Skip to main content

Differential Release of Transmitters and Neuropeptides Co-Stored in Central and Peripheral Neurons

  • Conference paper
Cellular and Molecular Basis of Synaptic Transmission

Part of the book series: NATO ASI Series ((ASIH,volume 21))

Abstract

During recent years, the prototype single-transmitter neuron concept has been replaced by a multi-messenger model from which several substances may be released for subsequent interaction with receptors on target cells. This change has occurred because numerous informational substances (Schmitt 1984) including nucleotides, neuropeptides and neurohormones that can be synthesized and co-stored with the classical transmitter have been identified in virtually all types of neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen JM, Bircham PMM, Bloom SP and Edwards AV (1984) Release of neuropeptide Y in response to splachnic nerve stimulation in the conscious calf. J Physiol 357: 401–408

    PubMed  CAS  Google Scholar 

  • Allen JM, Gjórstrup P, Bjftrkman J-A, Ek L, Abrahamsson T and Bloom SR (1986) Studies on cardiac distribution and function of neuropeptide Y. Acta Physiol Scand 126: 405–411

    Article  PubMed  CAS  Google Scholar 

  • Bartfai T (1985) Presynaptic aspects of the coexistence of classical neurotransmitters and peptides. Trends in Pharmacol Sci 6: 631–634

    Article  Google Scholar 

  • Baudet A and Descarries L (1978) The monoamine innervation of rat cerebral cortex. Synaptic and nonsynaptic axon terminals. Neuroscience 3: 851–850.

    Article  Google Scholar 

  • Burnstock C (1986) The changing face of autonomic neurotransmission. Acta Physiol Scand 126: 67–91

    Article  PubMed  CAS  Google Scholar 

  • Buma P, Roubos EW and Buijs RM (1984) Ultrastructural demonstration of exocytosis of neuronal endocrine and exocrine secretions with an in vitro tannic acid ( TARI) method. Histochemistry 80: 247–256

    Google Scholar 

  • Campbell G (1987) Cotransmission. Ann Rev Pharmacol Toxicol 27: 51–70

    Article  CAS  Google Scholar 

  • Couteaux R and Pecot-Dechavassine M (1970) Vesicules synaptiques et poches au niveau des “zones actives” de la janction neuromusculaire. C R Seances Acad Sci D 271: 2346–2347

    CAS  Google Scholar 

  • Del Castillo J and Katz B (1957) La base “quantale” de la transmission neuromusculaire, Colloq. Int. CNRS 67: 245–258

    Google Scholar 

  • Del Fiacco M and Cuello AC (1980) Substance P and enkephalin-containing neurons in the rat trigeminal system. Neuroscience 5: 803–815

    Article  PubMed  Google Scholar 

  • De Potter WP, Coen EP and De Potter RW (1987) Evidence for the coexistence and co-release of (met)enkephalin and noradrenaline from sympathetic nerves of the bovine vas deferens. Neuroscience 20: 855–866

    Article  PubMed  Google Scholar 

  • Dickinson-Nelson A and Reese TS (1983) Structural changes during transmitter release at synapses in the frog sympathetic ganglion. J Neurosci 3: 42–52

    PubMed  CAS  Google Scholar 

  • Douglas BH, Duff RB, Thureson-Klein AK and Klein RL (1986) Enkephalin contents reflect noradrenergic large dense cored vesicle populations in vasa deferentia. Regulatory Peptides 14: 193–210

    Article  PubMed  CAS  Google Scholar 

  • Dubner R and Bennett GJ (1983) Spinal and trigeminal mechanisms of nociception. Ann Rev. Neurosci 6: 381–418

    Article  PubMed  CAS  Google Scholar 

  • Edvinsson L (1985) Characterization of the contractile effect of neuropeptide Y in feline cerebral arteries. Acta Physiol Scand 125: 33–41

    Article  PubMed  CAS  Google Scholar 

  • Edvinsson L, HSkanson R, Wahlestedt C. and Uddman (1987) Effects of neuropeptide Y on the cardiovascular system. Trends in Pharmacol Sci 8: 231–235

    Google Scholar 

  • Ekblad E, Edvinsson L, Wahlestedt C, Uddman R, Håkanson R and Sundler F (1984) Neuropeptide Y co-exists and co-operates with noradrenaline in perivascular nerve fibers. Regulatory Peptides 8: 225–235

    Article  PubMed  CAS  Google Scholar 

  • Eldred WD and Carraway RE (1987) Neurocircuitry of two types of neurotensin containing amacrine cells in the turtle retina. Neuroscience 21: 603–618

    Article  PubMed  CAS  Google Scholar 

  • Elfvin L (1971) Ultrastructural studies on the Synaptology of the inferior mesenteric ganglion of the cat. I. J. Ultrastruct Res 37: 411–425

    Article  CAS  Google Scholar 

  • Floor E, Grad O and Leeman SE (1982) Synaptic vesicles containing substance P purified by chromatography on controlled pore glass. Neuroscience 7: 1647–1655

    Article  PubMed  CAS  Google Scholar 

  • Fried G, Thureson-Klein AK, and Lagercrantz H (1981) Noradrenaline content correlated to matrix density in small noradrenergic vesicles from the rat seminal ducts. Neuroscience 6: 787–800

    Article  PubMed  CAS  Google Scholar 

  • Fried G, Lundberg JM and Theodorsson-Norheim E (1985) Subcellular storage and axonal transport of neuropeptide Y ( NPY) in relation to catecholamines in the cat. Acta Physiol Scand 125: 145–154

    Google Scholar 

  • Fried G, Terenius L, Brodin E, Efendic S, Dockray G, Fahrenkrug J, Goldstein M and Htfkfelt T (1986) Neuropeptide Y, enkephalin and noradrenaline coexist in sympathetic neurons innervating the bovine spleen; Biochemical and immunohistochemical evidence. Cell Tissue Res 243: 495–508

    Google Scholar 

  • Hirokawa N (1983) Membrane specialization and cytoskeletal structures in the synapse and axon revealed by the quick-freeze deep-etch method. In: Chang D, Tasaki I, Adelman WJ and Leuchtag HR (eds.). Structure and function in excitable cells. Plenum Press 1983 New York: 113–141

    Google Scholar 

  • Htfkfelt T and Terenius L (1987) More on receptor mismatch. Trends in Neurosci 10: 22–23

    Article  Google Scholar 

  • Htfkfelt T, Lundberg JM, Lagercrantz H, Tatemoto K, Mutt V, Lindberg J, Terenius L, Everett B, Fuxe K, Agnati L and Goldstein M (1983) Occurrence of neuropeptide Y ( NPY)-like immunoreactivities in catecholamine neurons in the human medulla oblongata. Neurosci Lett 36: 217–222

    Google Scholar 

  • Johansson O and Lundberg JM (1981a) Ultrastructural localization of VIP-like immunoreactivity in large dense cored vesicles of “cholinergic type” terminals in cat exocrine glands. Neuroscience 6: 847–862

    Article  PubMed  CAS  Google Scholar 

  • Johansson O, Hökfelt T, Pernow B, Jeffcoate SL, White N, Steinbusch HWM, Verhofstad AAJ, Emson PC and Spindel E (1981b) Immunohistochemical support for three putative transmitters in one neuron: coexistence of 5-hydroxytryptamine, substance P and thyrotropin releasing hormone-like immunoreactivity in medullary neurons projecting to the spinal cord. Neuroscience 6: 1857–1881

    Article  PubMed  CAS  Google Scholar 

  • Klein RL and Thureson-Klein ÁK (1984) Noradrenergic vesicles. In: Lajtha A (ed) Handbook of Neurochemistry Vol. 7, Plenum Press 1984 New York: 71–107

    Google Scholar 

  • Klein RL, Lemaire S, Thureson-Klein AK and Day R (1984) Leu-enkephalin, dynorphin and bombesin contents of a highly purified large dense cored noradrenergic vesicle fraction from bovine splenic nerve. In: Fraiolo R, Isidori A and Mazetti M (eds.) Opioid peptides in the periphery. Elsevier 1984 Amsterdam: 205–212

    Google Scholar 

  • Klein RL, Wilson SP, Dzielak DJ, Yang W-H, and Viveros OH (1982) Opioid peptides and noradrenaline co-exist in large dense cored vesicles from sympathetic nerves. Neuroscience 7: 2255–2261

    Article  PubMed  CAS  Google Scholar 

  • Le Gray C, Saffrey M and Burnstock G (1984) Coexistence of immunoreactive substance P and serotonin in neurons of the gut. Brain Res 302: 379–382

    Article  Google Scholar 

  • Lundberg JM, Fried G, Fahrenkrug J, Holmstedt B, Hokfelt T, Lagercrantz H, Lundgren G and Anggård A (1981) Subcellular fractionation of cat submandibular gland: Comparative studies on the distribution of acetylcholine and vasoactive intestinal polypeptide (VIP) Neuroscience 6: 1001–1010

    PubMed  CAS  Google Scholar 

  • Lundberg JM, Saria A, Hokfelt T, Franco-Cereceda A and Terenius L (1985) Tissue-specific depletion of NPY-like immunoreactivity by reserpine. Acta Physiol Scand 123: 363–365

    Article  PubMed  CAS  Google Scholar 

  • Lundberg JM, Rudehill A, Sollevi A, Theodorsson-Norheim E and Hamberger B (1986) Frequency- and reserpine-dependent chemical coding of sympathetic transmission: differential release of noradrenaline and neuropeptide Y from pig spleen. Neuorsci Lett 63: 96–100

    Article  CAS  Google Scholar 

  • Maxwell DJ and Réthelyi M (1987) Ultrastructure and synaptic connections of cutaneous afferent fibers in the spinal cord. Trends in Neuro Sci 10: 117–123

    Article  Google Scholar 

  • Navone F, Greengard P and De Camilli P (1984) Synapsin I in nerve terminals: selective association with small synaptic vesicles. Science 226: 1209–1211

    Article  PubMed  CAS  Google Scholar 

  • Nitsch C and Rinne U (1981) Large dense-core vesicle exocytosis and membrane recycling in the mossy fibre synapses of the rabbit hippocampus during epileptiform seizures. J of Neurocyt. 10: 201–219

    Article  CAS  Google Scholar 

  • Pelletier G, Steinbusch HWM and Verhofstad AAJ (1981) Immunoreactive substance P and serotonin present in the same dense-cored vesicles. Nature 293: 71–72

    Article  PubMed  CAS  Google Scholar 

  • Peng HB (1983) Cytoskeletal organization of the presynaptic nerve terminal and the acetylcholine receptor cluster in cell cultures. J Cell Biol 97: 489–498

    Article  PubMed  CAS  Google Scholar 

  • Peng HB, Markey DR, Muhlach WL and Pollack ED (1987) Development of presynaptic specializations induced by basic polypeptide-coated latex beads in spinal cord cultures. Synapse 1: 10–19

    Article  PubMed  CAS  Google Scholar 

  • Schmitt FO (1984) Molecular regulators of brain function: a new view. Neuroscience 13: 991–1001

    Article  PubMed  CAS  Google Scholar 

  • Sjostrand NO (1965) The adrenergic innervation of the vas deferens and accessory male genital glands. Acta Physiol Scand 65 (Suppl 257) 1–82

    Google Scholar 

  • Smith AD (1971) Summing up: some implications of the neuron as a secreting cell. Phil Trans R Soc Lond 261: 423–437

    Article  CAS  Google Scholar 

  • Smith JE and Reese TS (1980) Use of aldehyde fixation to determine the rate of synaptic transmitter release. J Exp Biol 89: 19–29

    PubMed  CAS  Google Scholar 

  • Stjarne L, Lundberg JM and Astrand P (1986) Neuropeptide Y - A cotransmitter with noradrenaline and adenosine 5′-triphosphate in the sympathetic nerves of the mouse vas deferens? A biochemical, physiological and electropharmacological study. Neuroscience 18: 151–166

    Article  PubMed  CAS  Google Scholar 

  • Thureson-Klein AK (1983) Exocytosis from large and small dense cored vesicles in noradrenergic nerve terminals. Neuroscience 10: 245–252

    Article  PubMed  CAS  Google Scholar 

  • Thureson-Klein AK (1984) The roles of small and large noradrenergic vesicles in exocytosis. In: Usdin E (ed.) Catecholamines basic and peripheral mechanisms. Alan R. Liss 1984 New York: 79–87

    Google Scholar 

  • Thureson-Klein AK, Klein RL, and Zhu PC (1986) Exocytosis from large dense cored vesicles as a mechanism for neuropeptide release in the peripheral and central nervous system. Scanning Electr Micrl: 179–187

    Google Scholar 

  • Thureson-Klein AK, Zhu PC and Klein RL (1987) Nonsynaptic exocytosis from large dense cored vesicles as a mechanism for non-directional neuropeptide release. In: Nobin A, Owman C and Arneklo-Nobin A (eds.) Neuronal messengers in vascular function. Elsevier Sci Publ 1987 Amsterdam: 211–217

    Google Scholar 

  • von Euler US (1963) Substance P in subcellular particles in peripheral nerves. Ann NY. Acad Sci 104: 449–461

    Article  Google Scholar 

  • Waite PME and Cragg BG (1982) The peripheral and central changes from cutting or crushing the afferent nerve supply to the whisker. Proc R Soc Lond 214: 191–211

    Article  PubMed  CAS  Google Scholar 

  • Whittaker VP (1986) The storage and release of acetylcholine. Trends in Pharmacol Sci 7: 312–315

    Article  CAS  Google Scholar 

  • Zhu PC, Wu HX and Xu H (1981) Somatotropic projections of the cutaneous facial regions of the substantia gelatinosa of the rat. An acid phosphatase study. Acta anat sin 12: 155–161

    Google Scholar 

  • Zhu PC, Xu H, Tang YP and Wu HX (1984) The ultrastructure of the substantia gelatinosa glomeruli in the spinal trigeminal nucleus of the rat. Acta anat sin 15: 168–173

    Google Scholar 

  • Zhu PC, Thureson-Klein A and Klein RL (1986) Exocytosis from large dense cored vesicles outside the active synaptic zones of terminals within the trigeminal subnuclens caudalis: A possible mechanism for neuropeptide release. Neuroscience 19: 43–54

    Google Scholar 

  • Zimmermann H (1982) Insights into the functional role of cholinergic vesicles. In: Klein RL, Lagercrantz H and Zimmermann H (eds.) Neurotransmitter vesicles 1982 Academic Press, London: 305–360

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Thureson-Klein, Å.K., Klein, R.L., Zhu, PC., Kong, JY. (1988). Differential Release of Transmitters and Neuropeptides Co-Stored in Central and Peripheral Neurons. In: Zimmermann, H. (eds) Cellular and Molecular Basis of Synaptic Transmission. NATO ASI Series, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73172-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73172-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73174-7

  • Online ISBN: 978-3-642-73172-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics