Skip to main content

Factors Produced by Symbiotic Marine Invertebrates which Affect Translocation between the Symbionts

  • Conference paper
Cell to Cell Signals in Plant, Animal and Microbial Symbiosis

Part of the book series: NATO ASI Series ((ASIH,volume 17))

Abstract

The translocation of nutrients between the partners is known to be a vital feature of the association in most symbioses involving close contact between the cells of the partners, and is probably important in all such associations. There is abundant evidence that this is a well-controlled process. Work so far suggests that, at least in marine invertebrates with algal symbionts, translocation is controlled largely by the animal host. In spite of much work in this area, the processes and signals involved are not well understood. This paper will examine evidence that even in the well-studied symbioses between invertebrates and dinoflagellates (“zooxanthellae”) the control of translocation is not as simple as suggested by the literature, and will discuss some directions for future research and some potentially useful models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • ALBERTE, R.S., L. CHENG & R.A. LEWIN (1986) Photosynthetic characteristics of Prochloron sp./ascidian symbioses I. Light and temperature responses of the algal symbiont of Lissoclinum patella. Mar. Biol. 90; 575–587.

    Article  CAS  Google Scholar 

  • BATTEY, J.F. & J.S. PATTON (1984) A reevaluation of the role of glycerol in carbon translocation in zooxanthellae-coelenterate symbiosis. Mar. Biol., 79:27–38.

    Article  CAS  Google Scholar 

  • BLANK, R.J. & R.K. TRENCH (1985) Speciation and symbiotic dinoflagellates. Science, 229:656–658.

    Article  PubMed  CAS  Google Scholar 

  • BLANQUET, R.S., J.C. NEVENZEL & A.A. BENSON (1979) Acetate incorporation into the lipids of the anemone Anthopleura elegantissima and its associated zooxanthellae. Mar. Biol., 54:185–194.

    Article  CAS  Google Scholar 

  • BOYLE, J.E. & D.C. SMITH (1975) Biochemical interactions between the symbionts of Convoluta roscoffensis. Proc. Roy. Soc. Lond. B, 189:121–135.

    Article  CAS  Google Scholar 

  • CARROLL, S. & R.S. BLANQUET (1984a) Alanine uptake by isolated zooxanthellae of the mangrove jellyfish, Cassiopea xamachana. I. Transport mechanisms and utilization. Biol. Bull. 166:409–418.

    Article  CAS  Google Scholar 

  • CARROLL, S. & R.S. BLANQUET (1984b) Alanine uptake by isolated zooxanthellae of the mangrove jellyfish, Cassiopea xamachana. II. Inhibition by host homogenate fraction. Biol. Bull., 166:419–426.

    Article  CAS  Google Scholar 

  • CERNICHIARI, E., L. MUSCATINE & D.C. SMITH (1969) Maltose excretion by the symbiotic algae of Hydra viridis. Proc. Roy. Soc. Lond. B, 173:557–576.

    Article  CAS  Google Scholar 

  • CROSSLAND, C.J., D.J. BARNES & M.A. BOROWITZKA (1980) Diurnal lipid and mucus production in the staghorn coral Acropora acuminata. Mar. Biol. 60: 81–90.

    Article  CAS  Google Scholar 

  • DEANE, E.M. & R.W. O’BRIEN (1981) Uptake of sulphate, taurine, cysteine and methionine by symbiotic and free-living dinoflagellates. Arch. Microbiol., 128:311–319.

    Article  CAS  Google Scholar 

  • FISHER, C.R. & R.K. TRENCH (1980) In vitro carbon fixation by Prochloron sp. isolated from Diplosoma virens. Biol. Bull., 159:636–648.

    Article  Google Scholar 

  • GALLOP, A.M. (1974) Evidence for the presence of a ‘factor’ in Elysia viridis which stimulates photosynthetic release from its symbiotic chloroplasts. New Phytol., 73:1111–1117.

    Article  CAS  Google Scholar 

  • GRIFFITHS, D.J. & L. THINH (1983) Transfer of photosynthetically fixed carbon between the prokaryotic green alga Prochloron and its ascidian host. Aust. J. mar. freshwat. Res., 34:431–440.

    Article  CAS  Google Scholar 

  • HINDE, R. (1983) Host release factors in symbioses between algae and invertebrates. pp709–726 in H.E.A. Schenk & W. Schwemmler (eds) Endocyto-biology II — Intracellular space as oligogenetic system. Walter de Gruyter & Co., Berlin & N.Y.

    Google Scholar 

  • HOEGH-GULDBERG, I.O. (1981). The translocation of newly fixed carbon from zooxanthellae in Plesiastrea versipora, Pteraeolidia ianthina and a zoanthid. Unpublished thesis, University of Sydney.

    Google Scholar 

  • HOEGH-GULDBERG, I.O. & R. HINDE (1986) Studies on a nudibranch that contains zooxanthellae. I. Photosynthesis, respiration and the translocation of newly fixed carbon by zooxanthellae in Pteraeolidia ianthina. Proc. Roy. Soc. Lond. B, 228:493–509.

    Article  Google Scholar 

  • HOEGH-GULDBERG, I.O., R. HINDE & L. MUSCATINE (1986) Studies on a nudibranch that contains zooxanthellae. II. Contribution of zooxanthellae to animal respiration (CZAR) in Pteraeolidia ianthina with high and low densities of zooxanthellae. Proc. Roy. Soc. Lond. B, 511–521.

    Google Scholar 

  • HOEGH-GULDBERG, I.O. & D.C. Sutton Tissue extracts of four symbiotic invertebrates from temperate latitudes: effect on the photosynthesis and release of newly fixed carbon by isolated zooxanthellae. In preparation.

    Google Scholar 

  • JENSEN, A. (1984) Excretion of organic carbon as function of nutrient stress. pp. 61–72 in Holm-Hansen, O., L. Bolis & R. Gilles (eds) Marine Phytoplankton and Productivity (Lecture Notes in Coastal and Estuarine Studies, No. 8). Springer Verlag, Berlin.

    Google Scholar 

  • KELLOGG, R.B. & J.S. PATTON (1983) Lipid droplets, medium of energy exchange in the symbiotic anemone Condylactis gigantea: a model coral polyp. Mar. Biol., 75:137–149.

    Article  CAS  Google Scholar 

  • LEE, J.J., N.M. SAKS, F. KAPIOTOU, S.H. WILEN & M. Shilo (1984) Effects of host cell extracts on cultures of endosymbiotic diatoms from larger foraminifera. Mar. Biol., 82:113–120.

    Article  Google Scholar 

  • MEWS, L.K. (1980) The green hydra symbiosis. III. The biotrophic transport of carbohydrate from alga to animal. Proc. Roy. Soc. Lond. B, 209:377–401.

    Article  CAS  Google Scholar 

  • MUSCATINE, L. (1967) Glycerol excretion by symbiotic algae from corals and Tridacna and its control by the host. Science, 156:516–519.

    Article  PubMed  CAS  Google Scholar 

  • MUSCATINE, L. (1973) Nutrition of corals. pp.77–115 in Jones, O.A. & R. Endean (eds) Biology and Geology of Coral Reefs, 2(1). Academic Press, N.Y. & Lond.

    Google Scholar 

  • MUSCATINE, L. & E. CERNICHIARI (1969) Assimilation of photosynthetic products of zooxanthellae by a reef coral. Biol. Bull. 137:506–523.

    Article  CAS  Google Scholar 

  • MUSCATINE, L., R.R. POOL & E. CERNICHIARI (1972) Some factors influencing selective release of soluble organic material by zooxanthellae from reef corals. Mar. Biol., 13:298–308.

    Article  CAS  Google Scholar 

  • MUSCATINE, L., J.E. BOYLE & D.C. SMITH (1974) Symbiosis of the acoel flatworm Convoluta roscoffensis with the alga Platymonas convolutae. Proc. Roy. Soc. Lond. B, 187:221–234.

    Article  CAS  Google Scholar 

  • MUSCATINE, L., P.G. FALKOWSKI & Z. DUBINSKY (1983) Carbon budgets in symbiotic associations. pp.649–658 in Schenk, H.E.A. & W. Schwemmler (eds) Endocytobiology II — Intracellular space as oligogenetic system. Walter de Gruyter & Co., Berlin & N.Y.

    Google Scholar 

  • PÄTTON, J.S., S. ABRAHAM & A.A. BENSON (1977) Lipogenesis in the intact coral Pocillopora capitata and its isolated zooxanthellae: evidence for a light-driven carbon cycle between symbiont and host. Mar. Biol., 44: 235–247.

    Article  Google Scholar 

  • PATTON, J.S. & J.E. BURRIS (1983) Lipid synthesis and extrusion by freshly isolated zooxanthellae (symbiotic algae). Mar. Biol., 75:131–136.

    Article  CAS  Google Scholar 

  • PÄTTON, J.S., J.F. BATTEY, M.W. RIGLER, J.W. PORTER, C.C. BLACK & J.E. BURRIS (1983) A comparison of the metabolism of bicarbonate -14C and acetate 1-14C and the variability of speciec lipid compositions in reef corals. Mar.Biol., 75:121–130.

    Article  Google Scholar 

  • RUDMAN, W.B. (1982) The taxonomy and biology of further aeolid and arminacean nudibranch molluscs with symbiotic zooxanthellae. Zool. J. Linn. Soc. Lond., 74:147–196.

    Article  Google Scholar 

  • SMITH, D.C. (1974) Transport from symbiotic algae and symbiotic chloroplasts to host cells. Symp. Soc. exp. Biol., 28:485–520.

    PubMed  CAS  Google Scholar 

  • SMITH, D.C. & A.E. DOUGLAS (1987) The biology of symbiosis. Edward Arnold, London.

    Google Scholar 

  • STEWART, C.L. (1986) An investigation of the carbon budget model for symbiotic corals. Unpublished thesis, University of Sydney.

    Google Scholar 

  • SUMMONS, R.E. & C.B. OSMOND (1981) Nitrogen assimilation in the symbiotic marine alga Gymnodinium microadriaticum: direct analysis of 15 N incorporation by GC-MS methods. Phytochem., 20:575–578.

    CAS  Google Scholar 

  • TAYLOR, D.L. (1973) Algal symbionts of invertebrates. Ann. Rev. Microbiol., 27: 171–187.

    Article  CAS  Google Scholar 

  • TRENCH, R.K. (1971a) The physiology and biochemistry of zooxanthellae symbiotic with marine coelenterates. I. The assimilation of photosynthetic products of zooxanthellae by two marine coelenterates. Proc. Roy. Soc. Lond. B, 177:225–235.

    Article  CAS  Google Scholar 

  • TRENCH, R.K. (1971b) The physiology and biochemistry of zooxanthellae symbiotic with marine coelenterates. II. Liberation of fixed 14C by zooxanthellae in vitro. Proc. Roy. Soc. Lond. B, 77:237–250.

    Article  Google Scholar 

  • TRENCH, R.K. (1979) The cell biology of plant-animal symbiosis. Ann. Rev. Pl. Physiol., 30:485–531.

    Article  CAS  Google Scholar 

  • VON HOLT, C. & M. VON HOLT (1968a) Transfer of photosynthetic products from zooxanthellae to coelenterate hosts. Comp. Biochem. Physiol., 24: 73–81.

    Article  Google Scholar 

  • VON HOLT, C. & M. VON HOLT (1968b) The secretion of organic compounds by zooxanthellae isolated from various types of Zoanthus. Comp. Biochem. Physiol., 24:83–92.

    Article  Google Scholar 

  • YU, S.L. & W.E. DIETRICH (1977) Effect of host homogenates on photosynthate excretion by zoochlorellae of Hydra viridis. Proc. Pennsylvania Acad. Sci., 51:137–138.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hinde, R. (1988). Factors Produced by Symbiotic Marine Invertebrates which Affect Translocation between the Symbionts. In: Scannerini, S., Smith, D., Bonfante-Fasolo, P., Gianinazzi-Pearson, V. (eds) Cell to Cell Signals in Plant, Animal and Microbial Symbiosis. NATO ASI Series, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73154-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73154-9_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73156-3

  • Online ISBN: 978-3-642-73154-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics