Skip to main content

Cell-to-cell interactions during the establishment of the Hydra-Chlorella symbiosis

  • Conference paper
Cell to Cell Signals in Plant, Animal and Microbial Symbiosis

Part of the book series: NATO ASI Series ((ASIH,volume 17))

Abstract

This review paper will describe research into the problem of whether specific signals or properties of the algal symbionts of green hydra elicit a response from the host digestive cells which may constitute discriminatory “recognition”. It will also address two paradoxes raised by attempting to compare reinfection of artificially produced aposymbiotic hydra in the laboratory with the life cycle and habitat of green hydra in nature. Firstly, although hydra have been successfully reinfected with a variety of Chlorella algae in the laboratory, including several which do not release maltose (Jolley and Smith 1980; Rahat and Reich 1985), hydra collected from nature invariably have been found to contain maltose-releasing algae. Secondly, there is the problem of the significance of discriminatory processes shown during reinfection of aposymbiotic hydra. Based on an original scheme given by Pardy and Muscatine (1973), McAuley and Smith (1982a) described four stages in the recolonization of digestive cells by symbiotic algae. These are: phagocytosis; sorting (avoidance of lysosomal attack); transport to base; and integration with the metabolic processes of the host cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Cooper, G. & Margulis, L. (1977). Delay in migration of symbiotic algae in Hydra viridis by inhibitors of microtubule polymerization. Cytobios 19, 7–19.

    PubMed  CAS  Google Scholar 

  • Douglas, A.E. & Smith, D.C. (1983). The cost of symbionts to their hosts in green hydra. In Endocytobiology II (eds. W. Schwemmler and H.E.A. Schenk) pp 631–648, Walter de Gruyter, Berlin.

    Google Scholar 

  • Ellard, F.M. (1986). Growth in symbiotic hydra. Ph.D. thesis, Oxford University.

    Google Scholar 

  • Galloway, C.J., Dean, G.E., Marsh, M., Rudnick, G. & Mellman, I. (1983). Acidification of macrophage and fibroblast endocytic vesicles in vitro. Proc. Natl. Acad. Sci. U.S.A. 80, 3334–3338.

    Article  PubMed  CAS  Google Scholar 

  • Hohman, T.C., McNeil, P.L. & Muscatine, L. (1982). Phagosome-lysosome fusion inhibited by algal symbionts of Hydra viridis. J. Cell Biol. 94, 56–63.

    Article  PubMed  CAS  Google Scholar 

  • Jolley, E. & Smith, D.C. (1980). The green hydra symbiosis. II. The biology of the re-establishment of the symbiosis. Proc. R. Soc. Lond. B. 207, 311–333.

    Article  Google Scholar 

  • McAuley, P.J. (1986a). Isolation of viable uncontaminated Chlorella from green hydra. Linnol. Qceanogr. 31, 222–224.

    Article  Google Scholar 

  • McAuley, P.J. (1986b). Uptake of amino acids by cultured and freshly isolated symbiotic Chlorella. New Phyto1. 104, 415–427.

    Article  CAS  Google Scholar 

  • McAuley, P.J. Nitrogen limitation and amino acid metabolism of Chlorella symbiotic with green hydra. Planta, in the press.

    Google Scholar 

  • McAuley, P.J. & Smith, D.C. (1982a). The green hydra symbiosis. V. Stages in the intracellular recognition of algal symbionts by digestive cells. Proc. R. Soc. B. 216, 7–23.

    Article  Google Scholar 

  • McAuley, P.J. & Smith, D.C. (1982b). The green hydra symbiosis. VII. Conservation of the host cell habitat by the symbiotic algae. Proc. R. Soc. Lond. B. 216, 415–426.

    Article  Google Scholar 

  • McNeil, P.L. (1981). Mechanisms of nutritive endocytosis. I. Phagocytic versatility and cellular recognition in Chlorohydra digestive cells, a scanning electron microscopical study. J. Cell Sci. 49, 311–339.

    PubMed  CAS  Google Scholar 

  • McNeil, P.L. (1984). Mechanisms of nutritive endocytosis. III. A freeze-fracture study of phagocytosis by digestive cells of Chlorohydra. Tissue and Cell 16, 519–533.

    Article  PubMed  CAS  Google Scholar 

  • McNeil, P.L., Hohman, T.C. & Muscatine, L. (1982). Mechanisms of nutritive endocytosis. II. The effect of charged agents on phagocytic recognition by digestive cells. J. Cell Sci. 52., 243–269.

    Google Scholar 

  • McNeil, P.L. & Smith, D.C. (1982). The green hydra symbiosis. IV. Entry of symbionts into digestive cells. Proc. R. Soc. Lond. B. 216, 1–6.

    Article  Google Scholar 

  • McNeil, P.L., Tanasugarn, L., Meigs, J.B. & Taylor, D.L. (1983). Acidification of phagosomes is detected before lysosomal enzyme activity is detected. J. Cell. Biol. 97, 692–702.

    Article  PubMed  CAS  Google Scholar 

  • McNeil, P.L. & McAuley, P.J. (1984). Lysosomes fuse with one half of alga-bearing phagosomes during the re-establishment of the European green hydra symbiosis. J. Exp. Zool. 230, 377–385.

    Article  CAS  Google Scholar 

  • Meier, R., Reisser, W., Wiessner, W. & Le Fort-Tran, M. (1980). Freeze-fracture evidence of differences between membranes of perialgal and digestive vacuoles in Paramecium bursaria. Z. Naturf. 35c, 1107–1110.

    Google Scholar 

  • Meier, R., Le Fort-Tran, M., Pouphile, M., Reisser, W. & Wiessner, W. (1984). Comparative freeze-fracture study of perialgal and digestive vacuoles in Paramecium bursaria. J. Cell Sci. 71, 121–140.

    PubMed  CAS  Google Scholar 

  • Meints, R.H. & Pardy, R.L. (1980). Quantitative demonstration of cell surface involvement in a plant-animal symbiosis: lectin inhibition of reassociation. J. Cell Sci. 43, 239–251.

    PubMed  CAS  Google Scholar 

  • Mews, L.K. (1980). The green hydra symbiosis. III. The bio-trophic transport of carbohydrate from alga to animal. Proc. R. Soc. Lond. B. 209: 377–401.

    Article  CAS  Google Scholar 

  • Muscatine, L. & McAuley, P.J. (1982). Transmission of symbiotic algae to eggs of green hydra. Cytobios. 33, 111–124.

    PubMed  CAS  Google Scholar 

  • Neckelmann, N. & Muscatine, L. (1983). Regulatory mechanisms maintaining the Hydra-Chlorella symbiosis. Proc. R. Soc. Lond. B. 219, 193–210.

    Article  Google Scholar 

  • O’Brien, T.L. (1982). Inhibition of vacuolar membrane fusion by intracellular symbiotic algae in Hydra viridis (Florida strain). J. Exp. Zool. 223, 211–218.

    Article  PubMed  Google Scholar 

  • Pardy, R.L. & Muscatine, L. (1973). Recognition of symbiotic algae by Hydra viridis. A quantitative study of the uptake of living algae by aposymbiotic H. viridis. Biol. Bull. 145, 565–579.

    Article  Google Scholar 

  • Pool, R.R. Jr. (1979). The role of antigenic determinants in the recognition of potential algal symbionts by cells of Chlorohydra. J. Cell Sci. 35, 367–379.

    PubMed  Google Scholar 

  • Rahat, M. (1985). Competition between Chlorellae in chimeric infections of Hydra viridis: the evolution of a stable symbiosis. J. Cell Sci. 77, 87–92

    PubMed  CAS  Google Scholar 

  • Rahat, M. & Reich, V. (1984). Intracellular infection of aposymbiotic Hydra viridis by a foreign freeliving Chlorella sp.: Initiation of a stable symbiosis. J. Cell Sci. 65, 265–277.

    PubMed  CAS  Google Scholar 

  • Rahat, M. & Reich, V. (1985). Correlations between characteristics of some free-living Chlorella sp. and their ability to form stable symbioses with Hydra viridis. J. Cell Sci., 74, 257–266.

    PubMed  CAS  Google Scholar 

  • Rahat, M. & Reich, V. (1987). A re-evaluation of alleged requirements for the establishment of algal/hydra symbiosis and host/symbiont specificity: pre-adaption and vacuolar ecology. Endocyt. C. Res. 4, 13–23.

    Google Scholar 

  • Rees, T.A.V. (1986). The green hydra symbiosis and ammonium. I. The role of the host in ammonium assimilation and its possible regulatory significance. Proc. R. Soc. Lond. B. 229, 299–314.

    Article  CAS  Google Scholar 

  • Smith, D.C. (1980). The role of nutrition in the establishment of the green hydra symbiosis. In Nutrition in the lower Metazoa (Smith, D.C. & Tiffon, Y., eds.) pp 129–139. Pergamon Press, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

McAuley, P.J. (1988). Cell-to-cell interactions during the establishment of the Hydra-Chlorella symbiosis. In: Scannerini, S., Smith, D., Bonfante-Fasolo, P., Gianinazzi-Pearson, V. (eds) Cell to Cell Signals in Plant, Animal and Microbial Symbiosis. NATO ASI Series, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73154-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73154-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73156-3

  • Online ISBN: 978-3-642-73154-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics