneri). J Exp Biol 105: 1–14.

    Google Scholar 

  • Payan P, Maetz J (1970) Balance hydrique chez les Elasmobranches: arguments en faveur d’ un contrôle endocrinien. Gen Comp Endocrinol 16: 535–554.

    Google Scholar 

  • Pequin L (1962) Les teneurs en azote ammoniacal du sang chez la carpe (Cyprinus carpio L.). C R Hebd Seances Acad Sci 255: 1795–1797.

    CAS  Google Scholar 

  • Pequin L, Serfaty A (1963) L’excretion ammoniacale chez un téléostéen dulcicole: Cyprinus carpio L. Comp Biochem Physiol 10: 315–324.

    PubMed  CAS  Google Scholar 

  • Piiper J (1986) Gas exchange and acid-base status. In: Heisler N (ed) Acid-base regulation in animais. Elsevier Biomedical Press, Amsterdam, pp 49–81.

    Google Scholar 

  • Pipper J, Spiller P (1970) Repayment of O2 debt and resynthesis of high-energy phosphates in gastrocnemius muscle of the dog. J Appl Physiol 28: 657–662.

    Google Scholar 

  • Piiper J, Meyer M, Drees F (1972) Hydrogen ion balance in the elasmobranch Scyliorhinus stellaris after exhausting activity. Respir Physiol 16: 290–303.

    PubMed  CAS  Google Scholar 

  • Pitts RF (1945a, b) The renal regulation of acid-base balance with special reference to the mechanism for acidifying the urine. Science 102: 49–54, 81–85.

    PubMed  CAS  Google Scholar 

  • Rahn H (1966) Development of gas exchange. Evolution of the gas transport system in vertebrates. Proc R Soc Med 59: 493–494.

    PubMed  CAS  Google Scholar 

  • Rahn H (1967) Gas transport from the environment to the cell. In: de Reuck AVS, Porter R (eds) Development of the lung. Churchill, London, pp 3–23.

    Google Scholar 

  • Rahn H, Baumgardner FW (1972) Temperature and acid-base regulation in fish. Respir Physiol 14: 171–182.

    PubMed  CAS  Google Scholar 

  • Randall DJ, Cameron JN (1973) Respiratory control of arterial as temperature changes in rainbow trout. Am J Physiol 225: 997–1002.

    PubMed  CAS  Google Scholar 

  • Randall DJ, Heisler N, Drees F (1976) Ventilatory response to hypercapnia in the larger spotted dogfish Scyliorhinus stellaris. Am J Physiol 230: 590–594.

    PubMed  CAS  Google Scholar 

  • Reeves RB (1972) An imidazole alphastat hypothesis for vertebrate acid-base regulation: tissue carbon dioxide content and body temperature in bullfrogs. Respir Physiol 14: 219–236.

    PubMed  CAS  Google Scholar 

  • Reeves RB (1977) The interaction of body temperature and acid-base balance in ectothermic vertebrates, Annu Rev Physiol 39: 559–586.

    PubMed  CAS  Google Scholar 

  • Reeves RB, Malan A (1976) Model studies of intracellular acid-base temperature responses in ectotherms. Respir Physiol 28: 49–63.

    PubMed  CAS  Google Scholar 

  • Robin ED (1962) Relationship between temperature and plasma and carbon dioxide tension in the turtle. Nature (London) 135: 249–251.

    Google Scholar 

  • Robin ED, Murdaugh HV, Weiss E (1964a) Acid-base, fluid and electrolyte metabolism in the elasmobranch. I. Ionic composition of erythrocytes, muscle and brain. J Cell Comp Physiol 64: 409–418.

    CAS  Google Scholar 

  • Robin ED, Rodnan GP, Murdaugh HV, Andrus M (1964b) Acid-base, fluid and electrolyte metabolism in the elasmobranch. II. Total body, extracellular and intracellular water. J Cell Comp Physiol 64: 419–422.

    CAS  Google Scholar 

  • Robin ED, Murdaugh HV, Millen JE (1966) Acid-base, fluid and electrolyte metabolism in the elasmobranch. III. Oxygen, CO2, bicarbonate and lactate exchange across the gill. J Cell Biol 67: 93–100.

    CAS  Google Scholar 

  • Smith HW (1929a) The composition of the body fluids of elasmobranchs. J Biol Chem 81: 407–419.

    CAS  Google Scholar 

  • Smith HW (1929b) The excretion of ammonia and urea by the gills of fish. J Biol Chem 81: 727–742.

    CAS  Google Scholar 

  • Smith HW (1931) The absorption and excretion of water and salts by the elasmobranch fishes. II. Marine elasmobranchs. Am J Physiol 98: 296–310.

    CAS  Google Scholar 

  • Smith WW (1939) The excretion of phosphate in the dogfish, Squalus acanthias. J Cell Comp Physiol 14: 95

    CAS  Google Scholar 

  • Toews DP, Holeton GF, Heisler N (1983) Regulation of the acid-base status during environmental hypercapnia in the marine teleost fish Conger conger. J Exp Biol 107: 9–20.

    PubMed  CAS  Google Scholar 

  • Totland GK, Kryvi H, Bone Q, Flood PR (1981) Vascularization of the lateral muscles of some elasmobranchiomorph fishes. J Fish Biol 18: 223–234.

    Google Scholar 

  • Truchot JP, Toulmond A, Dejours P (1980) Blood acid-base balance as a function of water oxygenation: A study at two different ambient CO2 levels in the dogfish, Scyliorhinus canicula. Respir Physiol 41: 13–28.

    PubMed  CAS  Google Scholar 

  • Walsh JP, Moon TW (1982) The influence of temperature on extracellular and intracellular pH in the American eel, Anguilla rostrata (Le Suer). Respir Physiol 50: 129–140.

    PubMed  CAS  Google Scholar 

  • Wardle CS (1978) Non-release of lactic acid from anaerobic swimming muscle of plaice Pleuronectes platessa L.: A stress reaction. J Exp Biol 77: 141–155.

    PubMed  CAS  Google Scholar 

  • Weast RG (ed) (1975) Handbook of Chemistry and Physics, 56th edn. CRC Press, Cleveland, Ohio

    Google Scholar 

  • Wilkes PRH, Walker RL, Monald DG, Wood CM (1981) Respiratory, ventilatory, acid-base and ionoregulatory physiology of the white sucker Catostomus commersoni: The influence of hyperoxia. J Exp Biol 91: 239–254.

    CAS  Google Scholar 

  • Wood CM, Jackson EB (1980) Blood acid-base regulation during environmental hyperoxia in the rainbow trout (Salmo gairdneri). Respir Physiol 42: 351–372.

    PubMed  CAS  Google Scholar 

  • Wood JD (1958) Nitrogen excretion in some marine teleosts. Can J Biochem Physiol 36: 1237–1242

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heisler, N. (1988). Acid-Base Regulation. In: Shuttleworth, T.J. (eds) Physiology of Elasmobranch Fishes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73336-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73336-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73338-3

  • Online ISBN: 978-3-642-73336-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics