Skip to main content

Tryptophan Availability and Serotonin Synthesis in Brain

  • Conference paper
Amino Acid Availability and Brain Function in Health and Disease

Part of the book series: NATO ASI Series ((ASIH,volume 20))

Abstract

One of the most important factors governing the rate of serotonin (5HT) synthesis in the mammalian brain is the local concentration of the substrate amino acid, L-tryptophan (see (1)). As a result, a variety of factors that influence brain tryptophan levels are also found to modify 5HT synthesis. These include such phenomenon as the ingestion of single meals, stress, the development of diabetes, and certain forms of malnutrition (see (1)). Where studied, it has been possible to show that when 5HT synthesis has been modified by one of the above phenomenon, 5HT release is also changed, as evidenced by effects on particular brain functions thought to be regulated in part by 5HT neurons. This article reviews data that have established connections between brain tryptophan levels and 5HT synthesis, and between tryptophan-related changes in 5HT synthesis and 5HT release at the synapse. It also considers evidence linking meal ingestion to alterations in brain tryptophan levels and 5HT synthesis, and food-induced changes in 5HT synthesis to appetites for a specific macronutrient (carbohydrate). It should be evident from the disĀ­cussion that while a substantial amount of evidence can now be assembled to support many of these relationships, several require additional experimental validation before they can be fully evaluated or accepted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. FERNSTROM, J. D. (1983). Role of precursor availability in the control of monoamine biosynthesis in brain. Physiol. Rev. 63: 484-546.

    Google ScholarĀ 

  2. LOVENBERG, W., JEQUIER, E., SJOERDSMA, A. (1968). Tryptophan hydroxylation in mammalian systems. In: Advances in Pharmacology Vol. 6A ( Garattini, S., Shore, P. A., eds.). Academic Press New York, pp. 21 - 36.

    Google ScholarĀ 

  3. LOVENBERG, W., WEISSBACH, H., UDENFRIEND, S. (1962). Aromatic L-amino acid decarboxyĀ¬lase. J. Biol. Chem. 237: 89-92.

    Google ScholarĀ 

  4. ICHIYAMA, A., NAKAMURA, S., NISHIZUKA, Y., HAYAISHI, O. (1968). Tryptophan 5-hydroxylase in mammalian brain. In: Advances in Pharmacology, Vol. 6A ( Garattini, S., Shore, P. A., eds.). Academic Press New York, pp. 5 - 17.

    Google ScholarĀ 

  5. KAUFMAN, S. (1974). Properties of pterin-dependent aromatic amino acid hydroxylases. In: AromatĀ¬ic Amino Acids in the Brain (Wolstenholme, G. E. W., FitsSimons, D. W., eds.). Elsevier North Holland, pp. 85 - 108.

    Google ScholarĀ 

  6. ASHCROFT, G. W., ECCLESTON, D., CRAWFORD, T.B. B. (1965). 5-Hydroxyindole metabolism in rat brain. A study of intermediate metabolism using the technique of tryptophan loading. J. NeuroĀ¬chem. 12: 483-492.

    Google ScholarĀ 

  7. FERNSTROM, J. D., WURTMAN, R. J. (1971). Brain serotonin content: physiological dependence on plasma tryptophan levels. Science 173: 149 - 152.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  8. HESS, S. M., DOEPFNER, W. (1961). Behavioral effects and brain amine content in rats. Arch. Intl. Pharmacodyn. 134: 89-99.

    Google ScholarĀ 

  9. WEBER, L. J., HORITA, A. (1965). A study of 5-hydroxytryptamine formation from L-tryptophan in the brain and other tissues. Biochem. Pharmacol. 14: 1141-1149.

    Google ScholarĀ 

  10. LIN, R. C., NEFF, N. H., NGAI, S. H., COSTA, E. (1969). Turnover rates of serotonin and noreĀ¬pinephrine in brain of normal and pargyline-treated rats. Life Sci. 8: 1077 - 1084.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  11. MEEK, J. L., FUXE, K. (1971). Serotonin accumulation after monoamine oxidase inhibition. Effects of decreased flow and of some antidepressants and hallucinogens. Biochem. Pharmacol. 20: 653-706.

    Google ScholarĀ 

  12. MILLARD, S. A., COSTA, E., GAL, E. M. (1972). On the control of brain serotonin turnover rate by end product inhibition. Brain Res. 40: 545 - 551.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  13. CULLEY, W. J., SAUNDERS, R. N., MERTZ, E. T., JOLLY, E. T. (1963). Effect of a tryptophan-defiĀ¬cient diet on brain serotonin and plasma tryptophan level. Proc. Soc. Exptl. Biol. Med. 113: 645Ā¬648.

    Google ScholarĀ 

  14. GAL, E. M., DREWES, P. A. (1962). Studies on the metabolism of 5-hydroxytryptamine (serotonin) II. Effect of tryptophan deficiency in rat. Proc. Soc. Exptl. Biol. Med. 110: 368-371.

    Google ScholarĀ 

  15. ZBINDEN, G., PLETSCHER, A., STUDER, A. (1958). AlimentƤre Beeinflussung der enterochromafiĀ¬nen Zellen und des 5-Hydroxytryptamin-Gehaltes von Gehirn und Darm. Z. Ges. Exptl. Med. 129: 615-620.

    Google ScholarĀ 

  16. FERNSTROM, J. D., HIRSCH, M. J. (1977). Brain serotonin synthesis: reduction in cornmalnourĀ¬ished rats. J. Neurochem. 28: 877 - 879.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  17. GREEN, H., GREENBERG, S. M., ERICKSON, R. W., SAWYER, J. L., ELLISON, T. (1962). Effect of dietary phenylalanine and tryptophan upon rat brain amine levels. J. Pharmacol. Exp. Ther. 136: 174-178.

    Google ScholarĀ 

  18. WANG, H. L., HARWALKAR, V. H., WAISMAN, H. A. (1962). Effect of dietary phenylalanine and tryptophan on brain serotonin. Arch. Biochem. Biophys. 96: 181-184.

    Google ScholarĀ 

  19. FERNSTROM, J. D., WURTMAN, R. J. (1972). Brain serotonin content: physiological regulation by plasma neutral amino acids. Science 178: 414 - 416.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  20. OLDENDORF, W. H. (1971). Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Amer. J. Physiol. 221: 1629-1639.

    Google ScholarĀ 

  21. PARDRIDGE, W. M., OLDENDORF, W. H. (1975). Kinetic analysis of blood brain barrier transport of amino acids. Biochim. Biophys. Acta 401: 128-136.

    Google ScholarĀ 

  22. FERNSTROM, J. D., WURTMAN, R. J. (1971). Brain serotonin content: increase following ingestion of carbohydrate diet. Science 174: 1023 - 1025.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  23. SVED, A. F. Van ITALIE, C. M., FERNSTROM, J. D. (1982). Studies of the antihypertensive action of L-tryptophan. J. Pharmacol. Esp. Ther. 221: 329-333.

    Google ScholarĀ 

  24. KUHN, D. M., WOLF, W. A., LOVENBERG, W. (1980). Review of the role of the central serotonergic neuronal system in blood pressure regulation. Hypertension 2: 243 - 255.

    PubMedĀ  CASĀ  Google ScholarĀ 

  25. GALLAGER, D. W., AGHAJANIAN, G. K. (1976). Inhibition of firing of raphe neurons by tryptophan and 5-hydroxytryptophan: blockade by inhibiting serotonin synthesis with RO-4-4602. Neuro-pharmacology 15: 149 - 156.

    CASĀ  Google ScholarĀ 

  26. TRULSON, M. E., JACOBS, B. L. (1976). Dose-response relationship between systemically adminisĀ¬tered L-tryptophan or L-5-hydroxytryptophan and raphe unit activity in the rat. NeuropharmacolĀ¬ogy 15: 339 - 344.

    ArticleĀ  CASĀ  Google ScholarĀ 

  27. TRULSON, M. E. (1985). Dietary tryptophan does not alter the function of brain serotonin neurons. Life Sci. 37: 1067 - 1072.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  28. FERNSTROM, M. H., BAZIL, C. W., FERNSTROM, J. D. (1984). Caffeine injection raises brain tryptophan level, but does not stimulate the rate of serotonin synthesis in rat brain. Life Sci. 35: 1241 - 1247.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  29. WURTMAN, J. J., WURTMAN, R. J. (1979). Drugs that enhance central serotoninergic transmission diminish elective carbohydrate consumption by rats. Life Sci. 24: 895 - 904.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  30. LEATHWOOD, P. D., ASHLEY, D. V. M. (1983). Strategies of protein selection by weanling and adult rats. Appetite 4: 97 - 112.

    PubMedĀ  CASĀ  Google ScholarĀ 

  31. ASHLEY, D. V. M. (1985). Factors affecting the selection of protein and carbohydrate from a dietary choice. Nutrition Res. 5: 555 - 571.

    ArticleĀ  CASĀ  Google ScholarĀ 

  32. NATIONAL ACADEMY OF SCIENCES (1978). Nutrient requirements of domestic animals, Number 10: Nutrient requirements of laboratory animals. Third revised edition. National Academy of Sciences, Washington, pp. 7 - 37.

    Google ScholarĀ 

  33. NATIONAL ACADEMY OF SCIENCES (1980). Recommended Dietary Allowances, Ninth Revised Edition. Committee on Dietary Allowances, Food and Nutrition Board, National Research CounĀ¬cil. Washington: National Academy of Sciences, p. 33.

    Google ScholarĀ 

  34. WURTMAN, J. J., WURTMAN, R. J. (1984). D-fenfluramine selectively decreases carbohydrate but not protein intake in obese subjects. Intl. J. Obesity 8 (Suppl. 1): 79 - 84.

    Google ScholarĀ 

  35. FERNSTROM, J. D. (1987). Food-induced changes in brain serotonin synthesis: is there a relationĀ¬ship to appetite for specific macronutrients? Appetite 8: 163 - 182.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  36. ORTHEN-GAMBILL, N., KANAREK, R. B. (1982). Differential effects of amphetamine and fenfluraĀ¬mine of dietary self-selection in rats. Pharmacol. Biochem. Behay. 16: 303-309.

    Google ScholarĀ 

  37. McARTHUR, R. A., BLUNDELL, J. E. (1983). Protein and carbohydrate self-selection: modification of the effects of fenfluramine and amphetamine by age and feeding regimen. Appetite 4: 113Ā¬124.

    Google ScholarĀ 

  38. WURTMAN, J. J., WURTMAN, R. J. (1982/1983). Studies on the appetite for carbohydrates in rats and humans. J. Psychiat. Res. 17: 213 - 221.

    Google ScholarĀ 

  39. WURTMAN, J. J., WURTMAN, R. J., GROWDON, J H., HENRY, P., LIPSCOMB, A., ZEISEL, S. H. (1981). Carbohydrate craving in obese people: suppression by treatments affecting serotoninĀ¬ergic transmission. Intl. J. Eat. Disord. 1: 2-15.

    Google ScholarĀ 

  40. WURTMAN, J. J., MOSES, P. L., WURTMAN, R. J. (1983). Prior carbohydrate consumption affects the amount of carbohydrates that rats choose to eat. J. Nutr. 113: 70 - 78.

    PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fernstrom, J.D. (1988). Tryptophan Availability and Serotonin Synthesis in Brain. In: Huether, G. (eds) Amino Acid Availability and Brain Function in Health and Disease. NATO ASI Series, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73175-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73175-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73177-8

  • Online ISBN: 978-3-642-73175-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics